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Abstract
Neurodegenerative disorders are typically sporadic in nature in addition to usually influenced through an extensive range of
environmental factors, lifestyle, and genetic elements. Latest observations have hypothesized that exposure of environmental
factors may increase the prospective risk of Alzheimer’s diseases (AD). However, the role of environmental factors as a possible
dangerous issue has extended importance concerned in AD pathology, although actual etiology of the disorder is still not yet clear.
Thus, the aim of this review is to highlight the possible correlation between environmental factors and AD, based on the present
literature view. Environmental risk factors might play an important role in decelerating or accelerating AD progression. Among
well-known environmental risk factors, prolonged exposure to several heavy metals, for example, aluminum, arsenic, cadmium,
lead, and mercury; particulate air, and some pesticides as well as metal-containing nanoparticles have been participated to cause
AD. These heavy metals have the capacity to enhance amyloid β (Aβ) peptide along with tau phosphorylation, initiating amyloid/
senile plaques, as well as neurofibrillary tangle formation; therefore, neuronal cell death has been observed. Furthermore, partic-
ulate air, pesticides, and heavymetal exposure have been recommended to lead AD susceptibility and phenotypic diversity though
epigenetic mechanisms. Therefore, this review deliberates recent findings detailing the mechanisms for a better understanding the
relationship between AD and environmental risk factors along with their mechanisms of action on the brain functions.
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Introduction

Alzheimer’s disease (AD) is an extremely progressive as well
as fatal neurodegenerative disorder related to aging
(Sorgdrager et al. 2019). Clinical and pathological appearance

of AD comprises memory impairment and a slow struggle
while performing normal regular activities (Castro-Chavira
et al. 2015). However, a minor proportion of cases character-
ized as early-onset AD (EOAD) involves in disease manifes-
tation earlier than age of 60 years (Wingo et al. 2019). EOAD
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cases are recognized to extremely penetrant genetic mutations
of presenilin 1 (PSEN1) in chromosome 14, amyloid precur-
sor protein (APP) in chromosome 21, and presenilin 2
(PSEN2) in chromosome 1 (Bertram 2009; Dai et al. 2018).
These mutations lead to the addition of Aβ plaques observed
during these mutations which is the pathological symbol of
AD progression. Accumulated investigations have recognized
numerous nongenetic threat elements known as late-onset AD
(LOAD), comprising smoking (Li et al. 2011; Rusanen et al.
2011), hypercholesterolemia (Li et al. 2011), obesity (Anstey
et al. 2011), diabetes (Li et al. 2011), hypertension (Li et al.
2011; Sharp et al. 2011), head trauma (Plassman et al. 2000),
stroke (Savva et al. 2010), and depression (Mourao et al.
2016). However, there are many protecting factors that de-
crease the possibility of rising LOAD or interruption of begin-
ning of LOAD which comprise social engagement (Boal et al.
2018), physical activity (Park et al. 2019; Schlosser Covell
et al. 2015), mental activity (Fratiglioni and Wang 2007), ed-
ucation (Fratiglioni and Wang 2007; Lindsay et al. 2002),
non-steroidal anti-inflammatory drug (NSAID) use
(Wichmann et al. 2016), coffee consumption (Larsson and
Orsini 2018), moderate alcohol drinking (Wong et al. 2016;
Xu et al. 2017), and past vaccinations (Verreault et al. 2001).
Most important environmental exposures related through
LOAD contain pesticides (Yan et al. 2016), electromagnetic
field (Jalilian et al. 2018), solvents (Huang et al. 2018), par-
ticulate matter in air pollution (Kilian and Kitazawa 2018),
lead (Bakulski et al. 2012), iron (Huat et al. 2019), mercury
(Bjorklund et al. 2019) [41], zinc (Chin-Chan et al. 2015),
copper (Yao et al. 2018), and aluminum (Liang 2018).

Currently, it is well-studied that these environmental risk
factors may play a crucial role in increasing or slowing neuro-
degenerative disease onset as well as progression. It has been
well known that neurodegenerative disorder etiology is multi-
factorial, and moreover, it is mentioned that prospective exter-
nal elements comprising chemical exposures as well as life-
style are connected through the risk assessment of these dis-
eases (Gomez-Gomez and Zapico 2019). Although the enor-
mous cases of AD population are detected in aging people, so
far the introduction to risk elements arisen years or decades
earlier to diagnosis (Fratiglioni et al. 2004). The valuation of
long-lasting exposures is problematic to implement in retro-
spective investigations to assist them through the improvement
of the disease. Therefore, additional investigation for superior
description of exposure as well as identification of initial par-
ticular biomarkers for the identification and diagnosis of these
diseases is urgently needed. To consider environmental risk
factors that actually cause harm the nervous system over the
mechanisms of epigenetic regulation, following in neurode-
generative disorders in future life. In this review, we concisely
describe the effects of numerous environmental factors such as
heavy metal, pesticides, particulate air, and nanoparticles on
important neurodegenerative disorder Alzheimer’s disease.

