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Effects of biochar content on gas diffusion coefficient of soil
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Abstract
Biochar has been found to be a potentially suitable amendment for landfill cover material and agricultural soil. The addition of
biochar can improve the physical (e.g., adsorption capacity) and hydrological properties (e.g., water/gas permeability) of soil.
However, no experimental study is available about the effect of biochar content (BC) on the gas diffusion coefficient (DP) of soil.
The present study investigated the effect of BC onDP under different degree of compaction (DOC; 85%, 90%, and 95%) and soil
air contents (SAC; 5%, 10%, and 15%). It was found that DOC and BC had negligible effects onDP when SACwas low (~ 5%).
In contrast, when the SAC was relatively high (~ 15%), soil with DOC of 85% had the largest DP for BC ranging from 0 to 15%
(w/w). Only when the SAC was large (~ 15%), the addition of biochar generally increased DP.
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Introduction

Biochar is a kind of porous material rich in carbon, which is
produced by pyrolysis of biomass in a high temperature (e.g.,
300–800 °C) and oxygen-free or low-oxygen environment (Lei
and Zhang 2013; Wong et al. 2016; Adhikari et al. 2019).
Biochar has been proved to be a good amendment for landfill
cover material and agricultural soil in recent years (Wu et al.
2017; Su et al. 2019; Wong et al. 2016; Zhang et al. 2018;
Chen et al. 2019b; Chen andNg 2013). There aremanymaterials
for producing biochar, such as wood chips, peanut shells, crop
straws, and bamboo stalks (Fang et al. 2014; Garg et al. 2019;
Chen et al. 2018; Senbayram et al. 2019; Shang et al. 2013).

Adding biochar to soil can change the physical and hydrological
properties of soil, such as pore characteristics (Kuncoro et al.
2014), water retention capacity (Wong et al. 2017; Lei and
Zhang 2013; Liu et al. 2016), and water/air permeability
(Gopal et al. 2019; Chen et al. 2015, 2019a; Garg et al. 2019).
Biochar-amended soil (BAS) also has good performance in
harmful gas/chemical adsorption (e.g., hydrogen sulfide; Shang
et al. 2013; Xu et al. 2014; and nitrate; Iberahim et al. 2018; Tan
et al. 2018), mitigation of greenhouse gas emission and reduction
of nitrate leaching in agricultural soil (e.g., methane, Sun et al.
2019; and NO3, Sanford et al. 2019), and methane oxidation
capacity enhancement in landfill covers (Reddy et al. 2014;
Yargicoglu and Reddy 2017).
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Gas transports through soil mainly through diffusion and
advection, which are driven by gas concentration difference
and gas pressure difference, respectively. Diffusion is a very
important way for gas flow in soils. For example, oxygen,
which is essential for methane oxidation in landfill covers
and root respiration in shallow soil layers, enters the soil main-
ly through diffusion from the atmosphere (Feng et al. 2019;
Chen et al. 2019c; Lipiec et al. 2012; Wall and Heiskanen
2009). Although the influence of biochar on gas advection
in soils was investigated (Garg et al. 2019; Wong et al.
2016), little attention has been paid on gas diffusion in BAS.

It has been recognized that there are many factors affecting
gas diffusion coefficient (DP) of soil, including soil air content
(SAC; mm3

air mm−3
soil), degree of compaction (DOC), and

micro-structure of soil (e.g., pore path tortuosity, pore size).
(Kuncoro et al. 2014; Moldrup et al. 2000b; Resurreccion
et al. 2008b; Schjønning 1989). When SAC is lower than a
certain value (e.g., ≤ 10%), soil pores could be almost filled by
water, which impedes gas diffusion (Resurreccion et al.
2008a). Some studies reported that under the same SAC, the
DP of soil would increase with DOC due to reduced water
blockage effects under extreme compaction (Hamamoto
et al. 2011; Millington and Quirk 1961). However, the oppo-
site trend was found by Kuncoro et al. (2014), who attributed
the reduction of Dp with the increase of DOC to the more
tortuous pore path and the more vulnerable compaction of
macro-pore in soil. Evidently, the influence of DOC on gas
diffusion coefficient of soil is still controversial.

