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Abstract
Mercury and selenium were assessed in Mustelus henlei, which is a carnivorous predatory shark that is important for the coastal
communities of the northernMexican Pacific (NMP). Sixty-two individualswere sampled;muscle and liverwere isolated and analyzed
by atomic absorption spectrophotometry. The mean Hg concentrations (wet weight) obtained for muscle (0.08 ± 0.10μg g−1) and liver
(0.09 ± 0.26 μg g−1) were below the allowed limits (< 1.0 μg g−1 Hg). The average Se concentration was 0.03 ± 0.01 μg g−1 in muscle
and 0.13 ± 0.05μg g−1 in liver. The Se/Hgmolar ratio of muscle was 1.83; however, the selenium health benefit value (HBVSe) was of
0.08.We calculated that an adult man (70 kg), an adult woman (60 kg), and a child (16 kg) could consume 1595, 838, and 223 g/week
ofM. henleimuscle, respectively, without risks to health. In conclusion, the concentrations and molar ratio of Hg and Se inM. henlei
muscle mean that consumption of this shark’s meat does not represent neither a benefit nor a public health risk.

Keywords Elasmobranchs . Chemical antagonism .Metal(oid)s . Spectrophotometry . Human health

Introduction

Mercury (Hg) occurs in organic and inorganic forms in the
marine environment. The transformation of Hg between these
two forms can have major effects on the bioaccessibility, mo-
bility, volatility, and solubility of this metal through biological
or chemical processes (Storelli et al. 2002). Briefly, Hg accu-
mulates rapidly and mainly in its methylated form (CH3Hg),
which passage across cell membranes; moreover, its high af-
finity for the sulfhydryl groups of protein and enzymes, its

half-life, and its tendency to bioaccumulate from one trophic
level to the next and increasing its concentration throughout
the trophic web makes it a hazardous substance to human
health and the environment (Gray 2002; Storelli et al. 2002).
Thus, to protect public health, a maximum permissible limit
has been established in marine products for human consump-
tion in Mexico. For fish, the level limit for total Hg (NOM-
027-SSA1-1993 1995) is 1.0 μg g−1 (wet weight) and for
methyl-Hg (CH3Hg), the value is 0.5 μg g−1 (NOM-242-
SSA1-2009 2011).
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On the other hand, selenium (Se) is a metalloid essential for
metabolism; however, in elevated concentrations, Se can be
harmful to human health (Plant et al. 2001). It is well known
that Se can counteract Hg toxicity. Selenium does not decrease
Hg concentrations, but it neutralizes the effects of Hg in the
body when both elements occur together. A Se:Hg molar ratio
above 1:1 is considered protective against adverse mercury
effects (Kaneko and Ralston 2007; Burger et al. 2012).
Selenium might contribute to the CH3Hg demethylation pro-
cess in organisms through selenocysteine; Hg might be trans-
formed to inorganic Hg that can be excreted in an easier and
simpler manner through the urinary and gastrointestinal tracts
(Mann and Truswell 2002; Havelková et al. 2008). There is no
regulation in Mexico stating allowable Se limits; however,
other countries have established limits of 6.5 μg g−1 dry
weight (USA) (Skorupa et al. 1996) and 1.0 μg g−1 dry weight
(Australia) (Nauen 1983) to guarantee public well-being.

The main pathway for exposure to essential and non-
essential elements is through food; therefore, products that
are frequently consumed by humans should be monitored.
Fish have been identified as a source of Hg and Se exposure
in humans (Squadrone et al. 2014), particularly fish at high
trophic levels such as elasmobranchs (sharks and rays).
Actually, Mexico is one of the most important countries in
terms of fisheries production and of elasmobranch catches
(Ramírez-Amaro et al. 2013). In addition to providing a food
resource in Mexico, the elasmobranch fishery creates numer-
ous jobs for the coastal communities of Mexico (Bizzarro et al.
2009). The Triakidae family includes the brown smooth-
hound sharkMustelus henlei, an abundant species in the north-
ern Mexican Pacific (NMP) which is distributed in temperate
and tropical waters at depths ranging from the shallow inter-
tidal to 200 m with a geographic range spanning Coos Bay,
Oregon (USA), to Peru and Ecuador including the Gulf of
California. However, this species is considered to occur pri-
marily in the northern Pacific (Chabot et al. 2015). M. henlei
constitutes a commercial resource in Mexico (Rodríguez-
Romero et al. 2013). This shark has been classified as K-type
strategists, because they display slow growth, long gestation
times, low fecundity, and late age at maturity (Holden 1974).
These biological characteristics make them susceptible to
overfishing and to exposure to toxic elements.