Potential role of environmental risk factors
in Alzheimer’s disease

AD is well known as a complex neurodegenerative disease
with augmented quantities of intracellular neurofibrillary tan-
gles as well as extracellular neuritic plaques, which is connect-
ed to genetic variables and lifestyle and is considered as a
progressive and irreversible disease in elderly (Huber et al.
2018). EOAD and LOAD are two known forms of AD
(Baillon et al. 2019). EOAD is associated with mutations in
particular genes of presenilin (PSEN) and amyloid precursor
protein (APP), where both are linked to synthesis of amyloid-
beta (Aβ) (Mendez 2017). The EOAD starts before 65 years
of age, which is 5% of all. The LOAD is the well-known
recognized of AD average 95% in the entire cases and is
caused by some genetic risk factors such as polymorphisms
in apolipoprotein E (ApoE), ApoE neuronal receptor
(SORL1), as well as glycogen synthase kinase 3 beta
(GSK3β). It has been found that numerous environmental risk
as well as genetic factors are responsible in the pathogenesis
of LOAD; general damage in clearance of Aβ is perhaps a
main provider to AD development (Mawuenyega et al. 2010).
However, genetically, ε4 allele of APOE gene is the robust
risk element for LOAD pathogenesis (Bu 2009; Corder et al.
1993).

Environmental risk factors have been considered as a key
causal factory of the progression and onset of AD. There are
two hypotheses for AD development such as (a) increase pro-
duction of the Aβ leading to formation of neurofibrillary tan-
gles (NFTs) and (b) hyperphosphorylation of tau protein
which promotes deposition as NFTs (Mezzaroba et al. 2019;
Uddin et al. 2018). It is established that Aβ deposition pro-
mote memory loss and AD (Rahman and Rhim 2017; Zenaro
et al. 2017). During aging, Aβ is formed by the proteolytic
cleavage of APP by the pathway of amyloidogenic. APP is not
only produced by β- as well as γ-secretase but also follow the
pathway of non-amyloidogenic mechanism (Takahashi et al.
2017; Wirths et al. 2001). The augmented levels of brain Aβ
in LOAD patients could be induced by APP expression, acti-
vation of amyloidogenic signaling, and inhibition of the non-
amyloidogenic signaling. The increase of beta-site APP cleav-
ing enzyme 1 (BACE1) mediates high levels of Aβ in brain
(Fig. 1) (Coimbra et al. 2018; Uddin et al. 2019). Conversely,
the decline in a desintegrin in addition to metalloproteinase
domain-containing protein 10 (ADAM10) activity could pro-
mote increasing production of Aβ (Ferrari et al. 2014).
Additionally, increased production of Aβ might be mediated
by mutations in PSEN 1 or 2 (Piaceri et al. 2013).

The aggregation of the microtubule (MT)-associated pro-
tein tau could cause neurofibrillary lesions leading to AD. Tau
phosphorylation causes MT stabilization, and it has elevated
amount of serine as well as threonine residues; thus, it is con-
sidered as a substrate of numerous kinases (Dansokho and
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Heneka 2018). The unusual deposition of tau leads to lesions
involved in AD pathogenesis (Jouanne et al. 2017). Tau is
hyperphosphorylated which is prominent to aggregation, de-
polymerization of MTs, and axonal transport disruption under
pathological conditions (Jouanne et al. 2017). It is anticipated
that repeat domains (RDs) of the MT-binding domain (MBD)
are obligatory for aggregation, and for the development of tau
filament (Okuda et al. 2015).

Maintenances of AD homeostasis
by environmental factors

As the environmental factors including high-fat diet, biogenic
metals, heavy metals, and pesticides interrupt Aβ homeostasis
pathways, they could trigger AD development. Intake of anti-
oxidants and regular exercise can avert AD progression (Feng
and Wang 2012). Evidence shown that numerous single anti-
oxidant such asβ-carotene, vitamin C, and vitamin E have been
experienced in diverse AD model treatment (Li et al. 2012a).
Various environmental stimuli are regarded as oxidative agents.
Oxidative stress, high polyunsaturated fatty acids, low antioxi-
dants, and higher enzymatic activities are harmful for brain
(Lobo et al. 2010). The environmental factors which stimulate
Aβ plaque accumulation and tau hyperphosphorylation causes
AD progressions which are presented in Figs. 2 and 3. In cul-
ture cells, treatment of Aβmediates H2O2-induced neurotoxic-
ity, while occurrence of antioxidants inhibits the toxicity (Qi
et al. 2018). Various factors produce reactive oxygen species
(ROS) while the mechanism responsible for free radicals pro-
duction by Aβ in AD is unclear. High concentration of Fe3+ in
NFTs and Aβ-aggregates increase levels of H2O2, and

advanced glycation end products (AGE) in neurodegeneration
(Smith et al. 1997). Further, activated microglia is a foundation
of NO and O2 in senile plaques (Denis 2013), which forms the
peroxinitrite radical (ONOO−) (Smith et al. 1997).
Inflammatory stimuli play critical role in pathogenesis of AD
(Alam et al. 2016). Astrocyte and microglia are the primary
cells concern in the inflammatory process in brain. It is known
that Aβ chemotaxis of microglia and amyloid fibril phagocy-
tosis enhance the pro-inflammatory cytokines and ROS, lead-
ing to neuronal loss (Wang et al. 2015). Astrocytes degrade Aβ
plaques, and thus, it is postulated that astrocytes and microglia
activation is a result of aggregation of Aβ (Son et al. 2015).
Non-steroidal anti-inflammatory drugs (NSAIDs) decrease the
levels of Aβwhich support the involvement of inflammation in
AD (Miguel-Alvarez et al. 2015).

