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Abstract
In the present study, an application of cellulose nanofibers has been established for the controlled release of an anticancer drug,
i.e., camptothecin. The camptothecin is known for its antitumor activity. However, it has certain limitations like instability, low
solubility in aqueous solution, and biological fluids. Firstly, the camptothecin was encapsulated into the cellulose nanofiber
complex by adjusting the composition ratio of cellulose nanofibers—camptothecin, i.e., 10:3, 10:5, and 10:7. In the 10:3
composition ratio of cellulose nanofibers, camptothecin showed the highest encapsulation efficiency, i.e., 65.28%. The binding
of camptothecin with cellulose nanofibers was confirmed by FT-IR analysis. Also, the Langmuir, Freundlich, Temkin, and
Dubinin-Radushkevich isotherm studies demonstrate physical adsorption of camptothecin onto the homogeneous as well as
the heterogeneous surface of cellulose nanofibers. Further, the controlled and extended-release profile was observed at different
physiological pH, and different kinetics models were used to understand the drug release mechanism. The highest correlation in
all pH conditions was obtained in Korsmeyer-Peppas with R2 value = 0.93 (pH 1.2), 0.89 (pH 6.8), and 0.97 (pH 7.4), whereas in
Higuchi model, R2 value = 0.89 (pH 1.2), 0.91 (pH 6.8), and 0.98 (pH 7.4), suggesting the release of a drug via a diffusion
mechanism. Hence, the results established that enzyme-mediated cellulose nanofibers may also be an optimal carrier for the
controlled drug release formulation without any chemical excipients.
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Introduction

The cellulose is an abundantly available natural polymer. The
cellulose nanofibers (CNF) are generally isolated from various
agricultural biomass and renewable waste (Cherian et al. 2008;
Deepa et al. 2015). Usually, the waste is hardly utilized and
mostly burned, which lead to a massive release of pollutants in
the air and deteriorate the soil fertility. An alternative approach
for efficient utilization is in the paper and pulp, textile industries,
or as animal feed (Salah 2013; Bardet and Bras 2014). The
lemongrass waste after oil extraction is of limited use, such as

animal feed and composting, which is not a cost-effective ap-
proach. Every year, almost 30,000,000 tons of residual biomass
produced at the farmer’s field (Kaur et al. 2010). The green
synthesis of nanofibers using agricultural waste could be an
eco-friendly and cost-effective approach to utilize tons of agri-
cultural waste. Therefore, enzyme-mediated nanofiber synthesis
has gained immense importance, as it is a milder treatment and
does not require prolonged steps and chemicals (Filson et al.
2009; Kumari et al. 2019).

Nanoparticle-based drug delivery has gained importance,
especially sustained and targeted release systems are undergo-
ing rapid development by employing various experimental
approaches (Costache et al. 2009). The production of nanofi-
bers is one of the unique findings in the field of nanotechnol-
ogy. Natural polymers have gained more interest in controlled
drug delivery compared with synthetic polymers due to bio-
degradability, biocompatibility, availability, and low toxic
properties (Esmaeili and Rafiee 2015; Clift et al. 2011;
Pereira et al. 2013). Compared with traditional medicinal for-
mulations, the fiber-based drug carrier system has numerous
advantages like effective drug therapy and controlled release
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of drugs with reduced toxicity (Zeng et al. 2003; Hu et al.
2014). Nanofibers are extensively used in biomedicine as a
carrier system for controlled drug delivery due to unique prop-
erties like large surface area, high porosity, flexibility, and
economic (Kentaro Abe et al. 2007). The high surface to vol-
ume ratio of the nanofibers helps in improving the encapsula-
tion and transportation of drugs (Mehrabi et al. 2017).

The application of CNF as a drug carrier is in high demand,
therefore needing to be explored. Controlled drug delivery
systems have been used to overcome the challenges of con-
ventional drug formulations. The controlled drug delivery sys-
tems allow the delivery of drugs at fixed rates for a predefined
time interval (Ali and Ahmed 2018). The nanofibers are uti-
lized in various areas like dental applications, wound healing,
drug delivery, and tissue engineering (Bhandari et al. 2017).
Besides, due to the presence of multiple binding sites, nano-
fibers serve as a carrier system for the different drugs like
antioxidants, antimicrobials, flavors, enzymes, and functional
group compounds (Fonseca et al. 2019; Li et al. 2019; Rezaei
et al. 2015; Löbmann and Svagan 2017). These nanofibers
protect, stabilize, and prevent aggregation of the compounds,
which proves to be beneficial in the controlled release
(Bhandari et al. 2017; Valo et al. 2011). The poor solubility
of drugs is a known challenge during the drug formulation for
drug delivery systems. The camptothecin (CPT) is a plant-
based alkaloid, which is available naturally in the stem and
bark of Camptotheca acuminate. It has shown antitumor ac-
tivities against several tumor types (Çirpanli et al. 2009).
However, the poor solubility (Gao et al. 2008), instability of
lactone ring, toxicity (Natesan et al. 2014), non-tumorogenic
actions, rapid clearance (Mi and Burke 1994), and stability at
different physiological conditions (Fan et al. 2010) hinder its
medical usage. Hence, the need for novel excipients to over-
come challenges in drug formulations is continuous
(Löbmann and Svagan 2017).