Due to its toxicity, persistence, and accumulation capacity, it
is important to investigate Hg and Se levels in marine ecosys-
tems and in commercially important species such as the brown
smooth-hound shark M. henlei. Moreover, Hg and Se levels
should be evaluated jointly to understand in an integrated man-
ner the antagonistic relationship between these elements, and
to verify the toxicity of Hg in products consumed by humans.
Hypothetically, sharks are considered long-lived top predators,
and we expected to find Hg values in M. henlei above the
permissible limits allowed by Official Mexican Standards (>
1.0 μg g−1), but with a molar ratio of Se:Hg ≥ 1. Actually, Hg

and Se levels inM. henlei are unknown, so the purposes of the
present study were to assess whether Hg and Se concentrations
found in M. henlei are within allowable limits set by Mexican
and international regulations, and to assess the Se (selenium
health benefit value (HBVSe)) benefit to public health from
consumption of this shark’s meat. In addition, Hg and Se con-
centrations in liver were also evaluated.

Materials and methods

Field sampling

Sixty-two specimens of brown smooth-hound sharkM. henlei
were collected from eight sites in the northernMexican Pacific
Ocean (NMP) (Fig. 1), during 2015 (June, July, August, and
October), 2016 (April, June, July, and August), and 2017 (July
and August). Sharks were captured using shrimp trawl nets
with 2¾-in. mesh size and bottom-set gillnets with 3.5- to 6-
in. mesh size placed at selected sites in the NMP. Total length
(TL) was measured before dissection, and sex and maturity
state (juvenile and adult) were recorded. Males of TL >
64 cm and females of TL > 68 were considered mature
(Silva-Santos 2012). Muscle (from dorsal section) and liver
samples (~ 5 g) were obtained from each specimen and stored
in polyethylene bags at − 20 °C until processing.

Chemical analysis

Muscle and liver samples were weighed and lyophilized at
− 35 °C and 100 × 10−3 mbar during 72 h; samples were
then ground and homogenized using an agate mortar and
pestle. Samples (~ 0.25 g) were pre-digested overnight
with 5 mL of nitric acid (HNO3) in a closed Teflon con-
tainer (Savillex). Digestion was performed using hot
plates (Barnstead) during 3 h at 120 °C. Digested samples
were then diluted to 25 mL with Milli-Q water. Hg con-
centration was measured using a cold vapor spectropho-
tometer (CV-AAS) with stannous chloride (SnCl2) as re-
ducing agent and a 253.5-nm cathode lamp, whereas Se
concentration was measured with a 196-nm cathode lamp
and hydride generation (Varian Model VGA-77), using
NaBH4 and an air-acetylene flame. Before Se analysis,
1 mL of nitric acid (trace metal grade) was added to
7 mL of digested sample and placed in a polyethylene
container in a water bath at 120 °C. Hg and Se concen-
trations are expressed as μg g−1 wet weight. Accuracy of
the analyses and results was validated by using blanks and
two certified reference materials (DORM-3 fish protein
and DOLT-4 dogfish liver). The average recovery for Hg
was 83.8% in the DORM-3 and 91.5% in the DOLT-4;
and for Se, was 83.0% in the DOLT-4.
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Statistical analysis

Data normality was analyzed statistically using Kolmogorov-
Smirnov and Levene’s tests (Zar 1999). Hg concentrations did
not display a normal distribution (muscle: K-S, d =
0.3076, p < 0.01, n = 62; liver: K-S, d = 0.22691,
p < 0.01, n = 62), whereas Se concentrations showed nor-
mality (muscle: K-S, d = 0.13425, p > 0.20, n = 62; liver:
K-S, d = 0.09402, p > 0.20, n = 62). Mann-Whitney’s U
test and Spearman’s correlations were applied to Hg
data, whereas Student’s t test and Pearson’s correlation
were applied to Se data. Statistical analysis was per-
formed with STATISTICAL software.

Se/Hg molar ratio

The Se/Hg molar ratio, mean, and standard deviation were
calculated for each shark. The concentrations, measured as
μg g−1, were converted to μmol kg−1 and the Se/Hg molar
ratio calculated from molar mass of Hg (200.59 g mol−1) and
Se (78.96 g mol−1).

