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Abstract
This study sets out to propose a new ensemble of probabilistic spatial modeling and multi-criteria decision-making comprised of
stepwise areal constraining and Mahalanobis distance algorithms in order to assess areal suitability for landfilling. The Ardak
watershed was selected as the study area due to encountering several cases of open garbage dumps and uncontrolled landfills
which are one of the main sources of river water pollution in the upstream of the Ardak dam. The results revealed that the
proposed algorithm successfully assists in inventory-irrespective probabilistic modeling of landfill siting which is mainly in-
debted to the role of areal constraining in providing training and validation samples for the Mahalanobis distance model. The
latter also showed a robust pattern recognition results from which a discernible differentiation of the area was attained while the
spatial dependencies between the environmental factors were taken into account. Mahalanobis distance also gave an outstanding
performance in terms of goodness of fit (area under the success rate 89.367) and prediction power (area under the success rate
89.252). Based on a five-point scale classification scheme, about 2.7% and 2.6% of the study area, respectively, have high and
very high suitability for landfilling, while the remaining area is shared between very low-to-moderate suitability classes.
According to the current trail of literature regarding landfill site selection which mostly relies on mere areal filtering, a proba-
bilistic model would give invaluable inferences regarding the pattern of suitability/susceptibility of the area of interest and
causative role of the influential factors.
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Introduction

Locating the landfill sites as the disposal location of waste
materials that are of no use for recycling has been a pivotal
issue for municipal and industrial waste management agencies
(Ngoc and Schnitzer 2009; Khan et al. 2018). Despite the
official reports concerning the considerable waste generation
per capita in rural areas accounting for about 220–340 g per
day in 2016 as well as the regulations designed to govern
waste management in Iran (Khayamabshi 2016; Tehran

times 2017), the latter has come to a head and municipalities
have begun to identify safe landfilling locations and propose
modern disposal techniques such as digesters, incinerators,
and biogas (del Valle-Zermeño et al. 2015; Khayamabshi
2016). Landfill site locating is substantial in developing coun-
tries where environmental restrictions and organizational ben-
efits may occasionally stand on opposite sides. The countless
poorly located landfill sites at or nearby the rural areas have
been threatening the surrounding environment including its
inhabitants by producing an unpleasant odor, diminishing es-
thetic values, and contaminating water resources (Rathi 2006;
Mondelli et al. 2007; Li’ao et al. 2009; Khorram et al. 2015).
Open garbage dumps and uncontrolled landfills have been
significantly affecting the quality of the streams in the Ardak
watershed in the north of Khorasan Razavi province, Iran.
According to the official reports of Water Company and
Forest, Range and Watershed Management Organization of
Khorasan Razavi province, effluents from landfill leachates

Responsible editor: Philippe Garrigues

* Ali Haghizadeh
haghizadeh.a@lu.ac.ir

1 Department of Watershed Management, Faculty of Agriculture and
Natural Resources, Lorestan University, Khorramabad, Iran

https://doi.org/10.1007/s11356-020-08746-9
Environmental Science and Pollution Research (2020) 27:24954–24966

/Published online: 27 April 2020

http://crossmark.crossref.org/dialog/?doi=10.1007/s11356-020-08746-9&domain=pdf
mailto:haghizadeh.a@lu.ac.ir


have contaminated nearby surface waters as well as ground-
water resources by injecting different pollutants such as xeno-
biotic organic compounds, heavy metals, and nutrient salts
(RWCKR1 2018). Hence, precise and effective landfill site
selection techniques are essential for water quality manage-
ment to address downstream pollution concerns.

Rating, weighting, and ranking have been the most common
basis of landfill site selection so far with which many novelties
have been offered in terms of model integration, data inclusion/
configuration, and geographical toolboxes with setback spatial
criteria go forth. Developing a GIS tool underpinned by the
ensemble of Not-In-My-Backyard (NIMBY) syndrome and nui-
sance score (Simsek et al. 2014a, b) and incorporating different
multi-criteria decision-making methods such as simple additive
weighting (SAW), analytical hierarchy process (AHP), and
TOPSIS (Technique for Order of Preference by Similarity to
Ideal Solution) (Rahmat et al. 2017, 2018; Chabuk et al. 2017;
Spigolon et al. 2018; Khan et al. 2018;Șener et al. 2010;Kamdar
et al. 2019; Chabuk et al. 2019; Özkan et al. 2019), remote
sensing studies with employing aerial photography, airborne
and spaceborne sensors (Manzo et al. 2016; Mahmood et al.
2017), novel Thiessen polygon–based ranking schemes integrat-
ed with remotely examined environmental criteria (Richter et al.
2019), and electrical resistivity combinedwith aMCDMmethod
(Goulart Coelho et al. 2017; Yousefi et al. 2018; Akintorinwa
and Okoro 2019) are some of these endeavors.