In this experimental study, the effect of biochar content
(BC; gbiochar g

−1
soil) on DP of the soil was investigated under

different controlled DOCs and SACs. The DP of BAS was
measured by a two-chamber diffusion apparatus. To interpret
the measurements, the micro-structure characteristics of BAS
were investigated by scanning electron microscopy (SEM).

Materials and methods

Properties of soil and biochar

The biochar used in this study was made from fir wood chips,
which was collected from wood processing plants. The biochar
was produced in an oxygen-free environment at 400–800 °C
(according to manufacturer). The test soil was collected from
the Hongmiaoling Waste Sanitary Landfill Site in Fuzhou City,
Fujian Province, China (N 26° 10′ 11″, S 119° 18′ 13″), andwas
classified as silty sand (ASTM D2487 2017).

The soil and the biochar were air-dried in room temperature
of 25 °C ± 1 °C, and then sieved by a 2-mm sieve and a 0.425-
mm sieve, respectively. Subsequently, the soil and biochar
were stored in sealed plastic bags. The initial gravimetric wa-
ter content (GWC) of the soil and biochar were measured by
continuous drying for 24 h in an oven with controlled temper-
ature of 105 °C. The specific gravities of the soil and biochar
were measured according to the ASTM D854 (2014). The
particle size distributions of the soil and biochar were mea-
sured according to the ASTM D422 (2007). The liquid limit,
plastic limit, and plasticity index of the soil were measured
according to the ASTM D4318 (2017). BAS compaction
curves were measured according to the ASTM D698 (2010)
to obtain the optimum moisture content (%, w/w) and the
maximum dry density (g/cm3). Some basic properties of the
biochar and soil were given in Table 1.

Specimen preparation

Four different contents of the air-dried biochar (0%, 5%, 10%,
and 15% by dry mass) were mixed with the air-dried soil
thoroughly. Then, water was added to the mixture of soil
and biochar to the target GWC, which was determined based

Table 1 Basic properties of soil
and biochar Properties Soil Biochar Reference

Specific gravity (g/cm3) 2.66 2.55 ASTM D 854 (2014)

Particle size distribution (%) ASTM D 422 (2007)

Coarse sand (2–4.75 mm) 0 0

Medium sand (0.425–2 mm) 53.60 0

Fine sand (0.075–0.425 mm) 26.13 65.19

Silt (0.002 mm–0.075 mm) 15.87 27.20

Clay (< 0.002 mm) 4.40 7.61

Atterberg’s limits ASTM D 4318 (2017)

Liquid limit (LL) (%) 37.80 ND

Plastic limit (PL) (%) 28.20 ND

Plastic index (PI) 9.60 ND

Optimum water content (%) 17.12 ND ASTM D 698 (2010)

Maximum dry density (g/cm3) 1.84 ND ASTM D 698 (2010)

ND, not determined
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Fig. 1 Schematic of the two-
chamber apparatus for measuring
gas diffusion coefficient of
biochar-amended soil

Table 2 The soil air content (SAC), gravimetric water content (GWC), degree of saturation (DS), gas diffusion coefficient (DP), and porosity of each
soil sample

Target DOC (%) Target BC (%) SAC (%)* GWC (%) DS (%) DP (mm2/s) Porosity (%)
95 0 14.57 ± 0.286** 11.30 ± 0.293 57.51 ± 1.047 0.284 ± 0.021 34.30 ± 0.157

10.11 ± 0.454 13.60 ± 0.472 70.21 ± 1.578 0.164 ± 0.016 33.95 ± 0.274
5.27 ± 0.257 16.28 ± 0.273 84.44 ± 0.835 0.035 ± 0.007 33.84 ± 0.144

5 14.90 ± 0.239 11.70 ± 0.249 57.49 ± 0.859 0.359 ± 0.020 35.04 ± 0.145
10.10 ± 0.106 14.38 ± 0.113 71.06 ± 0.358 0.200 ± 0.061 34.91 ± 0.065
6.05 ± 0.279 16.26 ± 0.300 82.38 ± 0.900 0.051 ± 0.014 34.34 ± 0.169

