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Abstract
Imazalil (IMZ), a fungicide containing imidazole group, is extensively used for the prevention and treatment of fungal
diseases in plants. Current study was performed to examine cyto-genotoxic potential of IMZ on Allium cepa roots by
following Allium ana-telophase and single cell gel electrophoresis (comet) assays. The concentration which reduced the
growth of the root tips of IMZ by 50% compared to the negative control group (EC50) was found to be 1 μg/mL by
Allium root growth inhibition test. 0.5, 1, and 2 μg/mL concentrations of IMZ were exposed to Allium roots for
intervals of 24, 48, 72, and 96 h. 10 μg/mL of methyl methane sulfonate (MMS) and distilled water were used as
control groups, both positive and negative. Statistical analysis was performed by using one-way ANOVA with Duncan’s
multiple comparison tests at p ≤ 0.05 and Pearson correlation test at p = 0.01. IMZ showed cytotoxic effect by statisti-
cally decreasing root growth and mitotic index (MI) and also genotoxic effect by statistically increasing chromosomal
aberrations (CAs) and DNA damage compared to the negative control group. With these cyto-genotoxic effects, it should
be used carefully and further cyto-genotoxic mechanisms should be investigated along with other toxicity tests.
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Introduction

Fungicides have been widely used for economic benefit in
agriculture and industry for the last few decades, due to their
high efficiency and low toxicity (Jin et al. 2017; Zhang et al.
2018). The global fungicide market was worth approximately
USD 13.4 billion in 2018 and is forecast to be worth USD
15.7 billion in 2024 (Garside 2019). Imazalil (IMZ; 1-[2-(2,4-
dichlorophenyl)-2-(2-propenyloxy) ethyl]-1H-imidazole) is a
type of fungicide which is highly beneficial for the prevention
and cure of fungal diseases in many plants such as cucumber,
tomatoes, citrus fruits, tomato, barley, wheat, and bananas in
post-harvest treatments, and it is also used as antimycotic drug
in human and veterinary medicine and as a biocide in the
formulation of wood and building materials (Bossche et al.

2003; USEPA 2005; Bylemans and Thys 2007; Smilanick
et al. 2006; Sepulveda et al. 2015). The derivatives of imidaz-
ole and triazole such as IMZ inhibit fungal cell wall synthesis
by the inhibition of ergosterol biosynthesis and thus
interrupting mechanism of cytochrome P450 enzyme called
CYP51 (lanosterol-14-α-demethylase), present in several or-
ganisms which acts on cell membrane homeostasis, fluidity,
and permeability (USEPA 2005; Correia and de Montellano
2005; Zega et al. 2009; Kuhlmann et al. 2019). They consist of
about 25% of fungicides worldwide (Saxena et al. 2015).
According to the World Health Organization, extreme allow-
able residue levels of IMZ in citrus fruits and in bananas
should not be more than 5 mg/kg and 2mg/kg, respectively
(Tanaka et al. 2013). In addition to its pest-reducing effects,
IMZ has been also detected in soil/sediment, water, and aquat-
ic organisms (Gilbert-López et al. 2012; Belenguer et al. 2014;
Masiá et al. 2015; Ruiz-Rodríguez et al. 2015; Xu et al. 2015;
Ccanccapa et al. 2016). As IMZ is not specific to fungi, it can
interact and inhibit the cytochrome P450 enzymes in non-
target organisms like other azoles and may have undesirable
effects (Walker 2008; Gottardi and Cedergreen 2019;
Kuhlmann et al. 2019). So, cyto-genotoxic assessment of
IMZ is inevitable to find its hazards on non-target species.
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Allium test is considered as the most frequently used plant
cytogenetic assessment method for revealing the cyto-
genotoxic effects of fungicides. Different parameters like root
growth, mitotic index (MI), and chromosomal aberrations
(CAs) can be easily observed. It is a quick, easy, highly accu-
rate, and easily reproducible. It is also accepted as a standard
assay by the United Nations Environmental Programme, the
United States Environmental Protection Agency, and the
World Health Organization (Grant 1994; Rank and Nielsen
1994; Teixeira et al. 2003; Leme and Marine-Morels 2009;
Liman et al. 2011; Silveira et al. 2016; Fatma et al. 2018;
Bernardes et al. 2019). Root meristems of A. cepa–based
comet assay have been widely used to determine DNA
damage of pesticides at the level of individual cells, be-
cause this technique is quite simple, sensitive, and reli-
able. A small number of cells are required, and it is also
relatively inexpensive compared to other test systems
(Türkoğlu 2012; Karaismailoglu 2015; Liman et al.
2015; Silveira et al. 2017; Özkan and Liman 2019).