Although suchmethodologies have expanded the knowledge
on the ways to better concentrate on the desired landfill sites
which aremost commonly termed as areal constraining/filtering,
the current trail of literature has not considered the element of
data mining and pattern recognition nor acknowledged their
merits. Here we proposed a novel data driven-probabilistic en-
semble model that bears not only on-site selection but also rec-
ognition of similar patterns with different degrees of similarities
to the ideal conditions. The latter, in particular, is a key principle
when authorities require a highly differentiated spatial map that
includes the transient zone which may be transferred into either
suitability or unsuitability conditions over the course of time.
Such a technique would simply improve traditional binary clas-
sifications. In this process, we attempted to employ the most
easy-to-acquire environmental data in order to provide an all-
inclusive application of the proposed methodology. Hence, the
main contribution of this paper is the probabilistic site selection
scheme which would serve the decision-makers with much
more flexible decision-making maps—a theme that is beyond
a binary presence-absence classification.

Study area

The Ardak watershed extends for an area of about 479 km2

and is located in the north of Khorasan Razavi province, Iran.

It lies between latitudes 4,066,633 to 4,096,281 N and longi-
tudes 690,339 to 725,597 E, UTM zone 40 N. Elevation
ranges between 1235 and 2950 m.a.s.l (Fig. 1). A total of 15
residential centers are evident which are sporadically distrib-
uted across the study area. Roads at 55.5 km—paved an
unpaved—are extended across the region. A 146-km stream
network is sprawled over a diverse land cover types. Land
covers were disintegrated in terms of type and the density of
the vegetation cover and usage-wise to attain more realistic
and precise results. Based on the latter, poor pastures cover the
largest area (74.5% of the entire region), followed by
moderate-condition pastures (8.5%), and very-low-density
forests (8.1%) while the remaining area is shared between
orchards, rainfed farming, low-density forests, and wood-
lands. The appearance of 238 springs across the region intui-
tively implies the high groundwater potential in the area.
Moreover, there is an important dam reservoir in the southern-
most part of the study area. Mashhad, one of the largest met-
ropolitan cities of Iran, is located at the reservoir’s down-
stream end and accommodates above 3 million residents.
The latter indicates the pivotal role of this watershed in pro-
viding the water supply of the downstream regions. Many
garbage dumps were evident mostly nearby the streams,
roads, and residential centers during the filed surveys where
an instant change in natural color and quality of surface water
were discernible right after the contaminated area, endanger-
ing the natural habitats and human beings (Fig. 2).

Materials and methods

The workflow of this study is presented in Fig. 3. What fol-
lows is thorough explanations of the adopted methodological
stages.

Data compilation

Although most of the spatial modeling efforts require inven-
tory data for the modeling or model validation phases, the
methodology proposed in this work has an inventory-
irrespective scheme. The process consists of two main phases,
namely, areal constraining and probabilistic modeling. In fact,
the final product of areal constraining signifies the most suit-
able sites for landfills which, itself, provides the inventory for
probabilistic modeling. This procedure follows the selection
and classification of landfill-representative factors. The
adopted factors were selected based on different criteria such
as literature review, data availability, spatial heterogeneity of
the factors’ pattern across the study area (i.e., excluding ho-
mogenous factors with less unique information), and, most
importantly, the multicollinearity issue. The latter can cause
bias in models’ results due to the existing strong correlation
between the used thematic maps which should be obviated1 Regional Water Company of Khorasan Razavi
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prior to the modeling process. In this work, we used the var-
iance inflation factor (VIF) and its reciprocal, tolerance index,
to assess the strength of correlation between independent var-
iables (i.e., thematic maps) and themulticollinearity issue. The
VIF value higher than 5 and accordingly the tolerance index
lower than 0.2 indicates critical multicollinearity (O’brien
2007). In this regard, Kutner et al. (2004) also suggested that
the VIF values higher than 10 can represent critical
multicollinearity (Kutner et al. 2004); however, the VIF value
of 5 was considered the basis of factor exclusion procedure to
ensure the latter issue (Table 1). The correlation matrix is
another way to address the strong correlation between the
factors in a pairwise manner which can be calculated with
different methods such as principle comparison analysis