Exposure of metals in AD epidemiology

Several environmental factors comprising heavy metals,
nanoparticles, and pesticides are responsible to stimulate AD
and their effects are summarized in Fig. 4. Here, we also
describe each individual factor that has particular effects on
AD pathology.

Exposure to heavy metals on AD progression

Heavy metal poisoning is the addition of heavy metals such as
lead, mercury, copper zinc, cadmium, iron, chromium, man-
ganese, and arsenic. Nonetheless, these metals store in the
body in adequate concentrations to cause poisoning effects.
Heavy metal poisoning may happen because of air or water
pollution, improperly coated food containers, industrial

Fig. 1 The non-amyloidogenic or non-amyloid pathway cleavages APP
via α-secretase to produce two fragments C83, an 83 amino acid intra-
cellular C-terminal fragment, and extracellular sAPPα, soluble amyloid
precursor protein α. C83 fragment cleave through γ-secretase to yield a
P3 peptide short fragment as well as CTF, C terminal fragment. P3

peptide is irrelevant to pathology. The amyloidogenic or amyloid path-
way accumulates neurotoxic Aβ. β-Secretase releases extracellular
sAPPβ, large N-terminal soluble amyloid precursor protein β and C99,
C terminal intracellular fragment. Following cleavage of C99 fragment
through γ-secretase produces the Aβ peptide
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exposure, medicines, foods, and ingestion of lead-based
paints. The most important effects of heavy metal exposure
on AD progressions are summarized in the following.

Exposure of lead

Lead (Pb) is a neurotoxic metal, but its involvement or direct
link with AD development is not known. Pb could exert det-
rimental effects on intelligence, cognitive functions, speed
processing, memory, and motor functions (Zhang et al.
2016). Studies on the level of bone Pb suggest that earlier
Pb exposure can deteriorate post cognitive performance

(Dorsey et al. 2006). Recently, a study found that there is no
involvement in the levels of serum Pb in AD pathology
(Ventriglia et al. 2015). The involvement of Pb in AD deter-
mined in rats at 1–20 days age examined by drinking water of
200 ppm Pb. After the neonatal exposure of Pb, there is an
augment in APP mRNA levels in late life, but not expose as
adults’ rats (Basha et al. 2005). A young age Macaca
fascicularis, non-human primates, has been exposed to Pb
(1.5mg/kg/day) shows an enhance quantity of amyloid plaque
formation at old age. APP and BACE1 might be associated
with the increased Aβ levels (Wu et al. 2008). These effects
are practical when Pb (5–100 μM/48 h) exposed to

Fig. 3 Environmental factors influence tau hyperphosphorylation in AD. Tau protein become hyperphosphorylated via the stimulation of several factors
such as Pb, Hg, Al, Cd, NPs, As, and pesticides. Detailed mechanisms are explained in the text

Fig. 2 AD development through
diverse mechanisms related with
environmental factors.
Environmental factors such as
several metals (Al, As, Pb, Cd,
and Hg), nanoparticles (NPs),
pesticides, and diet fat has the
possibilities to effect on late-onset
Alzheimer’s disease (LOAD).
Due to the multiple cellular
mechanisms stimulates by these
factor ultimately generate
amyloid plaque that ends in Aβ
senile plaque formation
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differentiated SH-SY5Y cells (Bihaqi and Zawia 2012).
Differentiated SH-SY5Y cells enhance Aβ secretion and
APP expression, decrease mRNA and protein levels of
neprilysin or neutral endopeptidase (NEP), a Aβ degrading
enzyme, signifying that both the synthesis and degradation
of Aβ are modulated by Pb (Fig. 2) (Reuben 2018). It is
shown that there is no significant alteration by 50 μM Pb in
NEP expression but an augmentation in APP levels in differ-
entiated SH-SY5Y cells (Chin-Chan et al. 2015). In addition,
Pb enhances Aβ through decreasing clearance of Aβ in the
brain (Bihaqi 2019). Moreover, it has been found that
27 mg/kg, i.p. of Pb exposure increased the levels of Aβ in
the cortex as well as hippocampus of acute APP transgenic
mice (V717F) (Gu et al. 2011). Pb also can interrupt the brain
Aβ export leading to its accumulation and formation of
plaques (Behl et al. 2010).