Health benefits

The HBVSe was calculated as follows (Ralston et al. 2016):

HBVSe ¼ Se−Hgð Þ
Se

� �
� Seþ Hgð Þ

This equation includes Hg and Se molar concentrations. A
positive HBVSe indicates a health benefit, but a negative result
of HBVSe indicates that the health risk occurs.

Health risk assessment

The maximum consumption of fish per week (MCFW) of Hg
was calculated using the following formula:

MCFW ¼ PTIW
Hg½ � j

where PTIW is the provisional tolerable intake per week
(4.0 μg kg−1 body weight week−1 for men; 2.45 μg−1 kg−1

bodyweight week−1 for pregnant women, lactating women, or
children; JECFA 2010) and [Hg]j is theM. henlei Hg concen-
tration (μg g−1). MCFW is expressed in g of fish intake
week−1 per capita (kg). Average weights of 70 kg (adult
men), 60 kg (adult women), and 16 kg (children) were includ-
ed in the analysis.

Considering that the contribution of methylmercury to total
mercury is commonly 80–100% in fish, a conversion of mer-
cury to methylmercury was realized applying the 90% (EFSA
2012). Likewise, the MCFW was established with the PTWI
for methylmercury (1.6 μg kg−1 wet weight) (EFSA 2012).
For women and children, a proportional PTWI (2.45 to
0.98 μg−1 kg−1 body weight week−1) was applied according
to the JECFA (2010).

Fig. 1 Location of sites (black
circle) where Mustelus henlei
specimens were obtained in the
northern Mexican Pacific. BC
Baja California, BCS Baja
California Sur, SIN Sinaloa, SON
Sonora
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Results

Tissue samples (muscle and liver) from 62 sharks were ob-
tained (12 males, 41 females, 9 uncategorized), comprising 31
juveniles, 22 adults, and 9 uncategorized. The sharks ranged
in length from 43.5 to 102.7 cm (mean = 67.8 ± 14.4 cm).
Males and females reach sexual maturity at 64 cm and
68 cm, respectively (Silva-Santos 2012). Unfortunately, some
individuals were considered as uncategorized due to sex and
size were not recorded. These individuals were not included in
the specific analysis by male/female and juveniles/adults, but
these data were included in the general average of Hg and Se.

Mercury and selenium in muscle and liver, influence
of sex and size

The mean Hg concentration (μg g−1) forM. henleiwas 0.08 ±
0.11 in muscle (0.01–0.68, n = 62) and 0.09 ± 0.26 in liver
(0.01–2.02, n = 62). Se concentrations were obtained in mus-
cle (0.03 ± 0.02; 0.01–0.06, n = 62) and liver (0.13 ± 0.05;
0.02–0.26, n = 62).

There were no statistically significant differences in Hg
concentration between males (muscle = 0.11 ± 0.19; liver =
0.06 ± 0.06) and females (muscle = 0.07 ± 0.06; liver = 0.05
± 0.04) for muscle (U = 193, p > 0.05) or liver (U = 189,
p > 0.05) (Table 1). Similarly, Se values of females (muscle =
0.03 ± 0.02; liver = 0.07 ± 0.06) and males (muscle = 0.03 ±
0.01; liver = 0.14 ± 0.07) were not significantly different
(muscle: t = 1.13, p > 0.05; liver: t = 1.74, p > 0.05) (Table 1).

Mean Hg concentrations of adults (0.12 ± 0.15) and juve-
niles (0.05 ± 0.04) were significantly different for muscle
(p < 0.05) but not for liver (juveniles 0.05 ± 0.04; adults
0.07 ± 0.06; U = 224, p > 0.05). Se concentrations were not
significantly different between adults and juveniles for muscle

(adults 0.02 ± 0.01, juveniles 0.03 ± 0.02) or liver (adults 0.02
± 0.01; juveniles 0.03 ± 0.02) (Table 1).

Correlations between size (TL) and Hg concentrations were
significantly positive for muscle (rs = 0.35, p < 0.05) and liver
(rs = 0.27, p < 0.05) (Fig. 2a). Se was not significantly
(p > 0.05) associated with TL (muscle r2 = 0.01; liver r2 =
0.12) (Fig. 2b).