(PCA), yet the VIF test is comparatively more elaborative
and distinctly points out the responsible factor for the
multicollinearity issue, although both methods revolve around
the same concept and selecting between them is the matter of
choice. Additionally, the VIF method has been increasingly
used and getting more common in the literature specifically
for multicollinearity issue (Kornejady et al. 2018; Chen et al.
2017; Haghizadeh et al. 2017; Rahmati et al. 2019;
Moghaddam et al. 2020a, b).

In light of these sieving procedures, eight predictors (i.e.,
drivers) were selected including slope degree, proximity to
faults/reservoir/residential areas/roads/springs/streams, and
land cover types. The thematic maps of the conditioning fac-
tors were prepared in ArcGIS 10.3 as presented in Fig. 4.

Fig. 2 Some photographs of open
garbage dumps nearby streams (a,
c, e) causing appearance of
harmful green algae in water (b)
and fish die-offs (d) due to the
contaminations

Fig. 1 The geographical location of the study area in Khorasan Razavi province in Iran. Right, an oblique view of the region
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More detailed information regarding the factors’ scale, their
role, and the areal exclusion thresholds are provided in
Tables 2 and 3. Constraining threshold values were adopted
from similar works such as Şener et al. (2010) and Abd-El
Monsef and Smith (2019). The final product of areal
constraining would give us the proper place to extract training
and validation points for probabilistic modeling. By doing so,
two sets of 1000 random points were selected each respective-
ly per training the Mahalanobis distance model and validating
the results. The number of samples was arbitrarily defined just
to ensure the data scarcity issue and to be certain of the ade-
quacy of samples both for training the model and validation of
its results. The latter, in fact, guarantees that the balanced

samples would satisfy the training and validation tasks since
the number of samples are abundant which ease the data noise
issue derived from inadequate sample number.

Most of the landfill site selection studies wind up in a mere
spatial constraining; however, the product of such procedure,
despite its substantial merits, is only a binary classification
(i.e., suitable or unsuitable) at a rather rudimentary level since
areal constraining follows an arbitrary factor classification
scheme. Hence, probabilistic models can enable the
decision-makers to avoid such determinism in identifying
the most suitable sites and not only define the latter in proba-
bility terms but also give a chance to other areas with some-
what similar suitability degrees. Such areas can be classified
as the transient zone which can locate in a flexible zone some-
where in between the most and the least suitable zones. Such a
view also gives the authorities the opportunity to prioritize
different options rather than relying only on two distinct and
restricted zones. As opposed to deterministic models that only
consider a single outcome, probabilistic models consider the
geo-environmental random variables (here predictors) and
their probability distributions to consider different possibilities
and are very useful in predicting future events and patterns.

Given that landfill sites are subjected to different natural
factors that act as random variables, probabilistic modeling
pays the way to identify different locations with similar con-
ditions as well as avoids determinism in site selection which,
itself, can be problematic when dealing with such environ-
mental agents. Such probabilistic modeling was carried out

Fig. 3 Methodological flowchart
adopted in this study

Table 1 The VIF values representing the multicollinearity between
different opted factors

Factors Collinearity statistics Std. error

Tolerance VIF

Proximity to faults (m) 0.624 1.603 0

Land cover 0.987 1.013 0.002

Proximity to residential areas (m) 0.337 2.969 0

Proximity to the reservoir (m) 0.445 2.245 0

Proximity to roads (m) 0.673 1.486 0

Slope angle (degree) 0.919 1.089 0
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by incorporating the areal constraining scheme with a robust
pattern recognition algorithm as explained in the following
section. What follows is the detailed explanation of the pro-
posed landfill suitability mapping framework.