10 15.55 ± 0.055 11.47 ± 0.058 55.84 ± 0.199 0.329 ± 0.008 35.22 ± 0.034
10.37 ± 0.168 14.58 ± 0.181 70.64 ± 0.561 0.153 ± 0.011 35.33 ± 0.102
5.35 ± 0.033 17.53 ± 0.036 84.87 ± 0.101 0.059 ± 0.004 35.34 ± 0.020

15 15.90 ± 0.135 11.59 ± 0.143 55.35 ± 0.485 0.375 ± 0.033 35.60 ± 0.077
10.81 ± 0.237 14.64 ± 0.257 69.71 ± 0.787 0.173 ± 0.018 35.68 ± 0.144
6.03 ± 0.057 17.33 ± 0.063 83.03 ± 0.177 0.067 ± 0.004 35.55 ± 0.035

90 0 15.45 ± 0.245 12.85 ± 0.232 58.20 ± 0.737 0.283 ± 0.040 36.96 ± 0.177
10.02 ± 0.345 16.54 ± 0.389 74.32 ± 1.071 0.150 ± 0.001 37.48 ± 0.209
5.86 ± 0.388 18.60 ± 0.441 84.16 ± 1.150 0.036 ± 0.011 36.97 ± 0.230

5 14.77 ± 0.184 14.59 ± 0.209 61.67 ± 0.589 0.302 ± 0.058 38.55 ± 0.128
11.06 ± 0.037 16.19 ± 0.042 70.72 ± 0.117 0.181 ± 0.005 37.76 ± 0.023
6.56 ± 0.200 18.74 ± 0.328 82.53 ± 0.640 0.075 ± 0.009 37.56 ± 0.228

10 14.88 ± 0.123 14.96 ± 0.141 61.86 ± 0.389 0.320 ± 0.009 39.02 ± 0.075
10.33 ± 0.014 17.53 ± 0.017 73.34 ± 0.043 0.116 ± 0.001 38.74 ± 0.009
5.40 ± 0.432 19.96 ± 0.246 85.84 ± 1.032 0.053 ± 0.022 38.08 ± 0.398

15 14.76 ± 0.076 15.64 ± 0.089 62.81 ± 0.235 0.390 ± 0.016 39.68 ± 0.046
10.56 ± 0.826 17.83 ± 0.974 73.03 ± 2.462 0.187 ± 0.042 39.16 ± 0.487
6.75 ± 0.074 19.51 ± 0.088 82.45 ± 0.213 0.044 ± 0.005 38.47 ± 0.045

85 0 16.10 ± 0.296 15.27 ± 0.345 60.05 ± 0.911 0.454 ± 0.065 40.30 ± 0.179
10.82 ± 0.082 18.76 ± 0.099 73.26 ± 0.237 0.238 ± 0.019 40.47 ± 0.050
6.22 ± 0.148 21.43 ± 0.181 84.53 ± 0.401 0.054 ± 0.035 40.23 ± 0.089

5 15.35 ± 0.129 17.09 ± 0.158 63.22 ± 0.378 0.554 ± 0.042 41.74 ± 0.078
10.36 ± 0.141 20.31 ± 0.176 75.16 ± 0.389 0.213 ± 0.023 41.73 ± 0.085
6.10 ± 0.229 22.60 ± 0.289 85.21 ± 0.605 0.058 ± 0.036 41.28 ± 0.139

10 16.35 ± 0.078 16.26 ± 0.095 60.60 ± 0.234 0.550 ± 0.047 41.51 ± 0.048
11.13 ± 0.165 19.76 ± 0.207 73.27 ± 0.461 0.248 ± 0.008 41.65 ± 0.101
5.99 ± 0.120 23.19 ± 0.154 85.65 ± 0.314 0.029 ± 0.020 41.73 ± 0.073

15 15.35 ± 0.063 18.04 ± 0.079 64.02 ± 0.181 0.549 ± 0.058 42.68 ± 0.039
11.05 ± 0.146 20.45 ± 0.185 73.85 ± 0.402 0.240 ± 0.053 42.25 ± 0.089
6.12 ± 0.208 23.64 ± 0.272 85.50 ± 0.536 0.017 ± 0.008 42.21 ± 0.127