The effectiveness of nanostructures as a drug carrier system
is generally affected by the shape, size, and other biophysical/
chemical characteristics. For example, polymeric
nanomaterials with diameters ranging between 10 and
1000 nm, displayed properties, ideal for an effective carrier
system (Silva et al. 2013). In various studies, the CNF has
been utilized for the formulation of poorly soluble drugs and
considered a promising excipient (Löbmann and Svagan
2017). As a natural nanocarrier, the CNF shows promising
potentials in enhancing the efficacy of the drug (Lin and
Dufresne 2014). The use of an enzyme-hydrolyzed CNF as
a carrier system to effectively encapsulate camptothecin and
release the drug in controlled and extended patterns has not
been explored previously. Considering the properties of CNF,
the aim of the present study is to explore the potential of
enzyme-mediated synthesized CNF as a drug nanocarrier. To
explore the hypothesis, CPT was taken as an example drug,
and its encapsulation efficiency was measured at different

composition ratios. FT-IR and isotherm models were
employed to explore the drug binding and its mechanism.
Further, the controlled release characteristics without the ap-
pearance of burst effects and drug release mechanisms were
explored using drug release kinetics models.

Materials and methods

Materials

Lemongrass biomass after oil extraction was used as a raw
material for the production of cellulose, and later, it was used
for the production of CNF. The CNF was prepared according
to the protocol published by our group previously (Kumari
et al. 2019). The lignocellulosic biomass of lemongrass waste
was washed, oven-dried (60 °C) until completely dried, and
chopped. Further, the material was exposed to the steam ex-
plosion along with 2% NaOH in an autoclave. Then, the ma-
terial was washed with distilled water until neutral pH follow-
ed by de-lignification with 1% acidified sodium chlorite solu-
tion at 70 °C for 3 h. The obtained material was washed with
distilled water until neutral pH and oven-dried. Then, the re-
sultant fibers were subjected to enzymatic hydrolysis to obtain
the CNF. The resultant material was dispersed in 50 mM so-
dium citrate buffer at pH 4.8, followed by stirring. The en-
zyme was added to the suspension of cellulose and stirred at
50 °C for 24 h. The reaction was stopped by boiling the sam-
ple for 10 min followed by centrifugation and rinsed with a
buffer solution of pH 7.4. Then, the material was washed with
deionized water and sonicated. The final product was freeze-
dried and used for further experiments.

Chemicals

The solvent DMSO was purchased from Merck. The
camptothecin was purchased from Sigma-Aldrich. All re-
agents were of analytical grade or higher.

Preparation of CNF-CPT formulations

The enzyme-hydrolyzed CNF, which was synthesized from
biomass of lemongrass, was used in the experiment (Kumari
et al. 2019). First, the CNF was dispersed in deionized water,
followed by continuous stirring until the complete suspension.
The CPTwas loaded onto CNF according to the method pre-
viously described with few modifications (Nguyen et al.
2015). The diagrammatic representation of the preparation
of formulations using CNF has been shown in Fig. 1. The
different amounts of CPT, i.e., 3 mg, 5 mg, and 7 mg, were
dissolved in DMSO and mixed with 10 mg of CNF dropwise
and continuously stirred at room temperature for the binding
of CPT and CNF. Then, the samples were centrifuged for
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15 min at 10,000 rpm and 4 °C, followed by washing with
deionized water. The resultant material was freeze-dried and
stored at 4 °C in the closed glass vial. The lyophilized CPT-
loaded CNF was re-dispersed in distilled water as per the
experimental requirements.

Characterization

The surface morphology of all the samples was studied by
SEM (QUANTA 250, FEI). The interaction between the drug
and CNF was estimated by the Fourier transform-infrared
spectroscopy (FT-IR) instrument (PerkinElmer Spectrum
BX). The particle size and polydispersity index of the pre-
pared drug-loaded formulations was determined by dynamic
light scattering (DLS) technique (Mastersizer 2000, Malvern
Instruments, UK).