Toxicological and health benefit assessment

The calculated amount of shark filet that a man (70 kg) could
consume safely per week was 3590 g; however, a consump-
tion of 412 g is recommended because an individual shark
presented Hg concentrations above 1.0 μg g−1. Restrictions
are more rigorous for women and children, especially with the
estimation of CH3Hg (Table 2).

The molar ratio of liver (Se/Hg(liver) = 7.78) was higher
than that of muscle (Se/Hg(muscle) = 1.83); however, consider-
ing the HBVSe value obtained for muscle tissue, there was not
a high Se benefit (Table 3), whereas hepatic tissue showed a
more positive HBVSe value.

Discussion

Mercury and selenium: tissue distribution
and influence of sex and size

This is the first study on the Se/Hg relationship inM. henlei in
the northern Mexican Pacific. Hg concentrations found in this
species were below the maximum Hg limit established by
Mexican norms (NOM ≥ 1.0 μg g−1 on wet weight basis).
These results are consistent with the general pattern reported
for congeneric species (e.g., M. griseus, M. schimitti,

Table 1 Hg and Se concentrations (μg g−1 ww) in muscle and liver of males, females, juveniles, and adults of M. henlei

Tissue Sex/maturity state n* Hg Se

Min-Max x ± SD Min-Max x ± SD

Muscle Male 12 0.01–0.68 0.11 ± 0.19 0.02–0.05 0.03 ± 0.01

Female 41 0.01–0.32 0.07 ± 0.06 0.01–0.06 0.03 ± 0.02

Liver Male 12 0.01–0.23 0.06 ± 0.06 0.04–0.26 0.14 ± 0.07

Female 41 0.01–0.22 0.05 ± 0.04 0.02–0.21 0.07 ± 0.06

Muscle Adult 22 0.01–0.68 0.12 ± 0.15 0.01–0.04 0.02 ± 0.01

Juvenile 31 0.01–0.24 0.05 ± 0.04 0.02–0.06 0.03 ± 0.02

Liver Adult 22 0.01–0.23 0.07 ± 0.06 0.02–0.04 0.02 ± 0.01

Juvenile 31 0.01–0.14 0.06 ± 0.03 0.02–0.26 0.03 ± 0.02

Min minimum, Max maximum, x mean, SD standard deviation

*Nine uncategorized individuals were not included

n Sample size
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M. norrisi) in different regions, including the western coast of
Baja California Sur, Mexico (Espinoza-García 2016)
(Table 4). This has been mainly attributed to feeding and life
habits and other factors such as metabolic and growth rates of
the species (Andersen and Depledge 1997). Piscivore species
occupying high trophic levels show significantly higher Hg
concentrations than consumers of crustaceans or cephalopods
(Storelli and Marcotrigiano 2000; Escobar-Sánchez et al.
2016). Espinoza et al. (2015) found that the diets of immature
individuals of M. henlei in the Pacific coast of Costa Rica
consisted of larger proportions of invertebrates (e.g., shrimp,
stomatopods, and polychaetes), while teleosts were more im-
portant (in terms of biomass, frequency, and abundance) for
adults. Conversely, Amariles et al. (2017) in the coast of the
Colombian Pacific found that this species fed almost exclu-
sively on teleosts. However, the diet of M. henlei in Mexican
waters includes crustaceans, mainly (index of relative impor-
tance, 81.4%) the pelagic red crab Pleuroncodes planipes
(Rodríguez-Romero et al. 2013). Therefore, predation upon
low trophic level preys such as crustaceans could lead to lower
Hg levels in M. henlei that in top predators.

In some locations (e.g., Japan or South Africa), high Hg
levels (≥ 1.0 μg g−1) have been observed in Mustelus species
such as M. mustelus and M. manazo (Table 4); these high
values were attributed to differences in size and biological
differences between sexes (habits, size, etc.) (Pethybridge
et al. 2010). Some authors have reported that intraspecific

differences in Hg concentrations between males and females
could be caused by factors such as energetic requirements,
maturity conditions, Hg deposition, and Hg transfer from fe-
males to embryos (Lyle 1986; Frías-Espericueta et al. 2015). It
has even been considered that in some species such as
M. mustelus, the growth rate of males is slower than that of
females, and this could imply that the muscle tissue of males
has greater Hg concentrations than that of females (Bosch
et al. 2013). However, in our study, no statistical differences
were found in the Hg concentrations of the two sexes, which
indicate a lack of sexual segregation; both sexes could share
the same biological and ecological characteristics as habitat
and sources of elements, migratory routes, feeding
types, growth rates, etc. (Núñez-Nogueira et al. 1998).
No differences have been found between M. henlei
males and females in feeding habits or behavior in the
NMP (Rodríguez-Romero et al. 2013), which could ex-
plain the similar Hg concentrations found in this study
for both sexes and tissue types.