Exposure of mercury

Mercury (Hg) is another heavy metal which is known to cause
neurotoxicity. Hg has facilitated deterioration of the brain de-
velopment and promotion of cognitive and motor dysfunction
(Johansson et al. 2007). Hg is involved with alterations of
memory loss and cognitive function in adults (Chang et al.
2008). A previous investigation recommended a correlation
between Hg exposure and prevalence of AD. Hg is described

to enhance Aβ levels in vitro as well as in vivo, and recom-
mended underlyingmechanisms are decreasing degradation in
brain clearance of the peptide (Olivieri et al. 2000). Exposure
of Hg secreted Aβ-42 and Aβ-40 in neuroblastoma cells
along with increased level of ROS (Olivieri et al. 2000).
Non-cytotoxic concentrations of MeHg enhanced APP
escorted by ROS levels and activation of glia (Monnet-
Tschudi et al. 2006). However, 10–1000 nMHg exposure rise
APP expression and decrease in Aβ degradation byNEP in rat
pheochromocytoma (PC12) cells (Fig. 2) (Song and Choi
2013). Interestingly, exposure of Hg (10 and 20 μM) in-
creased Aβ-42 expression in SH-SY5Y cells while APP ex-
pression is unaffected and activity of NEP (Aβ-degrading
enzyme) has been reduced (Chin-Chan et al. 2015). On the
other hand, Hg has no significant effects on Aβ aggregation
while Zn, Fe, and Cu has the uppermost potential (Bangen
et al. 2015). In vivo treatment of 20–2000 μg/kg/day/4 weeks
of MeHg increases Aβ-42 in male rat hippocampus, while
there is no effect on APP and NEP protein levels (Kim et al.
2014; Song and Choi 2013). In the hippocampus, a sup-
pressed low-density lipoprotein receptor-related protein 1
(LRP1) accomplishes endocytic clearance of Aβ peptide,
and receptor expression in the brain is positively connected
with increased Aβ and decreased cerebrospinal fluid (CSF)
levels which indicate a bargained peptide clearance in the
brain (Kim et al. 2014).

Fig. 4 Several environmental factors and their pathophysiological effects on AD. Environmental stimuli can distress several additional effects on AD.
These might be involved increasing ROS, APP, and Aβ production, as well as impairments of spatial memory and cognition function in AD pathology
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Exposure of arsenic

Arsenic (As) is another toxic metal responsible for neuronal
toxicity associated with negative effect on the development of
brain and cognitive function (Tyler and Allan 2014). Role of
As exposure on the development of AD has been poorly stud-
ied. In mice, treatment with As (20 mg/L drinking water)
increased the loss of spatial memory significantly (Ramos-
Chavez et al. 2015). A conceivable mechanism for the cogni-
tive as well as memory loss mediated by As (3–15 mg/L in
water) exposure might be the dysregulation of the amyloid
pathway. Treatment of inorganic and organic form of 5–
10 mM/12–24 h As increases the expression of APP and
sAPPβ in cholinergic SN56.B5.G4 cells (Zarazua et al.
2011). Overexpression of a mutant form of APP in Tg2576
mice also shows the similar effects in neurons. It is proposed
that increasing APP expression is important in dimethyl arse-
nic acid (DMA)-induced effects (Zarazua et al. 2011). The
underlying entire mechanism through which As effects in-
creasing production of Aβ has not yet been investigated,
while As exposure is linked with inflammation and oxidative
stress in brain, which is similar with report on AD (Gong and
O'Bryant 2010).

Exposure of cadmium

The neurotoxicity has been reported to induce by cadmium
(Cd), a toxic heavy metal (Zong et al. 2018). Evidences sug-
gest that 2.5 mg/kg/4 days drinking water of Cd exposure
increase production of Aβ. In hippocampus and cerebral cor-
tex of APP/PSEN1 AD mice, treatment of Cd increases Aβ-
42 production as well as enlarges size and senile plaque for-
mation (Li et al. 2012b). These things have been recognized
for a disintegrin and metalloproteinase domain-containing
protein 10 (ADAM10) expression, NEP, and sAPPα proteins,
signifying that non-amyloidogenic pathway and Aβ degrada-
tion are regulated by Cd contact (Li et al. 2012b). The com-
bination of As, Pb, and Cd treatments in male rats shows that
metals increase the production of Aβ in hippocampus and
cortex, and these were mediated by APP expression and
APP-processing enzymes including BACE1 and PSEN
(Karri et al. 2016). Although Pb is the most powerful metal
to stimulate Aβ, followed by As, and Cd has the minimum
outcome, all of them increase the production of APP (Karri
et al. 2016). Fascinatingly, all of them show a synergic effect
because of having As, the introduction to these metals signif-
icantly increases PSEN1, BACE1 Aβ, and APP, suggesting
an increase processing of amyloidogenic pathway (Karri et al.
2016). It is found that exposure to As, Pb, and Cd mixture
increases levels of malondialdehyde (MDA). It is connected
with decrease activity of enzymatic antioxidant, and the initi-
ation of IL-1β and IL-1α in the hippocampus and frontal
cortex of rats (Karri et al. 2016). It is concluded that the

APP expression was mediated by increased production of
ROS-induced IL-1. These results were supported by the fact
that APP mRNA has a responsive element for IL-1 in the
5’UTR region (Chin-Chan et al. 2015; Karri et al. 2016).