Despite the mentioned superior properties of the IMZ, its
potential adverse effects on non-target plants are not yet
known sufficiently. The current study was designed to deter-
mine cyto-genotoxic effects of IMZ on A. cepa roots by ob-
serving root growth, MI, mitotic phase changes, CAs in ana-
telophase cells, and DNA damage.

Materials and methods

Chemicals

The chemicals used in this study were supplied by Sigma
Aldrich, Munich, Germany, including IMZ (CAS No 35554-
44-0), MMS (CAS No 67-27-3), glacial acetic acid, basic
fuchsin hydrochloric acid, potassium disulfite, potassium
chloride, sodium chloride, trizma hydrochloride, disodium hy-
drogen phosphate, potassium phosphate monobasic, normal
melting point agarose, low melting point agarose, trizma base,
magnesium chloride hexahydrate, triton X-100, sodium hy-
droxide, di-sodium salt of ethylene diamine tetra acetic acid
(EDTA), and ethidium bromide.

Allium root growth inhibition test

Healthy and equal-sized A. cepa bulbs were obtained from
local market which were 25–30 mm in diameter. The growth
inhibition test was performed according to the modified meth-
od proposed by Fiskesjö (1985) as described in Küçük and
Liman (2018). Bulbs cleaned from dried roots and brown
outer shells were directly exposed to different concentrations
of IMZ (0.5, 1, 2.5, 5, 10, 25, 50, and 100 μg/mL) for 96 h
which were kept in dark at room temperature as well as dis-
tilled water for negative control. To calculate the EC50 value,

the average lengths were determined by taking 10 roots from
one bulb (50 roots from 5 bulbs) for each application after the
exposure time.

Allium ana-telophase test

The Allium ana-telophase test was performed by following
the protocol proposed by Rank and Nielsen (1993) with slight
modifications. 0.5, 1, and 2 μg/mL of IMZ were exposed to
Allium roots whose lengths varied from 2 to 3 cm at the room
temperature in the dark for several time intervals (24, 48, 72,
and 96 h) as well as distilled water for negative control and
10 μg/mL of MMS for positive control. Three onions were
used for each concentration. Five to 8 root tips from each
onion were cut about 1 cm in length and fixed for 1 day at
4 °C in Farmer’s solution (1 glacial acetic acid: 3 ethanol, v/v)
and then stored in alcohol (70%) at the same temperature.
After hydrolysis of roots with 1 N HCl at 60 °C for 8–
10 min, Feulgen dye was employed to smear of the root tips
at room temperature for 25–30 min. Following rinsing with
distilled water thrice for 5 min, squash preparations of the dark
stained root tips were prepared with one drop of 45% acetic
acid and sealed with finger nail polish. For each application,
5000–5150 cells (1000–1040 cells one slide per bulb) and 500
ana-telophase cells (100 ana-telophase cells one slide per
bulb) were counted for MI and CA frequencies using a trin-
ocular light microscope according to Saxena et al. (2005). The
following formulas were used in the calculation of MI, phase
index, and CA.

MI %ð Þ ¼ Number of cells in division

Number of total cells
� 100

Phase index %ð Þ ¼ Particular phase

Number of cells in division
� 100

CA %ð Þ ¼ Total aberrant cells

100 ana−telophase cells
� 100

Comet assay

Genotoxic potential of IMZ on A. cepa roots was assessed
with the alkaline comet assay by the instructions of Tice
et al. (2000) with slight modifications as stated by Küçük
and Recep (2018). The treated root tips as mentioned above
were gently sliced to isolate nuclei in 600 μL cold nuclear
isolation buffer (0.5% w/v Triton X-100, 2 M Tris 4 mM,
MgCl2-6H2O; pH 7.5) and then filtered through 60-μm
meshes Nylon filter. At 1200 rpm, the solution was centri-
fuged, at 4 °C for 7 min. Fifty-microliter 1.5% low melting
point agarose was mixed with the pellet of nuclei suspension
(50 μL), and then the mixture was smeared onto slides that
pre-coated with 1% normal melting agarose and kept on ice