SAC, GWC, DS, and porosity were measured after diffusion test

**Values are presented in mean ± standard deviation

Environ Sci Pollut Res 21499(2020) 27:21497 21505–



on the target DOC (85%, 90%, and 95%) and SAC (5%, 10%,
and 15%). Then, the moist BAS mixture was sieved through a
2-mm sieve and was subsequently stored in sealed plastic bags
for at least 24 h for moisture equilibrium. Before compaction
of the soil sample, the inner wall of the sample cutting ring
(internal diameter of 79.8 mm, wall thickness of 1.8 mm, and
height of 20 mm) was pasted with a thin layer of Vaseline to
avoid any preferential flow along the interface between the
soil sample and the inner wall of the cutting ring (Allaire
et al. 2008). The dry density of the mixture was determined
by the measured compaction curves according to the target
BC and DOC. The mixture of the soil and biochar was
compacted to form a cylindrical soil sample with a diameter
of 79.8 mm and a height of 20 mm. After the soil sample
preparation, the test was carried out immediately to prevent
the formation of a moisture gradient in the soil sample (Boon
et al. 2013).

Measurement apparatus and test procedure

The DP was measured by a two-chamber diffusion system
device (Fig. 1) (Schjønning et al. 2013). The device was made
of polymethyl methacrylate (PMMA). It consisted of an active
chamber, a passive chamber, and a soil sample chamber in
between. The inner diameter of the active chamber and pas-
sive chamber were both 80 mm, while the soil sample cham-
ber had an inner diameter of 90 mm. All the three chambers
had the same wall thickness of 10 mm. The connections be-
tween different chambers were sealed by a silicon gasket (3-
mm thick). Capillary tube (internal diameter of 4 mm), sam-
pling ports, and intake ports were installed in the active and
passive chambers. Water droplets were added to the capillary
tube to keep the gas pressure inside the device equal to the
atmospheric pressure during the test. A soil sample contained
inside the sample cutting ring was placed in the soil sample
chamber. Two O-rings were installed at the gap between the
outermost of the cutting ring and the inner wall of the soil
sample chamber to prevent any gas preferential flow through
the gap. A perforated PMMAplate (5-mm thick) with uniform
distributed 4-mm diameter holes was installed at each end of
the soil sample to prevent any potential soil collapse. A thin
plastic membrane (0.1-mm thick) was installed between the
passive chamber and soil sample chamber to block any gas
exchange between the passive and active chambers through
the soil before the test. The test was carried out in room with
controlled temperature of 25 °C ± 1 °C.

After installing the soil sample in the device, a certain con-
centration of gas (O2) was injected into the active chamber
through the intake port, while pure N2 was pumped in to the
passive chamber until negligible O2 could be measured (e.g., <
0.1%) (Bonroy et al. 2011). A 5-mL air tight syringewas adopted
for taking 2-mL gas samplings. The volumetric concentration of
O2 (C0) of each gas sampling was measured by a gas

chromatograph (GC112A; Shanghai INESA Scientific
Instrument Co., Ltd. in Shanghai, China; measurement accuracy
of 0.1% vol). The diffusion test commented after pulling out the
thin plastic membrane. The test duration was recorded by using a
stopwatch. The initial gas concentration in the active chamber
wasmeasured after test begun for 15min. This aimed to avoid (i)
the potential change of gas pressure inside the device caused by
the change of chamber volume at the moment of pulling out the
thin plastic membrane, and (ii) the associated non-diffusive gas
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flow through the soil sample (Schjønning et al. 2013). Then, a
10-min interval was adopted for the subsequent gas samplings.
Five gas samplings were taken for each test.

Measurement of DP

During the test, the device was completely sealed, and the
pressure inside the device was always equal to the atmospher-
ic pressure. Therefore, the gas diffusion in the chamber satis-
fied Fick’s second law (Dane and Topp 2002). The DP in the
soil sample can be calculated from the temporal variation of
oxygen concentration inside the active chamber by the follow-
ing formula (Glauz and Rolston 1989):

ln
B α1ð Þ
A α1ð Þ

1

2 1þ Lε=Hð Þ −
Cg

C0

� �� �
¼ −

Dpα2
1

L2ε
t ð1Þ

where DP is the gas diffusion coefficient of BAS (mm3
soil

air mm−1
soil s

−1), t is the diffusion time (s), ε is the soil air
content (mm3

air mm−3
soil), L is half the height of the soil sam-

ple (10 mm), H is the height of the active/passive chamber

(100 mm), Cg is the volumetric concentration of O2 within the
active chamber at time t (mL/mL); α2