In vitro quantification of camptothecin

The stock solution of 1 mg/ml of CPT in DMSO was pre-
pared. The stock solution of CPTwas serially diluted to obtain
five different working concentrations, i.e., 100, 10, 1, 0.1, and
0.01 μg/ml of CPT, to establish a calibration curve. The ab-
sorbance was measured at 367 nm using a UV spectropho-
tometer (Epoch 2 Microplate Spectrophotometer, BioTek
Instruments). The regression equation was expressed as y =
0.0084x + 0.0168, R2 = 0.999 (Fig. 3a). Each experiment was
performed in triplicate.

Encapsulation efficiency and drug loading capacity
of camptothecin

The CPT was used as a model drug for drug loading and
release studies. The freeze-dried samples of different compo-
sition ratio CPT-CNF formulation were dispersed in dimethyl
sulfoxide (DMSO) solvent. The samples were continuously
stirred for 2 h and sonicated for 1 h for complete drug disso-
lution. The samples were centrifuged, and drug content in the
supernatant was determined spectrophotometrically at 367 nm
using a UV-visible spectrophotometer. The pellet was again
re-dispersed in the solvent, followed by a similar method, and
drug content was determined. The loading efficiency was cal-
culated with respect to the final amount of drug entrapped in
the CNF to the initial quantity of drug used during encapsula-
tion experiments (Eq. 1). The loading capacity was calculated
with respect to the final amount of drug entrapped in the CNF
to the weight of the nanoparticles (Eq. 2).

Loading efficiency %ð Þ

¼ Total amount of drug entrapped in pellet

initial amount of drug taken for drug loading
� 100

ð1Þ

Loading capacity %ð Þ ¼ Entrapped drug

weight of the nanoparticles
� 100 ð2Þ

Fig. 1 Diagrammatic representation of the preparation of formulations. Cellulose nanofibers (CNF), camptothecin (CPT), and cellulose nanofibers and
camptothecin composite (CNF-CPT)

46345Environ Sci Pollut Res (2021) 28:46343–46355



Adsorption isotherm studies

The equilibrium isotherm could be applied to determine
the adsorption mechanism between the drug and carrier
systems (Huang and Chen 2009). The two-parameter
equations like Langmuir, Freundlich, Temkin, and
Dubinin-Radushkevich were applied to analyze the equi-
librium isotherm data. The assumption of Langmuir iso-
therm is homogeneous monolayer coverage of the ad-
sorbate on to the adsorbent, similar energy of adsorption
for all sites, free from any binding energy, and no in-
teraction among the adsorbate molecules (Vázquez et al.
2007). The linearized equation of Langmuir isotherm
was expressed as Eq. 3.

1

Qe
¼ 1

Qo
þ 1

Qo:b:Ce
ð3Þ

RL¼ 1
1þ 1þb:C0ð Þ

ð4Þ

where Qe is the amount of adsorbate adsorbed per gram of the
sorbent at equilibrium, Qo is the maximummonolayer adsorp-
tion (mg/g adsorbent), b is the Langmuir equilibrium constant
(L/g adsorbent), C0 is the initial concentration of adsorbate,
and RL is the separation factor.

The Freundlich isotherm describes the multilayer heteroge-
neous coverage onto the surface of the adsorbent with differ-
ent adsorption sites (Vasudevan and Lakshmi 2012;
Vasudevan et al. 2013). The isotherm predicts the adsorption
intensity based on the 1/n value, i.e., n = 1 indicates heteroge-
neous surface, 1/n < 1 indicates normal adsorption, and 1/n >
1 indicates cooperative adsorption (Shaker and Yakout 2016).
The linearized form of Freundlich model is expressed in Eq. 5.

logQe ¼ logK f þ 1

n
logCe ð5Þ

where Kf is the Freundlich constant (mg g–1)(mg L–1)–1/nF
and 1/n is the heterogeneity factor, Ce is the concentration of
adsorbate at equilibrium (mg/g), and n is the adsorption inten-
sity between CPT and CNF.

The Temkin adsorption model reflects indirect interac-
tion between adsorbate-adsorbate throughout the adsorp-
tion process and depicts the monolayer coverage. Taking
into account the concentrations of intermediate ion, the
model concludes that adsorbate binds and covers the ad-
sorbent’s surface; the heat of adsorption would fall line-
arly instead of logarithmically (Temkin 1940). When the
experimental data best fit the Temkin isotherm, the fol-
lowing parameters were predicted, such as B (Temkin
isotherm constant related to the heat of sorption). The
positive value of B value would demonstrate that CPT
binds to CNF in an exothermic process, whereas a

negative value would demonstrate an endothermic pro-
cess. The linearized equation is expressed as Eq. 6.