Landfill site selection using the coupled
MCDM-Mahalanobis distance

Determination of landfill sites merely based on areal
constraining as a multi-criteria decision-making method
would provide binary presence/absence locations at a rather
rudimentary level which may manifest shortcomings in terms
of the uncertainty emanated from the arbitrary nature of factor
classification and combination techniques. Instead, feeding
such localities into a powerful modeling scheme with the ca-
pability of pattern recognition would provide the final suitable
sites in probabilistic terms which is in more favor of decision-
makers (i.e., avoiding absolute certainty and determinism in
their reports) and also has prediction merits. Such an

information retrieval process is attainable by the
Mahalanobis distance approach. Mahalanobis distance was
first expounded byMahalanobis (Mahalanobis 1936) and ever
since some application of this method has been reported such
as data enrichment in landslide susceptibility modeling (e.g.,
Tsangaratos and Benardos 2014; Kornejady et al. 2018), out-
lier detection (Todeschini et al. 2013; Leys et al. 2018), and
proposing novel validation techniques (Zhao et al. 2017). In a
nutshell, it measures the similarity of different locations with
different physical conditions in the study domain (i.e., differ-
ent pixels with different environmental, geological, or anthro-
pogenic factor values) to the target conditions (i.e., the condi-
tions of the rudimental sites for landfill). In other words, loca-
tions (i.e., pixels) with the similar values of conditioning fac-
tors to those of landfill suitable sites would be equivalently
considered suitable. The notion of suitability in Mahalanobis
distance is translated into the average condition. For instance,
if the average value of slope degrees at the rudimental landfill
sites is equal to 5°, the latter would then signify the suitable

Fig. 4 Causative environmental factors used for areal constraining, a slope degree, b proximity to faults (m), c proximity to the reservoir (m), d proximity
to residential areas (m), e land cover types, f proximity to roads (m), g proximity to springs (m), and h proximity to streams (m)

Table 2 Role of the opted factors in landfill site selection, their spatial scale, and established exclusion zones

Factors Role Scale Exclusion zones

Proximity to faults (m) Leakage pathways 1:50,000 500 m

Land cover Environmental compatibility; esthetic aspects 1:100,000 See Table 2

Proximity to residential areas (m) Avoiding diseases and unpleasant odor; esthetic aspects 1:50,000 5 km

Proximity to the reservoir (m) Protecting natural and human habitats (environmental, social, and political aspects) 1:50,000 5 km

Proximity to roads (m) Clean transportation routes 1:50,000 2 km

Slope angle (degree) Implementation feasibility 1:50,000 Higher than 10 o

Proximity to springs (m) Protecting groundwater resources 1:50,000 2 km

Proximity to streams (m) Protecting surface water resources 1:50,000 1 km
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slope for landfill sites. The same applies to the other environ-
mental factors with the difference that qualitative factors such
as land cover should be first quantified in order to become
mathematically analyzable. Moreover, the notion of similarity
to the ideal locations is Mahalanobis distance is rendered into
a distance in which the closer distances to the ideal location
indicates a higher probability of the overall environmental
suitability. Such distance follows the expression (Fukunaga
1990):

Dm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−mð ÞT∑−1 x−mð Þ

q
ð1Þ

where x is the vector of conditioning factors, m is the factors’
mean value, T is the transposed matrix of the factors’ values,
and −1 is the inverse covariance matrix. In order to transform
the distance values into probabilities, chi-square values of
Mahalanobis distance values will then be transformed into P
values based on the chi-Square distribution with N−1 degrees
of freedom (number of variables 1). The latter was carried out
in Land Facet Corridor Tools extension in ArcGIS 10.3.

Performance metrics

The area under the success and prediction rate curves
(AUPRC and AUSRC), as probability cutoff-independent
metrics, will be the judge of the model’s performance in terms
of goodness of fit and prediction power, respectively. The
success rate curve plots the cumulative percentage of suitable
areas (from the highest values to the lowest) on the X-axis
against the cumulative percentage of the training set on the
Y-axis (Chung and Fabbri 1999; Kornejady et al. 2018). The
same applies to the prediction rate curve with the difference
that, instead of including the training set, the validation dataset
is used. The AUSRC and AUPRC values close to 100 (i.e., 1
in the range of 0–1) indicate a perfect model (i.e., highly
trained and highly predictive), while values close to 50 (i.e.,
0.5 in the range of 0–1) signify a neutrally operating model
with an unsatisfying performance. Plotting the SRC and PRC
was executed in the recently developed performance analyses
toolbox in ArcGIS, named PMT (Rahmati et al. 2019). It is
noteworthy that the presence-absence points were balanced

(i.e., an equal number of inventory and noninventory loca-
tions) in order to calculate the performance metrics. The bal-
anced sample partitioning technique was selected due mainly
to avoid the variance inflation in the results (Petschko et al.
2014).

