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Abstract
Individuals with higher contaminant burdens are expected to be in poorer physical health and be of lower individual body
condition and energetic status, potentially resulting in reduced ornamentation or increased asymmetry in bilateral features. The
degree and magnitude of this effect also would be expected to vary by sex, as female birds depurate contaminants into eggs. We
tested for relationships among mercury in feathers, sex, and elaborate feather ornaments that relate to individual quality in crested
auklets (Aethia cristatella), small planktivorous seabirds in the North Pacific Ocean. We found no relationships between mercury
and the size of individuals’ forehead crest or degree of measurement asymmetry in auricular plumes, both of which are favoured
by intersexual selection. Females had significantly greater mercury concentrations than males (females. 1.02 ± 0.39 μg/g; males,
0.75 ± 0.32 μg/g); but concentrations were below that known to have physiological effects, as expected for a secondary con-
sumer. Sex differences in overwintering area for this long-distance migrant species (more females in the Kuroshio Current Large
Marine Ecosystem than males) could be the reason for this seemingly counterintuitive result between sexes. Further research
relating mercury burden to overwintering ecology and diet contents would build on our results and further elucidate interrela-
tionships between sex, sexually selected feather ornaments and contaminant burden.
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Introduction

Mercury (Hg) is a pervasive global contaminant that is largely
produced anthropogenically, and projected to increase into the
future (Driscoll et al. 2013; Krabbenhoft and Sunderland
2013; Lamborg et al. 2014; Lindberg et al. 2007; Selin
2014; Streets et al. 2009). As a potent neurotoxin, it can have
detrimental effects on wildlife, including changes in physiol-
ogy, behaviour and survival (Ackerman et al. 2016b; Goutte
et al. 2014; Heinz et al. 2009; Jackson et al. 2016; Thompson
1996; Weiner et al. 2003). Understanding which species are at

risk from high concentrations of contaminants such as Hg and
what factors influence those conditions is therefore an impor-
tant goal for managers and conservation biologists (Golden
and Rattner 2003; Provencher et al. 2014; Thompson 1996).
Mercury contamination in oceans and its prevalence in marine
food chains is related to atmospheric fallout of particulates
originating mostly from Asian coal burning (Pacyna et al.
2006) and its subsequent transformation into toxic methylmer-
cury (MeHg) (Sunderland et al. 2009).

Birds are effective monitors of Hg in the environment,
because they can integrate signals over space and time, Hg
in tissues is dietary in origin, and tissues can easily be sampled
non-destructively (Monteiro and Furness 1995; Monteiro and
Furness 2001; Monteiro et al. 1998). Birds regulate their Hg
body burden by excreting the toxic form of Hg, MeHg into
growing feathers (Bond and Diamond 2009), which are inert
once fully grown. The Hg in feathers is bound to disulphide
bonds and remains stable (Appelquist et al. 1984; Crewther
et al. 1965), allowing for a retrospective examination of Hg
exposure (Bond et al. 2015; Vo et al. 2011).

A variety of factors affect Hg concentrations in birds, in-
cluding proximity to point sources (Finger et al. 2015; Jackson
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et al. 2011), trophic position and diet (Becker et al. 2002;
Elliott and Elliott 2016), age class (Thompson et al. 1991),
and sex (Robinson et al. 2012). Individuals closer to Hg
sources, those at higher trophic positions, and adults tend to
have higher Hg than individuals farther from sources, at lower
trophic positions, and chicks. Males are generally thought to
have higher Hg concentrations than females, as females can
also eliminate Hg in eggs (Braune and Gaskin 1987b; Lewis
et al. 1993; Monteiro and Furness 2001; Robinson et al.
2012).