20336 Environ Sci Pollut Res (2020) 27:20335–20343



for 5 min. After removing cover slips, the slides were placed
in a horizontal electrophoresis tank having cold 1mMEDTA+
300 mM NaOH buffer (pH ≥ 13) for 20 min at 4 °C and then
electrophoresed 300 mA/24 V for 20 min under the same
conditions. The slides were neutralized with 0.4 M Tris
(pH 7.5) thrice for 5 min. After neutralization, staining was
done with ethidium bromide solution (20 μg/mL). A BAB
fluorescence microscope (TAM-F, Turkey) was used to ana-
lyze on randomly selected 50 comets per slide (150 comets per
sample) for evaluation of DNA damage expressed as arbitrary
unit at × 400 magnification. The comets were classified in five
classes [0 (no damage) to 4 (maximum damage)], according to
Kocyigit et al. (2005) as shown in Fig. 1.

Data analysis

Duncan’s multiple range tests were used for statistical evalu-
ation of the results (mean ± standard deviation) using SPSS
23.0 version (SPSS Inc., Chicago, USA) at p ≤ 0.05. Pearson
correlation analysis was also used to determine dose-response
and dose-time relationships at p = 0.01 significance level.

Results and discussion

The EC50 of IMZ was found to be 1 μg/mL (50.72%) by
Allium root growth inhibition test (Fig. 2). IMZ decreased
root growth within the range of 35.4 to 96.07% compared to
the control group in a dose-dependent manner (r = −0.969).
The factors affecting root growth are generally related to sup-
pression of apical meristematic activity (Webster andMacleod
1996), cell cycle during differentiation (Fusconi et al. 2006),
or enzymes that are related to cell division (Silveira et al.
2017). IC50 of IMZ for Chironomus riparius was found to
be 0.11 ± 0.01 and 0.09 ± 0.01 μmol/L for R- and S-imazalil,

respectively (Kuhlmann et al. 2019). EC50 of IMZ for
Pseudokirchneriella subcapitata was found to be 0.623 μg/
mL for 72 h. LC50 of IMZ was found to be 0.882 μg/mL for
Daphnia magna and 2.324 μg/mL for Danio rerio (Li et al.
2019), 541 μg/g in the artificial soil test and 12.8 μg/cm2 for
Eisenia foetida (Van Leemput et al. 1989), and 173.7 μM for
Phallusia mammillata (Pennati et al. 2006).

Table 1 showsMI and mitotic phase indices of IMZ obtain-
ed using Allium test. All concentrations of IMZ statistically
decreased MI compared to the control group not only dose-
dependently (for 24 h r = − 0.885, for 48 h r = − 0.924, for
72 h r = − 0.855, and for 96 r = −0.831) but also time-
dependently (for 0.5 μg/mL r = − 0.943, for 1 μg/mL r = −
0.94, and for 2 μg/mL r = − 0.905). The reduction in MI for
IMZwas not lower thanMMS. IMZ statistically decreased the
prophase index but increased the telophase index compared to
the control group. It also increased metaphase and anaphase
indices but was not found statistically significant except for
the anaphase index at 96 h. A significant decrease in MI by
IMZwas indicative of cytotoxic damage andmay occur due to
inhibition of DNA polymerase by the inhibition of specific
proteins (Hidalgo et al. 1989), the changes of cell durations
(El-Ghamery et al. 2000; Sudhakar et al. 2001; Rajeshwari
et al. 2016), or mitotic stage duration changes (Tkalec et al.
2009) or mitodepressive regulation of chemicals (Sharma and
Vig 2012), and/or ROS disturbance homeostasis (Livanos
et al. 2012). IMZ showed also toxicity on isolated rat hepato-
cytes at 0.75 mM (Nakagawa and Moore 1995), on the mouse
fibroblast L929 cells at 50μM (Maruyama et al. 2007), and on
Danio rerio embryos at 10 mM and above (Şişman and
Türkez 2010). Hatch ability in chickens was inhibited by in
ovo exposure of IMZ at 2 mg/egg (Matsushita et al. 2006).
IMZ induced acute cell death higher than 7 μg/mL on
Scaphechinus mirabilis and Strongylocentrotus nudus
(Hosoya and Mıkamı 2008). IMZ was found as toxic in vivo

Fig. 1 Comet scores of DNA
damage in A. cepa roots at × 400
magnification. 0 no visible
damage, 1 low level damage, 2
moderate damage, 3 high level
damage, 4 maximal damage
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but nontoxic or moderate toxic in vitro by Ames and micro-
nucleus test (Ilyushina et al. 2019). Unlike our result, 2.5 μg/
mL of IMZ did not show toxicity in the human intestinal
Caco-2 cells after 48-h incubation (Sergent et al. 2009). Leaf
chlorophyll content and growth in Phragmites australi were
also found to be similar between the control group and 10 μg/
mL of the IMZ exposed groups after 24 days (Lv et al. 2017).