Qe ¼ RT
Bt

ln Atð Þ þ RT
Bt

ln Ceð Þ ð6Þ

B ¼ RT
Bt

ð7Þ

where T is the absolute temperature in kelvin (298 K), R is the
universal gas constant (8.314 J/(mol k)), At is the equilibrium
binding constant, B is the constant related to heat of sorption
(J/mol), and Bt is the Temkin isotherm constant related to the
heat of sorption.

The Dubinin-Radushkevich (D-R) is usually applied to em-
phasize the process of adsorption taking place on both homo-
geneous as well as heterogeneous surfaces. It provides infor-
mation related to interactions between the adsorbate and ad-
sorbent, energy distribution, and type of adsorption (Sarici-
Özdemir and Önal 2018). The prediction of the physical ad-
sorption process best fits a multilayer coverage exhibiting Van
der Waals interactions, whereas the chemical adsorption pre-
diction best fits monolayer coverage, demonstrating the cova-
lent bond arrangement (Itodo and Itodo 2010). The linear form
of D-R is expressed as Eq. 8.

lnQe ¼ lnQm−βε2 ð8Þ

ε ¼ RTln 1þ 1

Ce

� �
ð9Þ

where Qe is the amount of drug adsorbed per unit weight of
sorbent (mg/g), Qm is the maximum adsorption capacity (mg/
g),β is the D-R sorption mean energy constant (mol2/kJ2), ε is
the D-R constant, T (Kelvin) is the temperature, and R =
0.008314 is the gas constant (kJ/mol K).

It was found that when mean free energy value is below
8 kJ/mol, physical adsorption takes place, and when the mean
free energy value is more than 8 kJ/mol, then the chemical
adsorption occurs (Javadian et al. 2013). The energy value (E)
is estimated by using Eq. 10.

E ¼ 1=
ffiffiffiffiffiffi
2β

p
ð10Þ

In vitro release studies at different physiological
condition

The in vitro drug release profile of drug from CNF was eval-
uated under sink environment at different simulated physio-
logical conditions. Briefly, freeze-dried CPT-loaded nanofi-
bers were re-dispersed in 10ml of simulatedmedia of different
pH, with constant shaking and incubated at 37 °C, respective-
ly. The pH 1.2 was prepared to mimic the gastric fluid, pH 6.8
to mimic the intestinal fluid, and pH 7.4 corresponds to the
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physiological conditions (phosphate buffer saline (PBS) solu-
tion). The buffer solution of pH 1.2 was prepared using NaCl,
HCl, and deionized water, whereas the buffer solution of
pH 6.8 was prepared using K2HPO4, NaOH, and deionized
water. The release of CPT was determined by taking aliquots
of 1 ml of the sample at specified time intervals, and the
medium was replaced to retain the sink environment. The
drug-loaded particles were separated from the media using
centrifugation. The amount of CPT released was quantified
using UV-visible spectrophotometer by evaluating the absor-
bance after precise time intervals at 367 nm. The drug release
(%) was estimated with respect to the total amount of drug
entrapped into the nanofibers (Eq. 11).

Drug release %ð Þ

¼ Released drug

The total amount of drug entrapped in nanofibers
� 100

ð11Þ

Mathematical modeling and release kinetics

To understand the mechanism of CPT release from CNF, the
CPT release data was evaluated by five release kinetics
models (Costa and Sousa Lobo 2001)

(i) Zero-order release kinetics (W =Kt), where W is the per-
centage of drug released at time “t” and K is the release
rate constant,

(ii) First-order kinetics (log W = log Wo-Kt/2.303), where
Wo is the initial concentration of the drug, K is the
first-order constant, and t is the release time,

(iii) Higuchi kinetics (Wt =KHt
1/2), where KH is the Higuchi

release rate constant,
(iv) Korsmeyer-Peppas kinetics model (Wt/We =Ktn), where

Wt/We are the fractional drug release, and K is the con-
stant, and n is the release exponent, which provides ev-
idence about the mechanism of the drug release.

(v) Hixson-Crowell kinetics model (Wo1/3 −Wt1/3 = Kt),
where Wt is the amount of drug released in time “t,”
Wo is the initial amount of drug, and K is the constant.