Crested auklets (Aethia cristatel la) are small
planktivorous seabirds breeding around the Bering and
Okhotsk Seas, have a diet of mostly euphausiids and
calanoid copepods, and lay a single egg each year (Bond
et al. 2012; Jones 1993a). Crested auklets are socially
monogamous and have elaborate sexually monomorphic
feather and bill ornaments that are displayed during court-
ship (Jones et al. 2000). Their most prominent feather
ornament is a conspicuous forehead crest that experiments
showed to be a product of mutual sexual selection and
paired white auricular plumes (Jones and Hunter 1993;
Jones et al. 2000; Jones et al. 2004). Although Crested
auklet males have a larger body size and proportionally
larger bills than females, crest and auricular plume length
are sexually monomorphic (Jones 1993b; Jones et al.
2000). Like many sexually selected traits, crested auklet
crest length and the degree of measurement asymmetry of
the auricular plumes are highly variable in expression
across individuals of both sexes (Jones et al. 2000). This
kind of variability in a sexually selected trait has been
suggested to relate to its function as an indicator of indi-
vidual quality in mate choice (Van Valen 1962; Zahavi
1975), in which individuals benefit either directly or indi-
rectly by mating with healthy individuals as indicated by
the expression of the sexually selected or more symmet-
rical trait (Spencer and MacDougall-Shackleton 2011).
Nevertheless, there are few clues as to what aspect of
quality crested auklet crests might signal as no relation-
ships between body condition and survival have been
found (Jones et al. 2000; Jones et al. 2004). There is also
the question of why variability in crest length is greater in
females than in males (Jones et al. 2000).

In other taxa, greater Hg concentrations have been associ-
ated with the degree of asymmetry of feather traits, though not
in all cases (Evers et al. 2008; Herring et al. 2016). Here we
aimed to test for relationships of mercury burden, sex, and
sexually selected feather ornaments in this spectacularly
ornamented sexually monomorphic seabird.We predicted that
crested auklet males would have higher feather Hg than fe-
males because females can eliminate Hg in eggs and that in-
dividuals with longer crests and more symmetrical auricular
plumes, being in better condition, would have lower feather
Hg concentrations.

Methods

We collected feather samples from Sirius Point, Kiska Island
in the western Aleutian Islands, Alaska (52° 08′N, 177° 36′E),
in June and July 2009 (n = 28) and 2010 (n = 6); no individ-
uals were sampled more than once. Birds were captured on the
colony surface using noose carpets (Jones et al. 2004), aged
(adult or subadult) following Bédard and Sealy (1984), and
sex determined from bill morphology (Jones 1993b). We re-
stricted our samples to adult birds and an equal number of
females and males (n = 17 of each sex). Birds were weighed
using an electronic balance (± 1 g), and we measured crest
length (± 0.1 mm) and length of the auricular plumes (±
0.1 mm) using callipers (Jones et al. 2000; Jones et al.
2004). Measurement asymmetry of auricular plumes was cal-

culated as:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

left−rightð Þ2
q

; all measurements were performed

by one individual (ALB).
Two breast feathers were plucked and placed in individual

paper envelopes. Crested auklets replace breast feathers and
feather ornaments prior to breeding as in other Aethia spp.
auklets (Bédard and Sealy 1984; Bond et al. 2013;
Pitocchelli et al. 2003; Pyle 2008). Feathers therefore repre-
sent the accumulation of Hg since the previous moult, the
same period over which they can invest in ornamentation.

Feathers were placed in sterile glass scintillation vials,
washed in a 2:1 (v/v) chloroform/methanol solution to remove
external contamination (Borghesi et al. 2016), and air dried for
24 h at ambient room temperature. We analysed two feathers
from each individual (Bond and Diamond 2008) using a
DMA-80 (atomic absorption spectrometry; Milestone, Ltd)
(Haynes et al. 2006). Feathers were placed in nickel boats
and kept in place using glass capillary tubes and Nanopure
deionized water. Method blanks consisting of capillary tubes
and water were all below the level of detection (0.04 ng Hg).

We analysed three certified reference materials (CRMs) for
quality assurance and control: lobster hepatopancreas (TORT-
3, National Research Council of Canada; certified concentra-
tion ± expanded uncertainty (UCRM; Joint Committee for
Guides in Metrology 2008): 0.292 ± 0.022 μg/g; recovery,
113 ± 2%, n = 8), dogfish muscle (DORM-4, National
Research Council of Canada; certified concentration, 0.412
± 0.036 μg/g; recovery, 106 ± 1%, n = 8), and human hair
(IAEA-85, International Atomic Energy Agency; certified
concentration, 23.20 ± 0.06 μg/g; recovery, 98 ± 1%, n = 5).