The types and rates of CAs caused by the IMZ in A. cepa
root meristem cells are given in Figs. 3 and 4. IMZ prompted

total CAs by showing the disturbed ana-telophase, stickiness,
anaphase bridges, chromosome laggards, and polyploidy in
ana-telophase cells of A. cepa in a dose-dependent manner
compared to the control group, suggesting genotoxic effect
of IMZ. However, the increases between IMZ groups were
not statistically significant. Stickiness (at 0.5 μg/mL for
24 h, 2.6%) was the most common CAs, and the least seen
CAs was polyploidy (at 0.5 μg/mL for 24 h, 1.4%). Disturbed
ana-telophase (Fig. 4a) and chromosome laggards (Fig. 4c)

Table 1 Effect of IMZ on mitotic and phase indices in A. cepa roots

Concentration (μg/mL) CCN MI ± SD* Phase index (%) ± SD*

Prophase Metaphase Anaphase Telophase

Control, 24 h 5077 69.01 ± 0.39a 90.22 ± 0.52a 1.66 ± 0.19a 1.77 ± 0.16a 6.36 ± 0.3a

MMS-10 5102 57.57 ± 0.96b 87.2 ± 0.31b 1.8 ± 0.17a 2.28 ± 0.21b 8.72 ± 0.35b

0.5 5094 63.03 ± 0.6c 89.38 ± 0.75c 1.77 ± 0.21a 1.99 ± 0.3a 6.85 ± 0.42c

1 5074 61.46 ± 0.77d 88.42 ± 0.6d 1.76 ± 0.27a 1.96 ± 0.13a 7.86 ± 0.43d

2 5085 59.92 ± 0.85e 88.35 ± 0.35d 1.74 ± 0.28a 1.9 ± 0.16a 8.01 ± 0.27d

Control, 48 h 5073 68.87 ± 0.72a 90.3 ± 0.34a 1.66 ± 0.18a 1.75 ± 0.17a 6.3 ± 0.52a

MMS-10 5088 56.91 ± 0.66b 86.88 ± 0.75b 1.97 ± 0.2b 2.52 ± 0.18b 8.63 ± 0.5b

0.5 5081 61.6 ± 0.51c 89.36 ± 0.57c 1.75 ± 0.21ab 1.94 ± 0.17a 6.95 ± 0.4c

1 5074 60.05 ± 0.68d 88.12 ± 0.36d 1.74 ± 0.24ab 1.94 ± 0.13a 8.21 ± 0.27bd

2 5114 58.35 ± 0.63e 88.51 ± 0.4d 1.71 ± 0.14ab 1.88 ± 0.14a 7.91 ± 0.29d

Control, 72 h 5079 69.05 ± 0.87a 90.3 ± 0.37a 1.62 ± 0.07a 1.74 ± 0.13a 6.33 ± 0.3a

MMS-10 5095 55.96 ± 0.57b 86.74 ± 0.47b 2 ± 0.17b 2.49 ± 0.17b 8.77 ± 0.31b

0.5 5097 59.41 ± 0.71c 89.33 ± 0.33c 1.72 ± 0.1a 1.92 ± 0.08a 7.04 ± 0.34c

1 5104 58.23 ± 0.66d 88.23 ± 0.23d 1.68 ± 0.1a 1.91 ± 0.2a 8.19 ± 0.18d

2 5096 56.67 ± 0.87b 88.37 ± 0.5d 1.69 ± 0.14a 1.93 ± 0.13a 8.01 ± 0.58d

Control, 96 h 5087 69.02 ± 0.33a 90.09 ± 0.22a 1.62 ± 0.07a 1.76 ± 0.08a 6.52 ± 0.23a