1 is defined by the fol-
lowing equation when the sizes of the active and passive
chambers are the same (Glauz and Rolston 1989):

α2
1 ¼

1

β
−

1

3β2 þ
4

45β3 þ
16

945β4 þ :::: ð2Þ

β ¼ H
Lε

ð3Þ

A α1ð Þ ¼ −
1

β2 −α
2
1 ð4Þ

B α1ð Þ ¼ α4
1β þ α2

1

2

β
þ 1

� �
þ 1

β3 þ
1

β2 ð5Þ

In the present study, the calculated value of β was larger
than 67, so only the first three terms on the right side of Eq. (2)
were adopted for calculating α2

1 as the rest terms were
negligible.
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The time plot of the measured oxygen concentrations was

best fit using Eq. (1). Accordingly, the slope (i.e., η ¼ − Dpα2
1

L2ε
)

of Eq. (1) could be determined. Thereafter,DP was determined
as follows:

Dp ¼ −
L2εη
α2
1

ð6Þ

Afterwards, the porosity, SAC, and degree of saturation
(DS) were calculated according to the measured soil GWC
and particle density. Three replicated tests were conducted to
measure DP of each soil sample amended with a given BC
under a controlled DOC and SAC. In total, 108 soil samples
were prepared and tested.

Micro-structure analysis by SEM

Two groups of test soil samples with the following target
variables were selected for micro-structure analysis, i.e., (a)
10% BC, 10% SAC, and 85% DOC; and (b) 10% BC, 10%
SAC, and 95% DOC. After measuring theDP, a soil specimen
with volume about 0.5 cm3 was collected from the soil sample
inside the cutting ring, dried at 45 °C for 48 h, sprayed with a
thin layer of gold, and then investigated by scanning electron
microscopy (Nova Nano SEM 230; FEI Czech Republic s.r.o.
Co., Ltd. in Czech; energy resolution 132 eV).

Statistical interpretation

One-way analysis of variance (ANOVA) and subsequent sig-
nificant difference tests were conducted to analyze the mea-
surements (Ng et al. 2018). The significance level of all
ANOVA analyses was 0.05, corresponding to 95% confidence
interval. Statistical analysis was performed using the statistical
toolbox provided by Matlab (Matlab 2014). The standard de-
viation was calculated for all the data measured in repeated
experiments, as shown in Table 2.

Results and discussion

Effects of biochar on soil compaction curve

Figure 2 shows the compaction curves of soils with different
BCs. After the addition of biochar, the maximum dry density
decreased, which was consistent with the reported findings in
the literature (Garg et al. 2019; Reddy et al. 2014). It was due
to that the particle density of the biochar is smaller than the
soil used in the tests (Table 1). On the contrary, a larger opti-
mummoisture content could be observed after adding biochar.
It could be probably attributed to that the porosity of the bio-
char was larger than soil particles (Guo et al. 2014). Compared
with the compaction curves of BAS to those of Garg et al.

(2019), a lower decrease in the maximum dry density and a
larger increase in the optimum moisture content of the soil
samples were observed in the present study (Fig. 2). It was
likely because the biochar adopted in Garg et al. (2019) had a
lower particle density (0.8 g/cm3) than that in the present study
(2.56 g/cm3, Table 1).

Effects of BC on DP at different DOCs

Figure 3 shows a time series plot of oxygen concentration (Cg)
for a set of repeat tests of soil samples with 0%BC, 10% SAC,
and 85%DOC. Satisfactory fit with goodness of fit (R2) larger
than 95% could be obtained by using Eq. (1) through the least

Fig. 5 Soil aggregates morphology at 500X magnification for soils with
different BC, SAC, and DOC. a 10% BC, 10% SAC, 85% DOC. b 10%
BC, 10% SAC, 95% DOC
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square method. Accordingly,DP could be calculated using Eq.
(6) and were summarized in Table. 2.