Statistical methods

We assessed normality of Hg data using Shapiro-Wilk test
(Shapiro and Wilk 1965) and then constructed a series of
general linear models using year of collection (2009 or
2010) and sex (male or female) as predictors. We also includ-
ed crest length and asymmetry of auricular plumes (and their
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interactions) to predict feather Hg, as they can also act as a
signal of individual quality (Jones 1993a; Jones et al. 2000;
Jones and Montgomerie 1991a; Jones and Montgomerie
1991b). Models were compared using Akaike’s Information
Criteria adjusted for small sample size (AICc) using the pack-
age AICcmodavg (Mazerolle 2017); models with ΔAICc > 2
were not considered competitive. Model terms were consid-
ered significant when p < 0.05. We calculated the effect size
using Hedge’s g (an unbiased estimator of the standardized
mean difference) (Hedges 1982) using the package
compute.es (Del Re 2013) in R 3.3.2 (R Core Team 2018).
Differences in morphometrics were assessed using t tests.
Data are presented as means ± SD.

Results

Data were normally distributed (Shapiro-Wilk W = 0.95, p =
0.09), so Hg data were not transformed. Males had longer
auricular plumes than females (males, 33.1 ± 8.1 mm; fe-
males, 27.6 ± 6.7 mm; t32 = 2.17, p = 0.038), but crest length
did not differ between sexes (36.3 ± 5.5 mm; t32 = − 1.48, p =
0.15). The model for predicting feather Hg that included sex
received the most support (wi = 0.73); no other model had
ΔAICc < 2, and models that included ornaments were not
competitive (ΔAICc < 9.8; Table 1), so results are from the
top-ranked model only. Feather Hg was significantly higher
in females (1.02 ± 0.39 μg/g) than in males (0.75 ± 0.32 μg/g;
t32 = −2.18, p = 0.037; Fig. 1). The effect size (± variance) of
sex was g = − 0.73 ± 0.12 (95% confidence interval: 0.02–
1.44), indicating a large effect size (Cohen 1988).

Discussion

We found higher Hg concentrations in female crested auklets
than males at Kiska Island, counter to the hypothesis that
females’ Hg burden should be lower as they can depurate
Hg into their egg. Crested auklets lay a single egg, weighing

approximately 14% of female body mass (260 g; Fraser et al.
1999; Jones 1993a). Previous studies that examined this hy-
pothesis found that, though it was supported, depuration into
eggs could not fully account for the differences in Hg between
sexes (Ackerman et al. 2016a;Monteiro and Furness 2001). In
some species, however, there is no significant relationship
between Hg in females’ winter-grown breast feathers and Hg
in their subsequent eggs, as the kinetics of Hg depend on the
timing and pattern of feather moult (Ackerman et al. 2016a;
Braune and Gaskin 1987a; Thompson et al. 1998).

The effect size of sex on feather Hg concentrations was in
the 7th percentile of a recent review (Robinson et al. 2012),
suggesting that our study is one of the few cases where the
difference in feather Hg is so great between sexes and greater
in females than males. This suggests either a dietary/
physiological difference between the sexes or spatial

Table 1 Candidate models for
predicting Hg concentrations in
Crested Auklet breast feathers
ranked by Akaike’s information
criteria adjusted for small sample
size (AICc), with differences from
the top-ranked model (ΔAICc)
and individual models’ Akaike
weights (wi)

Model Parameters AICc ΔAICc wi

Sex 3 31.95 0.00 0.730

Year 3 34.67 2.72 0.188

Sex × year 5 36.52 4.57 0.074

Crest × auricular asymmetry 5 41.74 9.79 0.006

Sex × year × auricular asymmetry 8 44.15 12.20 0.002

Sex × year × crest 8 44.53 12.58 0.001

Sex × crest × auricular asymmetry 9 49.09 17.14 0.001

Year × crest × auricular asymmetry 9 51.67 19.72 < 0.001

Sex × year × crest × auricular asymmetry 14 69.67 37.72 < 0.001

Fig. 1 Total mercury in Crested Auklet breast feathers (μg/g fresh
weight) differed significantly between sexes. Solid lines are the median,
boxes are the interquartile range, whiskers are 95% percentile, and dots
are final outliers
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segregation resulting in differential Hg exposure. Male and
female crested auklets’ behaviour during the breeding differs
markedly (Fraser et al. 2002; Wails 2016), and they are the
most sexually dimorphic auk (Gaston and Jones 1998; Jones
1993b; Jones et al. 2000).