MMS-10 5105 54.49 ± 0.47b 86.78 ± 0.35b 2.04 ± 0.14b 2.47 ± 0.17b 8.71 ± 0.34b

0.5 5091 58.34 ± 0.84c 89.22 ± 0.33c 1.68 ± 0.13a 1.95 ± 0.09c 7.14 ± 0.18c

1 5084 56.87 ± 0.67d 88.2 ± 0.37d 1.73 ± 0.15a 2.04 ± 0.17c 8.02 ± 0.49d

2 5110 55.85 ± 0.73e 88.25 ± 0.49d 1.65 ± 0.22a 2.07 ± 0.15c 8.03 ± 0.34d

*Different letters in the same columns for each treatment time are statistically significant (p ≤ 0.05). CCN counting cell numbers, SD standard deviation

Fig. 2 Allium root growth
inhibition test at different IMZ
concentrations after 96 h.
*Different letters are significantly
different at p ≤ 0.05.
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may result from degraded microtubules or inhibition of move-
ment of chromosomes to opposite poles (Evseeva et al. 2005;
Kumari et al. 2009; Rajeshwari et al. 2016; Singh and Roy
2017). Stickiness (Fig. 4b), an indicator of toxicity, may be
caused by formation cross-linking of DNA-DNA or DNA-
protein (Amin 2002; Barbério et al. 2011). Anaphase bridges
(Fig. 4d) may cause chromosome laggards by showing
clastogenic effect due to the formation of dicentric chromo-
somes, stickiness, changes in replication enzyme activity,
breakage or fusion of chromosomes, and unequal chromatid
exchange (El-Ghamery et al. 2000; Luo et al. 2004; Dutta
et al. 2018). Polyploidy (Fig. 4e) may result from abnormal
segregation of chromosomes during the cell division (Nefic
et al. 2013; Palsikowski et al. 2018). In addition to ana-
telophase anomalies, c-metaphase and binuclear cells in other
cells were also observed. Cytokinesis inhibition at any cell
cycle control point (Ateeq et al. 2002) may induce binuclear
cells (Fig. 4f). C-metaphase (Fig. 4g) may occur due to spindle

failure or an imbalance in amount of proteins responsible for
the formation of nuclear chromatin (Odeigah et al. 1997; Mesi
and Kopliku 2013). IMZ also induced micronucleus frequen-
cy and CAs in human peripheral lymphocytes (Şişman and
Türkez 2010).

The genotoxic effects of IMZ in the A. cepa root mer-
istematic cells were evaluated by comet assay (Fig. 5).
There was more DNA damage by the IMZ groups com-
pared to the control group. A dose-dependent (for 24 h
r = 0.94, for 48 h r = 0.971, for 72 h r = 0.954, and for 96
r = 0.946) and time-dependent (for 0.5 μg/mL r = 0.961,
for 1 μg/mL r = 0.943, and 2 μg/mL r = 0.92) increases of
DNA damage between 95.67 ± 6.03 and 153 ± 2.65 were
observed after IMZ applications. Similarly, IMZ induced
DNA damage observed by the alkaline comet assay in
mouse hepatocytes (Đikić et al. 2012) and in human lym-
phocytes (Ramirez and Cuenca 2002; Vindas et al. 2004).
After chronic IMZ exposure in mice for 15 weeks,

Fig. 3 IMZ induced CAs (a) in ana-telophase cells and other anomalies (b) in A. cepa root cells. *Different letters for each treatment time are
significantly different at p ≤ 0.05.
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reactive oxygen species (ROS) were also increased in
mouse hepatocytes, resulting to oxidative stress (Jin
et al. 2018). Oxidative stress produced by IMZ at high
concentrations in different organisms was linked to cell
death by damaging cell membranes according to previous
studies (Heusinkveld et al. 2013; Prado et al. 2015;
Pereira et al. 2019).

Conclusions

IMZ showed not only cytotoxic effect by decreasing inhibi-
tion of root growth and MI but also genotoxic effect by in-
creasing CAs and DNA damage in A. cepa roots. Further
studies are therefore needed to clarify IMZ’s cyto-genotoxic
mechanisms on plants.

Fig. 4 Anomalies induced by IMZ in A. cepa roots. a Disturbed anaphase-telophase. b Stickiness. c Chromosome laggards. d Anaphase bridge. e
Polyploidy. f Binuclear cell. g c-Metaphase. Scale bars 10 μm

Fig. 5 IMZ induced DNA
damage in A. cepa roots.
*Different letters in the same
columns for each treatment time
are significantly different at p ≤
0.05.
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