Exposure of aluminum

Recently, aluminum (Al) is considered as a pollutant compo-
nent concerned within the etiology of the progressive damage
of structure and function of neurons that can cause neuronal
cell death and may lead to the elderly disorders like AD; but,
there is no reliable proof yet. Al pollution gave first proof of
potential neurotoxicity when people exposed to Al during this
region is observed to have brain pathological characteristics
usually found in AD patients (Colomina and Peris-Sampedro
2017), further progressing to their brain functions (Yang et al.
2019). Shen et al. state a peripheral positive correlation of soil
Al levels and the death due to AD in China (Zhang 2018;
Zhang et al. 2010), whereas others report no correlation.
Investigational evidence seems to be further consistent. It
has been stated that continuous oral Al administration from
6 months old to rest of their lives in rats raises APP in cortical
and hippocampal tissues, and thereby increases the production
of Aβ (Walton and Wang 2009). However, rat cortical neu-
rons treated with Al (50 μM/48 days) results in the buildup of
Aβ; further, Al-induced structural alterations of Aβ then in-
crease its collection by creating fibrillary accumulation on the
external surface of in vitro neuronal culture. Desferroxamine,
a chelator of Al, is able to dissolve the aggregated Aβ
(Alghamdi 2018; Hu et al. 2019). It is also found that in-
creased production of Aβ in the hippocampus and cortex
(AD animal model), impairment of memory is successfully
produced by the co-treatment of Al with D-galactose which
contribute to an amplified BACE1 expression and a reduced
NEP (Luo et al. 2009). Al (2 mg/kg in diet/9 months) reduces
the degradation of Aβ by reducing cathepsin B activity, sug-
gesting the probable link between the amyloidogenic pathway
activation and a decrease of the Aβ catabolism (Fig. 2)
(Sakamoto et al. 2006). Furthermore, a reduction of LRP1
expression is conjointly determined in the mice co-treated
with D-galactose and Al, representing an attainable drop in
Aβ clearance (Luo et al. 2009). Diet (2 mg/kg/9 months) of
Al-fed transgenic mice (Tg2576) has found to increase Aβ
production and proteins related to its anabolism. Therefore,
formation of amyloid plaques has reduced by the action of
vitamin E (a potent antioxidant), recommending the involve-
ment of oxidative stress induced by Al (Pratico et al. 2002).

Exposure of pesticides

Long-lasting chemical contact and the frequency of dementias
as well as AD may be closely connected, but to confirm, we
need more comprehensive studies. Based on epidemiological
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studies, role of pesticides in modifications of cerebral func-
tions as well as AD development has been supported; howev-
er, the mechanisms are poorly understood. OCl pesticides like
DDE, in addition, its source DDT (1 μM/48 h) treatment stim-
ulate the production of APP on in vitro differentiated SH-
SY5Y cells (Richardson et al. 2014). DDT has been reported
to amplify Aβ production by elevating BACE1 and APP,
further via decreasing the degradation and clearance of Aβ
by dropping the activity of Aβ-degrading enzyme, ATP-
binding cassette transporter A1, and IDE in H4-AβPPswe
(human neuroglioma) cells (Fig. 2) (Li et al. 2015). Six-
month acute subcutaneous administration of CPF (50 mg/
Kg) (Chlorpyrifos), an OP pesticide linked with oxidative
stress, neuronal impairment, and cognitive impairment have
significantly amplified Aβ production within the cortex and
hippocampus, further enhanced memory damage and lowered
motor activity in Tg2576 mice (Fig. 4) (Salazar et al. 2011).
But, another study has been reported that 25 mg/kg of CPF
treatment in Tg2576 mice shows no change in Aβ production
or memory acquisition (Peris-Sampedro et al. 2014).
Therefore, further studies are required to clarify the mecha-
nisms of action by which OCl, OP, and different pesticides are
coupled to AD pathogenesis.

Paraquat (PQ), a commonly applied chemical herbicide
recommended to be linked in AD pathogenesis. In 3 weeks,
10 mg/kg/twice a week of PQ treated wild-type and APP
transgenic (Tg2576) mice shows elevated levels of Aβ in
transgenic mice that is related to mitochondrial oxidative im-
pairment in neural structure, resulting in diminishing of mem-
ory and learning (Li et al. 2017). Remarkably, peroxiredoxin 3
(a potent mitochondrial antioxidant defense enzyme) overex-
pression shows better cognitive functions and lower Aβ pro-
duction in PQ-treated APP transgenic mice showing the po-
tency of pro-oxidant xenobiotics like PQ in the development
of AD (Souza et al. 2019).