We would expect differences in feather Hg if females and
males differed in either their exposure or physiology. During
the nonbreeding season, it is expected that Hg exposure (and
therefore concentrations of Hg acquired) should be equal be-
tween the sexes as females are not laying eggs, and the phys-
iological kinetics of Hg should be similar (Monteiro and
Furness 2001). Crested auklet breast feathers are likely grown
in the early spring (Pyle 2008); males and females differ in
body size and also bill shape and size – with the larger males
having more strongly hooked bills in summer (Jones 1993b).
Crested auklet males and females take on different roles dur-
ing chick rearing, with a greater role for females in chick
provisioning and of males in chick guarding (Fraser et al.
2002), with strong differences in diurnal timing of colony
attendance between the sexes (Wails 2016). Crested auklets
are the only member of the family Alcidae for which individ-
uals’ sex can be determined by examination of external char-
acters and are the most sexually dimorphic auk (Gaston and
Jones 1998; Jones 1993b; Jones et al. 2000). Male bill shape
and size may be affected by intra- or intersexual selection
because the bill is used for fighting as well as display
(Gaston and Jones 1998), but the dimorphism could manifest
in dietary differences between sexes (Mancini et al. 2013;
Phillips et al. 2011) and therefore Hg exposure. Studies of
crested auklet diet outside the breeding season are virtually
unknown, save one specimen shot in January 1883
(Stejneger 1885), and a study of nine birds (2 adult males, 3
subadult males, 4 subadult females) collected in Unimak Pass
in the winter of 1986–1987, which did not examine sex or age
differences (Troy and Bradstreet 1991), though diet composi-
tion appears to be broadly similar to that of chicks in the
breeding season, dominated by euphausiids (Bond et al.
2012). Why then did females in our sample have higher Hg?
Hg in feathers could also represent some of the body burden
acquired during the previous breeding season. Hg is eliminat-
ed via feathers from a body pool acquired several months
previously. An understanding of nonbreeding dietary differ-
ences between male and female crested auklets is lacking and
impedes our interpretation.

Sex differences in Hg could also arise from spatial segre-
gation (Watanuki et al. 2016). Based on archival geolocation
tracking data of birds fromBuldir and Gareloi Island, Aleutian
Islands between 2013 and 2015, significantly more females
than males overwintered in the Kuroshio Current Large
Marine Ecosystem (K. Robbins unpublished data). The
Kuroshio Current Large Marine Ecosystem lies off the east
cost of Japan (Di Lorenzo et al. 2013); Red-legged kittiwakes

(Rissa brevirostris) wintering in the Kuroshio Current had the
highest feather total Hg concentrations (Fleishman et al.
2019). Streaked Shearwaters (Calonectris leucomelas) winter-
ing in different areas of the Pacific Ocean showed consider-
able variation in feather Hg concentrations (Watanuki et al.
2016), and a similar pattern may be present in crested auklets.

Crested auklet males and females do not differ signifi-
cantly in crest length (i.e., they are sexually monomorphic
for this ornament; Jones et al. 2000), even though females
have a greater Hg burden. Notably, variability in crest size in
crested auklets was found to be greater in females than in
males (Jones et al. 2000). Feather Hg was also unrelated to
the degree of measurement asymmetry of auklets’ auricular
plumes, another possible indicator of individual quality.
One possible explanation is that the Hg concentrations we
observed were too low to cause any negative physiological
effects. Among piscivores, including many seabirds, Hg
concentrations of > 20 μg/g in feathers are the threshold at
which when negative effects are likely to manifest
(Ackerman et al. 2016b; Bond et al. 2015; Evers et al.
2014). Sublethal effects, however (such as ornament ex-
pression), are likely affected at lower concentrations,
though the effect threshold is undoubtedly species specific;
among birds, smaller species have lower Hg toxicity thresh-
olds compared to larger species (Fuchsman et al. 2016). The
maximum feather Hg concentration we measured was
1.69 μg/g; within individuals, Hg concentrations in feathers
is typically greater than concentrations in blood, and though
toxicity thresholds are highly variable (Ackerman et al.
2016b; Fuchsman et al. 2016), we conclude that crested
auklets are not likely experiencing deleterious effects of Hg.

Our results indicate low concentrations of Hg in the
feathers of a planktivorous seabird are unrelated to orna-
ment expression, likely owing to the low concentrations
we measured. Furthermore, we identified a significantly
greater mercury burden in females compared to males that
appears to be unrelated to expression of sexually selected
ornaments, and was contrary to expectations, suggesting
some unknown physiological or behaviour differences be-
tween sexes, which deserves further exploration.
Measurement of Hg burden in feathers is not difficult or
invasive and should be considered as an add-on for future
seabird tracking studies, as these birds are wide-ranging
top predators of the world’s oceans.
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