Additionally, three holdout-dependent performance assess-
ment metrics including accuracy (efficiency), precision, and
sensitivity was calculated both in the training and validation
stages following Eqs. 2–4 (Rahmati et al. 2019).

Accuracy ¼ TPþ TN

T
ð2Þ

Precision ¼ TP

TPþ FP
ð3Þ

Sensitivity ¼ TP

TPþ FN
ð4Þ

where TP, TN, FP, and FN, respectively, denote true positives,
true negatives, false positives, and false negatives.

Results and discussion

Table 1 provides in detail the multi-collinearity values be-
tween the controlling factors of landfilling sites based on
which the highest VIF values correspond to proximity to res-
idential areas, proximity to springs, and proximity to the res-
ervoir, while the lowest values are mainly attributed to land
cover and slope angle. The results indicated that there is no
critical multi-collinearity between the factors since the VIF
values are in an acceptable range (i.e., less than 5). The latter
is due to the fact that the authors avoided involving different
DEM-derivative indices that have been commonly used in
spatial modeling, but rather factors that can decisively delin-
eate the landfilling sites are engaged. Among these, gentle
slopes are the first opted criterion for most landfill sites and
other criteria are sieved afterward. Faults are also critical gate-
ways in such a way that contaminated water from landfills can
percolate into the deep strata and contaminate the groundwater
resources. Hence, landfill sites should be simply far from the
faults. Dam reservoir is also considered a critical source of
water supply for the residential centers, particularly
Mashhad, and agricultural uses for arable lands. Moreover,
the inhabitants of residential areas in the region would be
bothered by the unpleasant odor of landfills as well as other
imminent diseases. Regarding the land covers, most national
environmental laws are strictly against siting landfills accord-
ingly in dense forests, woodlands, good-condition pastures,
and orchards, while nonarable lands and poor pastures are
more desirable for such a purpose (Department of
Environment 2018) (Table 3). Although roads are necessary
for transporting waste to landfilling sites, considering setback
margins is necessary particularly for the local residents

Table 3 Assigned rates
to different land covers
based on their
compatibility with a
landfill site (adopted
from Șener et al. 2010)

Land cover Rate

Rainfed farming 7

Poor rangeland 6

Moderate-condition rangeland 5

Woodlands 4

Orchard 3

Very low-density forests 2

Low-density forests 1
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commuting from adjacent areas. The presence of springs in-
dicates high groundwater potential in the study area. Hence,
the farther the landfills from the springs, the better. Such areal
filtering resulted in narrowing down that study area to the final
extent which is suitable for siting landfills. As presented in
Fig. 5, suitable sites identified at the rudimentary level are
mostly concentrated in westernmost parts of the area while
some sporadic spots are evident in the north, center, and south
which altogether account for about 2% of the study area (i.e.,
915.12 ha).

These sites, however, resulted from arbitrary classifica-
tions, and one cannot decisively introduce the final areas as
the most suitable sites. Additionally, such a constraining pro-
cess would signify the remaining area as unsuitable due to the
binary format of the final map, while areas with lower suit-
ability yet somewhat similar to the ideal sites would be left
undiscovered. Moreover, even the sites identified as ideal by
areal constraining need further investigation and cannot be
determinately selected for pragmatic actions. Such an issue
was obviated by the context of Mahalanobis distance.
Extracting training and validation points (Fig. 6) and feeding
them, respectively, into the modeling process and model val-
idation created a probabilistic map for siting landfilling areas.
The mean values, correlation matrix, and covariance matrix
are, respectively, presented in Tables 4, 5, and 6 which togeth-
er made the main components of the Mahalanobis distance.
The mean values revealed that preselected suitable landfilling
sites are located at an average distance of 3.7 km from the
faults, 4.3 km from residential areas, 16 km from the reservoir,

4.4 km from roads, 2.8 km from springs, 1.7 km from streams,
and a slope degree of 7.7°. Covariance and correlation matri-
ces give valuable information regarding the dependency be-
tween the factors. What sets them apart is that in addition to
the covariance matrix that indicates the direction of the linear
correlation between factors, the correlation signifies the
strength and direction of such a relationship in a limited range
of + 1 and − 1. The correlation value of 0.71 between the
proximity to springs and residential centers is also in accor-
dance with the VIF results and the positive sign of the values
also signifies the positive direction of their correlation.
Mahalanobis distance uses such spatial dependence and the
interconnection between the factors instead of considering
them completely independent.