Exposure of nanoparticles

With the increase of NP synthesis for various applications,
such as drug delivery tactics for the treatment of AD, it is
important to study the possible poisonous effects on proteins
associated with the development of AD. Epidemiological
studies required to carry out to link between NP exposure
and AD development. However, several experimental pieces
of evidence demonstrate the possibility of brain damage by
NPs. Mice is treated with TiO2-NPs (nasal administration of
2.5–10 mg/kg/90 days) initiated hippocampus neuronal death,
oxidative stress, and gliosis (Fig. 4) (Mushtaq et al. 2015).
Microarray study reveals a reduced gene expression related
to memory and cognition (Ze et al. 2014). Likewise, rats treat-
ed with i.p. 0.5 mg/kg/day for 14 days of CuO-NPs have
exhibited poorest spatial cognition; in addition, a decrease in
electrophysiological endpoints, for example, long-term

potentiation, that coordinated with amplified lipid peroxida-
tion product such as 4-hydroxinonenal-HNE, MDA produc-
tion, and ROS, then decrease antioxidants enzyme levels (An
et al. 2012). Brain alterations like the decline in cognitive,
motor and sensory functions are reported based on studies
on Al NPs, Ag NPs, and Cu NPs administered at several
dosages and different methods in mice and rats (Sharma
et al. 2009; Sharma and Sharma 2012). Though, another re-
cent study mentioned that treatment of adult mice with NPs
Ag did not cause memory loss (Liu et al. 2013). However,
silica NP (SiNPs, 10 μg/mL for 24 h) exposure to human
SK-N-SH and mouse Neuro-2a neuroblastoma cells in
in vitro conditions have reported to raise the intracellular con-
tent of Aβ, with amplified APP and reduction of NEP protein
levels. Amplified ROS production by SiNPs suggests that
these effects may be facilitated by the production of intracel-
lular ROS (Yang et al. 2014). Similarly, Neuro-2a cells treated
with 12.5 μg/mL for 24 h silver NPs has been reported to
show the Aβ deposition with an amplified APP expression,
but reduces LPR1 (or LDLR) and NEP levels; together, the
amyloidogenic pathway alteration by AgNPs can induce AD
(Huang et al. 2015). Many NPs and its AD pathological ef-
fects are summarized in Fig. 5.

Environmental factors promotes tau
phosphorylation in AD

The existing research demonstrated that numerous environ-
mental risk factors are shown to facilitate AD progression over
the alterations on tau aggregation as well as phosphorylation
(Fig. 3).

Exposure of metals

Both in vitro as well as in vivo studies have recommended that
Hg can potentially induce P-tau. MeHg intake by male mice
shows an amplified death of neuronal cells in cerebral cortex
and extra migrating astrocytes has been observed, along with
augmented P-tau levels facilitated by c-jun N-terminal kinase
(Fujimura et al. 2009). Inorganic Hg at a dose of 50 μg/dL/
30 min has the ability to amplify tau phosphorylation of SH-
SY5Y cells via prompting ROS, which is returned when co-
treated by the melatonin which possesses antioxidant proper-
ties (Olivieri et al. 2000). A study has reported that Hg ions
increases the heparin-prompted aggregation in addition to
causes a conformational alteration in tau verified by circular
dicroism (CD) (Yang et al. 2010). In contrast, by promoting
the aggregation of tau protein, Cd seems to show a role in tau
hypothesis. It is revealed that Cd(II) stimulates the heparin-
mediated accumulation of tau and it causes variations in con-
formation verified by CD (Jiang et al. 2007). Rats treated with
3–10 mg/kg/day for 4 to 12 weeks for subchronic As shows
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increase P-tau, recommending that axonal degeneration may
cause by the As destabilization and disruption of the cytoskel-
eton (Vahidnia et al. 2008). A amplified phosphorylation of
tau and cyclin-dependent kinase 5, both mRNA and protein
levels are also found to increase (Bihaqi and Zawia 2013). Pb
exposures to maternal and early postnatal mice significantly
amplified P-tau and cognitive damage (Li et al. 2010). Other
studies report that tau aggregation is caused by chronic Al
exposure and recommend that Al could be bound to P-tau
(Shin et al. 2003; Xu et al. 2018). In vivo and in vitro studies
report that Al can resist the breakdown of PHFs (Shin et al.
2003), and also can prevent protein phosphatase 2 (PP2) ac-
tivity, which is required in the dephosphorylation of P-tau
(Fig. 3) (Chin-Chan et al. 2015; Yamamoto et al. 1990).

Exposure of pesticides

Some evidences have suggested that tau functionalities can be
disrupted by pesticide exposure (Fig. 3) (Yan et al. 2016). A
recent study presented that the insecticide carbofuran
(carbamate) and deltamethrin (pyethroid) administration to
rats caused the death of neuronal cells in the hippocampus
and cortex, and thereby, a loss of spatial memory and learning
(Fig. 4). These changes may be occurred by lowering synaptic
proteins expression that usually involved in memory consoli-
dation. Furthermore, activated kinase p-GSK3β (phosphory-
lates tau) and elevated P-tau have also detected (Bian et al.
2016; Chen et al. 2012). Also, it has been reported that PQ
(10 mg/Kg) treated mice exhibited P-tau elevation in the

striatum, mediated by stimulation of p-GSK3β, also, causes
α-tubulin hyperacetylation, suggesting for a cytoskeleton
transformation (Wills et al. 2012).