Figure 4 shows the relationship betweenDP and SAC for soils
amended with different BCs. In all test groups, DP increased as
SAC increased under a givenDOC,whichwas consistent with the
existing findings in the literature (Moldrup et al. 2000a;
Hamamoto et al. 2011). It was because there were more gas-
filled pores and the connectivity of these pores was improved
under larger SAC. Under SAC of 5%, similar DP could be ob-
served for soil samples with different DOCs. It was likely due to
the blockage of gas flow by water, as the DS corresponding to
SAC of 5% was about 85% (Table 2), at/above which the gas
phase generally became discontinuous (Qiu 2016). As SAC fur-
ther increased to 15%, theDP of soil samples with 85%DOCwas
significantly larger than those under larger DOC (90–95%), re-
gardless of BC (p< 0.05). It was because that there were more
relative amounts of large pores (pore diameter d > 30 μm)
(Kuncoro et al. 2014) in soil samples with lower DOC, as shown
in the two SEM images of soil samples with the same BC (10%),
SAC (10%) but different DOCs of 95% and 85%, respectively
(Fig. 5 a and b). It can be seen that the pore size of soil samplewith
low compactness (Fig. 5a) was larger than that with high compact-
ness (Fig. 5b), since the large-size pores in soil would be prefer-
entially compressed as DOC increased (Berisso et al. 2012;
Kuncoro et al. 2014). Therefore, soil samples with 85% DOC
might have more connected large-size pores at larger SAC,
resulting in more available space, shorter flow paths, and reduced
tortuosity of pores for gas diffusion and hence larger DP (Allaire
et al. 2008; Moldrup et al. 2000b).

Figure 6 shows the effects of BC on DP of soils under
different DOCs and SACs. When SAC was below 10%, BC
had negligible effects onDP (p > 0.05) under a given DOC and

SAC. It was likely due to that most of the pores in the BAS
were filled by water, leading to a discontinuous gas phase. As
the diffusion of gas in water is 3–4 orders of magnitude lower
than that in the air, SAC dominated DP under low SAC
(Resurreccion et al. 2008b). As SAC further increased to
15%, the addition of biochar generally promoted the gas dif-
fusion in soil, and the effect depended on DOC. For example,
when the DOC was about 85%, the DP increased as BC in-
creased to 5% and remained substantially unchanged thereaf-
ter, while DP generally increased with BC under larger DOC
(≥ 90%). This indicated that the relatively large-size pores in
soils with DOC of 85% (Fig. 5a) dominated gas diffusion,
while the addition of biochar might increase the pore connec-
tivity under high DOC (≥ 90%). A direct engineering impli-
cation of this finding is that biochar addition could be adopted
to compromise the contradictory requirements of high DOC
(e.g., ≥ 90%, leading to a reduced soil aeration) and high soil
aeration (i.e., large DP) in sloping landfill cover and man-
made slope, where a high DOC is necessary for stability con-
cern but a good aeration is needed for vegetation growth.

Conclusions

Effects of BC (0%, 5%, 10%, and 15%) on gasDP of soil were
measured by a two-chamber apparatus under different DOC
(85%, 90%, and 95%) and SAC (5%, 10% and 15%). It was
found that when SAC was less than about 5%, DP was rela-
tively low and controlled by SAC, regardless of DOC and BC.
This was likely due to blockage of pore volume by water,
resulting in less available space for gas flow and poor air-
filled pore connectivity. On the contrary, when the SAC was
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relatively high (≥ 15%), soil with DOC of 85% had the largest
DP for DOC ranging from 85 to 95% under a given SAC. No
noticeable difference could be observed for DP under DOC of
90% and 95%. It was because soil samples with DOC of 85%
had relatively larger pore size than those with higher DOC.

The influence of BC on DP depended on SAC and DOC.
When SAC was less than 10%, the influence of BC on DP

could be neglected. As SAC increased to about 15%, theDP of
soil samples with high DOC (≥ 90%) generally increased with
BC, while DP increased with BC up to 5% and then remained
basically unchanged under DOC of 85%. This indicated that
gas diffusion was affected not only by available gas-filled
pores but also by characteristics of pores (e.g., pore-size dis-
tribution, pore connectivity). Further effort is needed to inves-
tigate the effects of pore characteristic on DP.
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