Results and discussion

Morphology, particle size, and polydispersity index
of prepared formulations

The understanding of the mechanism of the drug binding can
be analyzed through morphological studies as any dimension-
al change may provide useful information. Scanning electron
microscopy (SEM) of the CNF before and after loading of
CPT is shown in Fig. 2. SEM images show the CNF

interconnected network-like structure and porous matrix
(Fig. 2a). After drug loading, the drug crystals were found
adsorbed onto the CNF surface with a matrix-type layered
structure (Fig. 2 b, c, and d), which may be due to the physical
adsorption of the drug. Previous reports also show similar data
(Bhandari et al. 2017). The particle size distribution of the
enzyme-hydrolyzed CNF is 105.7 nm published previously
(Kumari et al. 2019). However, the increase in particle size
was observed after the loading of CPT (Table 1). The particle
size distribution was estimated by a dynamic light scattering
(DLS) technique. While dealing with polydisperse nanoparti-
cles, DLS is unable to differentiate between nanoparticles with
the difference in the diameter as the scattered light of larger
particles or aggregates overlays the smaller particles. The DLS
generally measures the hydrodynamic diameter of the parti-
cles, including hydration shell, polymer shells, or stabilizer,
which leads to increment in the particle size (Fissan et al.
2014). After CPT loading, the increment in particle size may
be due to the aggregation of the drug molecule onto the CNF.
The term polydispersity index (PdI) is used to describe the
percentage of size distribution within the sample. The PdI
generally ranges from 0.0 (uniform sample) to 1.0 (highly
polydisperse samples with numerous particle size distribu-
tion). The value of 0.2 and less than 0.2 are acceptable for
the polymer-based nanoparticles (Clarke 2013). The PdI value
of 0.2 in 10:3 composition ratio of CNF:CPT is acceptable for
drug delivery applications (Table 1). It was reported that PdI
value of 0.3 and below is found to be suitable and indicates a
homogeneous population of lipid-based carriers (Chen et al.
2011; Putri et al. 2017)

Encapsulation efficiency, drug loading, and isotherm
studies of the prepared formulations

A prerequisite for healthcare formulations using the polymeric
carrier system is high entrapment efficiency and drug loading
capacity (Aditya et al. 2013). To check the suitability of the
nanocarrier as a drug carrier, its ability to encapsulate and slow
the release of the active therapeutics was quantitatively
established. The encapsulation efficiency (EE) and loading
capacity (LC) were calculated based on the solid-phase anal-
ysis at different time points (Fig. 3b). The EE and LC were
evaluated at different time points to determine the time taken
for the maximum incorporation of the drug into the CNF ma-
trix. It was found that the highest EE, i.e., 65.28%, was ob-
served in the 10:3 composition ratio of CNF-CPT, in compar-
ison with 10:5 and 10:7. The quantification of the CPT was
done using a calibration curve (Fig. 3a). The EE was de-
creased with an increase in the amount of CPT. The EE cor-
responds to the percentage of CPT incorporated into the CNF,
from a given amount of CPT used, which is comparatively
higher in the CNF-CPT (10:3) ratios. This suggests that as
the CPT increases in CNF-CPT ratios, incorporation of the
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CPT from the solvent into the CNF matrix is limited by the
solubility of the drug in water and independent of the quantity
of the CNF present (Tam et al. 2016). In the case of a 10:3
ratio of CNF-CPT, the low amount of drug was well solvated
and easily incorporated into the matrix of CNF after 3 h
(Kumari et al. 2010; Chi et al. 2019). However, as the CPT
content increases in other CNF-CPT ratios, the drug content
limits its solubility and proper incorporation in the CNF. Due
to the presence of high CPTcontent, the time taken by the 10:5
and 10:7 CNF-CPT ratio is only 30 min. Similar results have
been observed previously, which displayed the EE in CNF
generally governed by the drug solubility in the solvent and
antisolvent and not on the polymer to drug ratios (Chow et al.
2015; Tam et al. 2016).

The drug loading capacity corresponds to the amount of
CPT-loaded per unit weight of the CNF. Results show that
the drug loading increases with the amount of drug increase

in the CNF-CPT ratios, i.e., 10:3, 10:5, and 10:7 (Table 1),
with the constant amount of CNF being used for encapsulating
the different amount of drug. Presumably, it is because the
interconnected CNF matrix structures were favorable to load
hydrophilic CPT and the occurrence of intermolecular inter-
action via hydrogen bonding (Mishra et al. 2016). So, with the
increase in CPT content in the CNF-CPT ratio, the loading
capacity of the CNF increases. Few previous reports demon-
strate lower loading capacity in the range of 1–5% (Chen et al.
2012), which is much lower compare with enzyme-mediated
CNF shown in the present study (Table 1). These results con-
firm high encapsulation efficiency with a better loading ca-
pacity in the 10:3 CNF-CPT ratio. Therefore, this formulation
has been chosen for controlled release characteristics.