Exposure of nanoparticles

NPs on phosphorylation of tau has not been widely investigated.
Silica NPs are being used as a drug has been reported to rise
Ser262 as well as Ser396 phosphorylation tau sites that is usually
observed in AD (Murugadoss et al. 2017). This effect is medi-
ated by kinaseGSK3β activation probably facilitate by oxidative
stress as ROS is amplified inmouseNeuro-2a and human SK-N-
SH cells in response to these NPs (Yang et al. 2014).

Effects of air pollution on AD pathogenesis

Pathological and Clinical examinations on cell culture, ani-
mal, and humans studies partially support on air pollution in
AD as a risk factor. Polluted air comprises particulate matter
(PM) of numerous sizes in conjunction with deleterious com-
pounds for example sulfur oxide species, nitrogen, metals,
carbon monoxide, and inorganic compounds. PM encloses
ammonium, carbon, sulfates, chlorides, nitrates, and addition-
al biological material along with dust, which is distributed
consistent with size (Li et al. 2003). After inhaled, ultrafine
as well as fine PM are proficient to cross into bloodstream and
taken up through cells causing mitochondrial damage in addi-
tion to oxidative stress (Li et al. 2003), which may be capable

Fig. 5 Numerous nanoparticles
(NPs) and their effects on AD
pathogenesis. NPs may distress
numerous pathological effects on
AD. NPs involves stimulating
neuronal cell death, Aβ and APP
production, loss of memory and
cognition function, enhances P-
tau, and improves ROS
production in AD pathology
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to enter the brain directly via the olfactory nerve responsible to
AD (Block and Calderon-Garciduenas 2009). Furthermore, it
has been found that short-term exposure to high intensities of
ultra-fine PM can change inflammatory responses in the
brain’s (Kleinman et al. 2008), which is highly relevant to
develop AD as well as dementia (Heppner et al. 2015).
However, exact risk appears to be altered via additional envi-
ronmental factors in conjunction with genetic predisposition
with APOE gene abnormal interrelated to dementia to the
effect of air pollution (Cacciottolo et al. 2017; Chen and
Schwartz 2009). For example, individuals staying in extreme-
ly polluted zones accumulate greater quantities of Aβ42 and
tau hyperphosphorylated in the hippocampus as well as olfac-
tory bulb (Calderon-Garciduenas et al. 2004). More precisely,
oxidative damage glial cells may increase risk of AD patho-
genesis (Dzamba et al. 2016). Similarly, in AD mouse model,
introduction to ultrafine PM cause escalation in the predict-
able quantity of Aβ plaques formation in addition to decrease
hippocampus neuron density (Cacciottolo et al. 2017). It has
been revealed that PM exposure provokes modifications in
inflammatory reactions, dendritic spine density loss, decrease
hippocampus (CA1 region) dendrite length, increase BACE
and Aβ expression, and more amyloid precursor protein
(APP) in mice brains to stimulate AD (Bhatt et al. 2015).
Besides, diesel exposure exhaust elements may lead to stimu-
late inflammatory-mediated cytokines and generate reactive
oxygen species (ROS) in rat brain which has been displayed
to decline cognitive function (Durga et al. 2015). Therefore, a
relation concerning with neuroinflammation as well as expo-
sure of particulate air pollution creates a possible pathway in
AD risk.

Epigenetic evidence to develop AD influences
by environmental factors

Epigenetic mechanisms are mainly DNA packaging around
nucleosomes, histone tails covalent posttranslational modifi-
cations, chromatin folding and attachment to the nuclear ma-
trix (Sadakierska-Chudy and Filip 2015), miRNAs, and DNA
methylation (Holliday 2006). DNA methylation can stimulate
the expression of corresponding genes by adding methyl
groups through DNA methyltransferases (DNMTs) to the cy-
tosine bases placed at cytosine-phosphate-guanine (CpG)
sites. Central developments such as embryonic development,
differentiation of cells to different cell types and aging are
regulated by DNA methylation on the corresponding gene’s
promoter regions (Bird 2002; Suelves et al. 2016). An increas-
ing number of evidence suggest that the epigenetic fluctua-
tions within the growing embryo may play necessary roles
within the vulnerability to illness in future life resulting from
the maternal contacts to environmental elements at critical
developmental stages. In several animal models,