Landfill suitabilitymap derived fromMahalanobis distance
is presented in Fig. 7. The excerpt area shows that based on the
probabilistic pattern recognition algorithm of Mahalanobis
distance, the target regions derived from areal constraining
do not necessarily pinpoint the high suitability but spatially
varying suitability pattern may exist within the final con-
straints. More interestingly, a suitable patch is also evident in
the bottom right corner of the excerpt which has been previ-
ously missed by areal constraining. The latter indicates that
the rigidity of areal constraining may ignore spatial similari-
ties due to lacking a perfect condition (i.e., being entitled to all
the constraining rules), while a flexible algorithm acknowl-
edges the random variation. In other words, if fully determin-
istic analysis (i.e., areal constraining) is taken into account,
considering the same constraining rules on environmental

Fig. 5 Final delimited area
derived from the stepwise areal
constraining procedure
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factors in different areas would always give the same results.
However, factors’ randomness is highly appraised through
many simulations which are mostly based on the distribution
of each environmental factor. Since environmental factors of-
ten exhibit random variation, considering such matter would
have a major influence on final results.

The coupled Mahalanobis distance and areal constraining
techniques were found to have an AUSRC value of 89.36
(Fig. 8a). According to a classification range proposed by
Hosmer Jr et al. (2008), the resulted value indicates that our
ensemble model has almost shown an outstanding training
performance (i.e., close to 0.9). Interestingly, the predictive
power of the model is also very close to an excellent perfor-
mance where the AUPRC value amounted to 89.25 (Fig. 8b).
The latter highlights the merits of probabilistic spatial model-
ing especially when spatial dependencies between the covar-
iates are taken into account. The highly identical values of
AUSRC and AUPRC suggests two important features: (1) a
model that has obviated the overfitting issue since the higher
value of goodness of fit has not backfired into yielding a lower

predictive power, (2) a robust model where changes in the
inputs do not much influence the model’s performance, and
(3) an inadequate segregation between the training and vali-
dation datasets due mainly to selection of the input data from a
very small domain (i.e., 2% of the entire study area). The latter
can be further assessed by spatially differentiating the training
and validation dataset so that the former is selected from a
separated area and fed into the model while another region is
kept apart for validating the previous results.

In addition to the ROC curve, the holdout-dependent per-
formancemetrics were calculated (Table 7) based onwhich, in
line with the results of ROC curve, the goodness of fit and
prediction performances of the proposed suitability assess-
ment framework found to be good which remains almost in-
tact in both training and validation stages as a criterion of the
robustness and reliability of model’s results through the
modeling and prediction stages.

The literature review showed a discernable pattern of
adopting areal constraining as the basis of landfill suitabil-
ity zonation. As such, Simsek et al. (2014a, b), Manzo
et al. (2016), Mahmood et al. (2017), Rahmat et al.
(2017a, b), Chabuk et al. (2017), Goulart Coelho et al.
(2017), Yousefi et al. (2018), Spigolon et al. (2018),
Khan et al. (2018), Șener et al. (2010), Kamdar et al.
(2019), Chabuk et al. (2019), Özkan et al. (2019), Richter
et al. (2019), and Akintorinwa and Okoro (2019) although
attempted to incorporate the most novel methods to map
suitable landfill sites, ultimately ended up in preparing a
binary classification. As opposed to the traditional binary
classification (i.e., suitable or unsuitable) derived from ar-
eal constraining methods, the probabilistic maps are highly
differentiable in such way different transient zones can be
located in between the suitable and unsuitable classes.
Here, we chose the natural break classification scheme
and classified the Mahalanobis distance-based landfill

Fig. 6 Extracted training and
validation (presence) samples
from the constrained domain as
well as the noninventory
(absence) samples from the re-
maining area

Table 4 Factor’s mean values at the training samples

Factors Mean values

Proximity to faults (m) 3693.824

Land cover 4.013

Proximity to residential areas (m) 4290.372

Proximity to the reservoir (m) 15,913.415

Proximity to roads (m) 4386.635

Slope angle (degree) 7.699

Proximity to springs (m) 2766.084

Proximity to streams (m) 1712.438

Environ Sci Pollut Res (2020) 27:24954–24966 24961



suitability map into two common classes of five-point and
three-point scales (Fig. 9). A higher number of classes will,
in turn, result in a reduced areal extent of each class.
Selecting either of these two classifications would also
result in different areal delineation, and hence different
budget and time allocated to the area. Highly differentiated
maps may be more in favor of on-site pragmatic actions,
while less differentiated ones are of more general use in
less detailed projects and less urgent circumstances. The
areal extent of the suitability classes obtained from the
five-point scale and three-point scale classification of the

Mahalanobis distance map are also provided in Tables 8
and 9.