To demonstrate the mechanism of adsorption of the CPT
with the CNF, different isotherms were applied, such as
Langmuir, Freundlich, Dubinin-Radushkevich, and Temkin

Fig. 2 SEM micrograph of a cellulose nanofibers alone and drug-loaded cellulose nanofibers at different composition ratio. b 10:3 CNF-CPT. c 10:5
CNF-CPT. d 10:7 CNF-CPT

Table 1 Encapsulation
efficiency, drug loading, particle
size, and polydispersity index of
the prepared formulations

CNF:CPT
formulations

Encapsulation
efficiency (%)

Drug loading
capacity (%)

Particle size (DLS)
(nm)

Polydispersity
index

10:3 65.28 ± 3.47 19.58 ± 0.86 458.7 0.20

10:5 54.58 ± 1.02 27.29 ± 0.51 531.2 0.26

10:7 59.14 ± 4.40 41.40 ± 3.08 825.0 0.23
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as the CNF make the network-like structure and consist of the
porous matrix. The calculated parameters like isotherm con-
stants (b, Kf, ε) and other parameters are shown in Table 2.
The correlation coefficient value (R2) was used to find which
model best depicts the adsorption mechanism. Considering
the R2 value, the adsorption of the CPTonto the CNF fits well
with all the four isotherms, i.e., D-R (0.99), Temkin (0.99),
Langmuir (0.94), and Freundlich isotherm (0.92) (Table 2).
The good fit of the D-R isotherm model is evident that the
adsorption occurred on homogeneous as well as heteroge-
neous surfaces (Pandian et al. 2017). The data demonstrate
that the adsorption follows a pore-filling mechanism
(Vijayaraghavan et al. 2006). It assumes multilayer character-
istics which involve Van derWaals force, relevant for physical
adsorption processes (Ayawei et al. 2017). The mean free
energy less than 8 kJ/mol, i.e., 0.0016, demonstrates the in-
volvement of physical adsorption in the uptake of CPT onto
the CNF, also seen in the SEM analysis (Fig. 2b–d; Table 2).

The Temkin isotherm constant B displayed the maximal
binding energy or the heat of adsorption that takes place with
the coverage of the adsorbent. Based on the Temkin isotherm
data, the positive value of constant B is 240.37 J/mol, which
indicates the exothermic adsorption process, representing the
physical adsorption. Langmuir isotherm demonstrates mono-
layer and homogeneous adsorption process with all binding
sites possessing an equal affinity for adsorbate, i.e., CPT. The
separation factor (RL) for CPT used in this study (RL) ranges
between 0 > RL > 1 (Table 2), indicating linear adsorption
(Dada et al. 2012). The difference adsorption capacity
(Table 2) may be due to the difference in adsorption properties
(Bée et al. 2011; Dubey et al. 2016).

The coefficient correlation obtained for Freundlich iso-
therm suggests that CPT also binds in multilayer, indicating
the non-restrictive and exponential form of binding. In multi-
layer adsorption, the CPT molecules are not necessarily

similar to the particular number of binding sites on to the
CNF surface due to exponential adsorption of CPTmolecules,
which occurs because of the interaction with other CPT mol-
ecules (Liu 2015). Based on the Freundlich isotherm, the 1/n
specifies the binding strength between the CNF and CPT. The
exponent value showed 1/n > 1 (1.11) depicting the coopera-
tive adsorption (Table 2). The cooperative adsorption usually
favored by multilayer coverage of CPT into the CNF.
Furthermore, the n value should be in the range of 1 to 10,
which is observed from the Freundlich isotherm (Table 2)
(approx.1.0), indicating the favorable adsorption between the
CPT and CNF (Dada et al. 2012). From SEM images, it was
confirmed that the CNF are interconnected network-like

Fig. 3 aGraphical view of calibration curve of camptothecin and b encapsulation efficiency (%) of the drug-loaded fibers at different CNF-CPT ratios at
different time intervals

Table 2 Langmuir, Freundlich, Dubinin-Radushkevich, and Temkin
isotherm parameters for loading of CPT on CNF