environmental impacts are associated to epigenetic alterations.
Epigenetic effects have been perceived through the environ-
mental and nutritional elements (Heijmans et al. 2008), for
example, inorganic contaminants like arsenic (Singh and
DuMond Jr. 2007), chemicals like pesticides (Andersen et al.
2008) or fungicides (Anway et al. 2005), methyl donors such
as folate (Cropley et al. 2006), drugs like cocaine (Novikova
et al. 2008), airborne polycyclic aromatic hydrocarbons
(Perera et al. 2009), phytoestrogens (Guerrero-Bosagna et al.
2008), and endocrine disruptors like BPA (Dolinoy et al.
2007; Yaoi et al. 2008). It has also been established that be-
havioral properties on DNA methylation comprising maternal
special effects on nursing behavior (Champagne et al. 2006)
as well as depression (Oberlander et al. 2008). For that reason,
various models of environmental elements have been exposed
to alter the epigenetic. This recommends that a brief contact to
chemical compounds is possible to memorize even long after
the chemical exposure by the action of epigenetic machinery
(Vickers 2014; Weaver et al. 2014). Another study has recom-
mended that epigenetic component to cause neurodegenera-
tive diseases is associated with environmental elements
(Marques et al. 2011).

Environmental pollutants (Faulk and Dolinoy 2011), aging
(Calvanese et al. 2009), psychiatric consequences
(Sananbenesi and Fischer 2009), and neurodegeneration
(Urdinguio et al. 2009) are epidemiologic risk factors that
are associated with epigenetic fluctuations. Earlier life meth-
ylation of particular genes can cause DNA damage mediated
by oxidative stress. The hypomethylated APP gene stimulates
its self-expression, leads to the APP overproduction and ele-
vated Aβ levels, resulting in the facilitation of the production
of ROS, DNA damage, and ultimately neuronal loss (Bhat
et al. 2015). On the other hand, the DNA repair pathways
and gene transcription are disrupted by the hypermethylation.
Both types of DNA methylation can influence the expression
of genes and imprint vulnerability to DNA damage by oxida-
tive stress in the elderly brain (Zawia et al. 2009). It is recom-
mended that by interfering with the capacity of DNA methyl-
ation, Pb fluctuates the AD-related gene expression. A reduc-
tion of brain DNMT activity has been reported in aged mon-
keys developmentally contacted to Pb. Additionally, Pb
(0.1μM) exposure to primary cells have collected frommouse
cerebral cortex shows a parallel result on DNMT1 activity
after 1 week of 24-h treatment (Masoud et al. 2016). A dor-
mant rise in AD biomarkers expression and a reduce mRNA
and protein levels of the DNA methylation enzymes like
Dnmt1 as well as Dnmt3a, and MeCP2 has observed in dif-
ferentiated SH-SY5Y cells in response to Pb exposure (Bihaqi
and Zawia 2012). In postmortem brains, unusual methylation
of CpG in tau, GSK3β, and APP genes were observed
(Coupland et al. 2016). Furthermore, it recommended that
reduction of CpG methylation in the APP promoter could be
facilitated by the guanine (8-oxdG) oxidation (Zawia et al.
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2009); this is because the adjacent cytosine methylation was
preventing by guanine oxidation in CpG dinucleotides (Ito
and Kuraoka 2015). Cd, another metal that is also involved
in the pathology of AD, reported to reduce the Dnmt enzy-
matic activity in rat liver cell in vitro (Poirier and Vlasova
2002), nonetheless this effect has not assessed in cerebral
cells. Subchronic As exposure has reported to change the
methylation of the genes that are intricate in neuronal plastic-
ity, comprising protein phosphatase 1 (PP1) and reelin
(RELN), which is linked through memory shortages
(Martinez et al. 2011). Mice perinatal introduction to permeth-
rin shows brain function alterations that include dopaminergic
neurons biomarkers and spatial memory damage at the age of
6 months (Cinzia et al. 2013).

Conclusions

The epidemiological investigations and experimental studies
have directed to emphasize the prospective risk to grow AD
because of environmental pollutants exposure include heavy
metals, NPs as well as toxic pesticides. Remarkably, these
environmental pollutants display related toxicity mechanisms
to the oxidative stress mediated AD. For instance, oxidative
stress induced by accumulating ROS production or
deregulating enzymes of antioxidant stimulates Aβ and tau
aggregation and formation, respectively. This pollutant over-
whelms the degradation methods and induces neuroinflamma-
tion, as a result enhances additional oxidative stress leading to
hippocampus as well as cerebral cortex neuronal loss in AD.
These neurotoxicants induce oxidative stress and stimulate or
prevent several signaling pathways which lead to increased or
reduced enzymes activity that encourage the addition of toxic
materials, Aβ in AD, damaged proteins, and oxidative
byproducts in neuronal cells which might be changed epige-
netic or genetic regulation. Conversely, absence of particular
biomarkers restricts the earlier diagnosis and appropriate treat-
ment in AD. In particular, biomarker identification is of most
importance to conclude the previous exposure to the pollut-
ants of environmental factor for a superior and appropriate
controlling of AD. In this respect, precise circulating
miRNAs have been related to diagnosis of AD pathology;
thus, they are favorable for noninvasive biomarkers.
Therefore, additional well-intended epidemiological investi-
gations are essential to develop the quality of earlier life to
avoid the progress of this neurodegenerative disorder globally.
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