Limitations and future works

The difference in spatial resolution of the thematic maps is
a basic yet critical limitation of any spatial modeling work.
This issue roots mainly from data scarcity especially where
high-resolution maps are not provided due to being an ex-
orbitant task for organizations. In such a predicament, the
best getaway to govern the available data is in favor of the
detailed data (i.e., here DEM-derivatives as the limiting

Table 6 Covariance matrix representing the direction of the un-normalized dependence between the factors

Factors Proximity to
faults (m)

Land
cover

Proximity to
residential areas
(m)

Proximity to the
reservoir (m)

Proximity to
roads (m)

Slope
angle
(degree)

Proximity to
springs (m)

Proximity to
streams (m)

Proximity to
faults (m)

9,154,353.762 − 17.229 1,424,783.336 6,488,089.622 − 2,287,417.083 − 775.262 − 260,428.706 − 63,703.508

Land cover − 17.229 0.017 − 4.029 − 127.698 − 33.465 − 0.015 2.951 3.685

Proximity to
residential
areas (m)

1,424,783.336 − 4.029 3,132,301.608 7,764,991.980 811,490.761 − 355.317 1,039,104.529 − 296,954.297

Proximity to the
reservoir (m)

6,488,089.622 − 127.698 7,764,991.980 43,906,564.038 2,089,744.910 12.886 2,876,997.871 − 1,531,331.870

Proximity to
roads (m)

− 2,287,417.083 − 33.465 811,490.761 2,089,744.910 3,485,930.227 − 82.962 612,262.213 − 283,290.288

Slope angle
(degree)

− 775.262 − 0.015 − 355.317 12.886 − 82.962 5.123 − 116.915 − 4.356

Proximity to
springs (m)

− 260,428.706 2.951 1,039,104.529 2,876,997.871 612,262.213 − 116.915 672,866.413 − 67,912.021

Proximity to
streams (m)

− 63,703.508 3.685 − 296,954.297 − 1,531,331.870 − 283,290.288 − 4.356 − 67,912.021 212,529.544

Table 5 Correlation matrix representing the strength and direction of the normalized dependence between the factors

Factors Proximity to
faults (m)

Land
cover

Proximity to
residential areas (m)

Proximity to the
reservoir (m)

Proximity to
roads (m)

Slope angle
(degree)

Proximity to
springs (m)

Proximity to
streams (m)

Proximity to faults
(m)

1 − 0.044 0.266 0.324 − 0.405 − 0.113 − 0.105 − 0.046

Land cover − 0.044 1 − 0.017 − 0.147 − 0.137 − 0.050 0.028 0.061

Proximity to
residential areas
(m)

0.266 − 0.017 1 0.662 0.246 − 0.089 0.716 − 0.364

Proximity to the
reservoir (m)

0.324 − 0.147 0.662 1 0.169 0.001 0.529 − 0.501

Proximity to roads
(m)

− 0.405 − 0.137 0.246 0.169 1 − 0.020 0.400 − 0.329

Slope angle
(degree)

− 0.113 − 0.050 − 0.089 0.001 − 0.020 1 − 0.063 − 0.004

Proximity to springs
(m)

− 0.105 0.028 0.716 0.529 0.400 − 0.063 1 − 0.180

Proximity to
streams (m)

− 0.046 0.061 − 0.364 − 0.501 − 0.329 − 0.004 − 0.180 1
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factors) rather than calculation space. Hence, all the spatial
resolutions were transformed into the resolution of DEM-
derived factors which, in this way, guarantees that no data
have been lost. The other issue regards the sieving process
and selection of the most influential factors. In this regard,
soil permeability and wind velocity (i.e., speed and direc-
tion) are also among the most determinant factors.
However, the former would require a detailed map
consisting of soil physical properties including permeabil-
ity yet such detailed data were not available for our study
area. Although the Harmonized World Soil Database (FAO
I, ISRIC I 2012) provides valuable information on soil
properties on a global scale, using such data at a watershed
scale would not be technically applicable. Hence, we
avoided engaging less detailed data in the modeling pro-
cess alongside other factors. Concerning wind velocity, it
is noteworthy that, despite its invaluable information in
identifying the exposed area to odor nuisance, generating
the wind velocity map would require the synoptic data,
while there is no synoptic station in the study area.
Additionally, we strived to fill this gap by engaging anoth-
er complementary factor, distance to residential areas, as
potential sites were ultimately proposed to be located in the
farthest areas possible from the residents. Nonetheless, the
main objective of this study is to propose a globally