Isotherms Constants Values

Langmuir Qo (mg/g) 833.33

b 0.0006

RL 1.00

R2 0.94

Freundlich 1/n 1.11

n 0.90

Kf 2.59

R2 0.92

Dubinin-Radushkevich Qm (mg/g) 13.22

ε (mol2/kJ2) 0.0023

E (kJ/mol) 0.0016

R2 0.99

Temkin At 103.7099

Bt 10.30733

B 240.37

R2 0.9984
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structure and porous matrix, which may be forming monolay-
er as well as multilayer surfaces. Therefore, the good fit of all
the isotherms indicates adsorption of CPT on to the CNF ma-
trix according to the availability of overlapping surface ma-
trix. Therefore, both the monolayer and multilayer type of
coverage is expected. Similarly, as it is a network-like matrix
with possible irregular thickness, therefore, homogeneous and
heterogeneous mode of drug binding mechanism is also
probable.

Interaction studies of the CPT and CNF

The interaction between the CNF and the drug was also
assessed by FT-IR spectroscopy. The FT-IR spectra of CNF,
CPT, and CNF-CPTare shown in Fig. 4. Each sample showed
strong bands around 3400 cm−1, which were attributed to O–
H vibrations and depicted the broad intra and intermolecular
hydrogen bonding and hydrophilic behavior of the CNF
(Chirayil et al. 2014). It was described that rod-like fibers
appeared aggregated due to hydrogen bonding and Van der
Waals attractions. The symmetrical and asymmetrical
stretching of CH vibrations were observed at 2924 cm−1 in
CNF and CNF-CPT (Alemdar and Sain 2008). In the case of
CNF-CPT, the two adsorption bands at 2919 and 2850 cm−1

were attributed to CH2 and CH vibrations in CNF and benzene
ring of CPT, which confirms the chemical interaction between
CPT and CNF (Acevedo-Morantes et al. 2013). The carbox-
ylic group and stretching vibrations of ester and lactone car-
bonyl groups were observed around 1744 cm−1in CPT and
CNF-CPT, which was not present in the spectra of CNF. The
adsorption band between 1600 and 1700 demonstrate the

aromatic combination, present in the CPTand CNF-CPTcom-
plex (Acevedo-Morantes et al. 2013). The peak around
1600 cm−1 is associated with water molecules adsorbed into
the cellulose fiber structure in CNF and CNF-CPTsamples (Li
et al. 2016). It has been reported that the adsorption band
between 1600 and 1650 cm−1 demonstrates the stretching vi-
bration of the benzene ring, shown in CPT and CNF-CPT
(Zhao et al. 2010). The absorption peak of stretching and
bending vibrations were observed at 1431, 1369, 1325,
1054, and 899 cm−1, which were attributed to –CH2, –CH, –
OH, and C–O bonds in CNF (Xu et al. 2013). The shifting of
peaks in CNF-CPT before and after drug binding showed the
intermolecular interaction through hydrogen bonding (Mishra
et al. 2016). Hence, the FT-IR results confirm the chemical
interaction between the CPT and CNF.

In vitro release of CPT and release kinetics at different
pH conditions

Drug release is a complex process during which drug mass
transport through diffusion is an important mechanism
(Siepmann and Siepmann 2012). The CNF exhibited a slow
release of CPT (up to 4.4%) from time 0 to 6 h, followed by
which 14.38% release of CPT took place from 6 to 48 h at
pH 1.2 condition. Drug release at pH 6.8 also showed a slow
release pattern for CPT, i.e., 26.2% release takes place from 0
to 6 h, followed by 63.4% release of CPT from 6 to 48 h. In the
case of pH 7.4, the CPT release was observed as 24.8% up to
6 h, and 80.2% CPT release took place from 6 to 48 h (Fig. 5).
The results confirmed a slow and extended-release pattern of
CPT from the CNF at different simulated pH conditions with

Fig. 4 FT-IR spectra of the
cellulose nanofibers (CNF),
camptothecin (CPT), and
camptothecin loaded nanofibers
(CNF-CPT)
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no initial burst effect. A slow and extended-release of CPT
could be due to the matrix structure and swelling behavior of
the carrier system with regard to pH, which is allowing the
controlled and stable transport of drugs. The hydrophobic be-
havior plays a significant role in drug release; the interaction
between hydrophobic drugs and hydrophobic core is often
responsible for the slow release pattern of the drug from the
nanoparticles (Sutton et al. 2007; Tran et al. 2014). The con-
trolled and extended-release pattern without any burst release
also demonstrates that CPT was fully adsorbed into the CNF
matrices, which is also supported by isotherm studies. The
most significant limitations in the drug delivery process are
the complications of complete encapsulation and retention,
followed by prolonged release and targeted delivery of therapeu-
tics. For complex diseases like cancer, the extended-release
nanocarriers are considered as attractive therapeutic agents due
to their prolonged drug release behavior (Prosperi et al. 2017).
Therefore, in addition to CPT, most likely, these CNF could be
beneficial for the delivery of other anticancer drugs.

The drug release mechanism of CPT from CNF at different
pH levels was evaluated by employing several mathematical
models such as zero order, first order, Higuchi, Korsmeyer-
Peppas, and Hixson-Crowell (Costa and Sousa Lobo 2001).
Table 3 demonstrates the coefficient correlation values (R2)
obtained after the model fitting of release data at different
pH. The graphical representation of the fitted models has been

shown in Fig. 6. The results showed that release data were best
fitted to Higuchi model at pH 1.2 (R2 value 0.98), at pH 6.8
(R2 value 0.97), and at pH 7.4 (R2 value 0.99). The best fitted
Higuchi model showed that the release of the drug was
governed by the diffusion mechanism at all pH conditions.
Moreover, the release data was also good fitted to
Korsmeyer-Peppas models at pH 1.2 (R2 value 0.94) and 7.4
(R2 value 0.98) and slightly fitted at pH 6.8 (R2 value 0.90).

In Korsmeyer-Peppas model, n is the diffusional exponent,
which is the characteristic parameter of the transport mecha-
nism. The n value of 0.45 is correlated to Fickian diffusion
mechanism and drug release governed by diffusion, 0.45 < n
< 0.89 correlated to non-Fickian or anomalous transport and
governed by diffusion and swelling, 1.0 < n corresponds to
non-Fickian (case II) or zero-order release kinetics, and re-
lease of drug governed by swelling or relaxation of polymeric
chain (Costa and Sousa Lobo 2003; Mhlanga and Ray 2015).
From the results, exponent (n) is 0.23 at pH 1.2, 0.51 at
pH 6.8, and 0.91 at pH 7.4 demonstrating that release of drug
was controlled by non-Fickian diffusionmechanism at pH 1.2,
6.8, and case II transport mechanism, indicating that the drug
release was followed by diffusion, swelling, and polymer re-
laxation due to erosion of the polymer (Gao et al. 2013). The
Korsmeyer-Peppas model helps to understand the contribu-
tion of diffusion and polymer relaxation in the drug release
pattern. The release data were found not best fitted to the zero-

Fig. 5 Drug release graph
showing a cumulative release of
camptothecin at different pH
conditions
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order and Hixson-Crowell models at any of the pH conditions
and did not show a higher correlation coefficient at pH 1.2 and
6.8. The data was not fitted to the first-order equation, so the
graphical representation was not shown in the manuscript.

Conclusion

The present study showed an application of a green synthe-
sized biodegradable CNF as a promising nanocarrier system.
A CNF-CPT composite has been prepared. The morphologi-
cal and isotherm studies showed the physical absorption of

CPT into the CNF matrices. The CNF-CPT formulation of a
10:3 ratio displayed a controlled and extended-release of CPT
at three different physiological pH conditions, which is gen-
erally an essential requirement in the pharmaceutical applica-
tions. The controlled and extended drug release profile is
governed by diffusion, swelling, polymer relaxation/erosion,
and drug carrier interaction mechanisms as predicted by the
release kinetics studies. Henceforth, it is concluded that the
green synthesized CNF could be a promising nanocarrier for
the problematic drugs. However, in the future, cell-based and
animal studies are needed to demonstrate the complete effica-
cy of the nanocarriers.

Fig. 6 Drug release kinetics plots. a Zero order. b Hixson-Crowell. c Korsmeyer-Peppas. d Higuchi models

Table 3 Mathematical models
and correlation values (R2) based
on release data

Kinetics models Correlation equation pH (1.2) pH (6.8) pH (7.4)

First order y = 0.0004x + 0.2457 0.0006x + 0.5033 0.0006x + 0.6921

R2 0.70 0.54 0.61

Zero order y = 0.0053x + 1.5517 0.0239x + 7.1767 0.0303x + 7.1583

R2 0.89 0.85 0.93

Korsmeyer-Peppas y = 0.605x − 0.9148 0.6865x − 0.5129 0.626x − 0.2357
R2 0.93 0.89 0.97

Higuchi y = 0.3141x − 1.5008 1.3178x − 2.3994 1.6132x − 3.9131
R2 0.98 0.97 0.99

Hixson-Crowell y = 9E-05x + 0.0244 0.0005x + 0.1097 0.0007x + 0.0846

R2 0.89 0.91 0.98
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