generalizable modeling framework for landfill suitability
assessment and certainly engaging more factors with
unique information would improve the final performance
of the proposed model. As stated in different literature
(e.g., Allen et al. 1997; Allen et al. 2003; Simsek et al.
2014a, b; Barakat et al. 2017; Rahmat et al. 2017;
Alkhuzaie and Janna 2018; Deswal and Laura 2018),
abovementioned maps are pivotal for landfill suitability
assessment and should be used in future analyses.

The last issue corresponds to the validation stage of the
model’s results which stems from the fact that there might
not be a precise and generalizable concept of a suitable
landfill site in the first place. In other words, validation
of the landfill suitability map can be carried out by the
actual landfill sites that have been proved to be perfectly
selected in terms of geo-topological criteria and residents’
qualification metrics. However, we presented a pseudo-
validation test in which validation points are selected from
the sites that are the most ideal sites for landfills. For future
studies, it is suggested to compare the proposed technique
with other machine learning and deep learning techniques
with flexible probabilistic themes in terms of their perfor-
mance and robustness. Although almost intact values of
performance metrics through the training and validation
stages somewhat indicate the stability of the model, further

Fig. 7 Landfill suitability
probability map obtained from the
ensemble of stepwise areal
constraining and Mahalanobis
distance models

Fig. 8 Success rate curve (a) and
prediction rate curve (b)
generated in the PMT toolbox
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analyses need to be conducted to assess the overall robust-
ness which can be ascertained by k-fold cross-validation
techniques.

Conclusion

Uncontrolled landfills and open garbage dumps have been
significantly contributing to surface and groundwater re-
source pollution and become a major concern for munici-
palities of the Ardak watershed and adjacent cities. The
watershed exhibits high environmental and socio-
economic values. The take-home messages of this work
are as follows. Despite the merits of areal constraining
techniques in narrowing down the domain to delineate

the optimal landfill sites, it is underpinned by determinism
while a probabilistic model is required to consider both the
inherent randomness within the factors’ nature and spatial
dependence between them. Mahalanobis distance supports
such objectives and based on our results, gives a satisfying
performance. The latter is apparent from the high goodness
of fit and prediction power of the adopted model. Coupling
Mahalanobis distance to areal constraining builds a pow-
erful inventory-irrespective ensemble model. Areal
constraining showed that almost 98% of the study area is
unsuitable for landfilling, while the suitability map derived
from the coupled areal constraining and Mahalanobis dis-
tance avoids such a rigid and rather inflexible response and
appoints the end user for such a deduction. In other words,
depending on the differentiation degree of interest,

Table 7 Accuracy, precision, and
sensitivity values calculated for
the Mahalanobis distance model
at the training and validation
stages

Holdout-dependent performance metrics Training stage Validation stage

Accuracy 0.699 0.710

Precision 0.766 0.759

Sensitivity 0.998 0.997

Fig. 9 Five-point scale (a) and three-point scale (b) classification of landfill suitability
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different suitability percentages can be obtained and used
for budget allocation. Higher differentiation (i.e., a five-
point scale classification) would normally result in more
strict areal concentration based on which 2.6% of the study
area has very high suitability for landfilling, while 2.7% of
the entire area is highly suitable. Additionally, a less strict
classification scheme (i.e., three-point scale) suggests that
up to 4.6% of the entire region can be highly suitable for
landfilling, while the remaining area has low-to-moderate
suitability. By using the coupled Mahalanobis distance and
stepwise areal constraining method, we have provided a
framework of landfill management for generating advice
to managers and policymakers concerned with downstream
water quality. The conventional suitability assessment
techniques provide the authorities with a binary classifica-
tion which is limited by a mere presence-absence scheme
and accordingly distorts the reality of the area. Conversely,
the proposed technique provides a flexible map that can be
classified into different suitability ranges according to the
priority of decision-makers. In such a way, different areas
will be treated relying on their true potentials while no
place is left alone or forced to be categorized into only
two specific classes.
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