Intraspecific variations have also been associated with
length, weight, age, and sexual maturity (Wheeler 1996). In
this study, a significantly positive correlation was found be-
tween TL and Hg concentrations in muscle and liver, which
indicates that the concentration level could increase with size,
as has been reported for other sharks, such as Galeocerdo
cuvier, Carcharhinus albimarginatus, C. plumbeus, and
C. leucas (Endo et al. 2008). However, more adult specimens

Table 2 Amount ofM. henlei meat (g) that could be ingested per week. [Hg] and [CH3Hg] are given as average

Shark category [Hg] Meat ingestion (g) per week [MeHg] Meat ingestion (g) per week

Man (70 kg) Woman (60 kg) Child (16 kg) Man (70 kg) Woman (60 kg) Child (16 kg)

Overall 0.08 3590 1885 503 0.07 1595 838 223

Males 0.11 2545 1336 356 0.11 1018 535 143

Females 0.07 4000 2100 560 0.07 1600 840 224

Juveniles 0.05 5600 2940 784 0.05 2240 1176 314

Adults 0.12 2333 1225 327 0.12 933 490 131

Maximum value 0.68* 412 216 58 0.61 183 838 223

*Maximum value

Fig. 2 Correlation between total length (TL) and mercury (a) and selenium (b) concentrations in M. henlei (muscle and liver)
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should be studied to explain this trend, as it has been reported
that adults tend to have a slowmetabolism and, therefore, they
would need more time to metabolize Hg, which decreases
excretion rate and results in greater Hg accumulation in tis-
sues. Larger animals feed on larger preys, which would also
lead to a greater quantity of Hg in consumers (de Pinho et al.
2002; Gutiérrez-Mejía et al. 2009).

Selenium concentrations found in M. henlei muscle and
liver were under the allowable limits established for human

Table 4 Hg and Se concentrations in muscle and liver of sharks from the genusMustelus at different geographic locations. Values are expressed as μg
g−1 (wet weight). ♂ = males, ♀ = females

Shark species Country [Hg] muscle [Hg] liver [Se] muscle [Se] liver Author

M. antarcticus Australia 0.75 ± 0.27 – – – Ratkowsky et al. (1975)

M. canis France 0.53 – – – Cumont et al. (1975)

M. antarcticus Australia 0.07 ± 3.00 – – – Walker (1976)

M. antarcticus Australia 0.5 – – – Bloom and Ayling (1977)

M. antarcticus Australia 1.18 ± 0.45 – 0.35 ± 0.19 – Glover (1979)

M. griseus Japan 0.03 – 0.31 – Ueda and Takeda (1983)

M. manazo Japan 0.3 – 0.29 – Ueda and Takeda (1983)

M. schmitti Argentina 0.46 ± 0.17 – – – Perez et al. (1985)

M. schmitti Argentina 0.85 ± 0.42 – – – Marcovecchio et al. (1986)

M. schmitti Argentina 0.03 ± 3.26 0.00 ± 2.31 – – Marcovecchio et al. (1991)

M. schmitti Argentina 0.45 ± 0.30 – – – Scapini et al. (1993)

M. higmani Brazil 0.05 – – – Lacerda et al. (2000)

M. higmani South America 0.71 ± 0.41 – – – Mol et al. (2001)

M. canis South America 0.09 – – – Mol et al. (2001)

M. norrisi Brazil 0.36 ± 0.28 – – – de Pinho et al. (2002)

M. canis Brazil 0.41 ± 0.35 – – – de Pinho et al. (2002)

M. norrisi USA 1.20 ± 1.20 – – – Adams et al. (2003)

M. asterias Brazil 1.7 ± 3.1 – – – Domi et al. (2005)

M. schmitti Argentina 0.33 ± 0.20 – – – De Marco et al. (2006)

M. mustelus Mediterranean Sea 0.39 ± 0.37 – – – Kousteni et al. (2006)

M. henlei Mexico 0.18 ± 0.1 – – – García-Hernández et al. (2007)

M. mustelus Italy 0.16 Storelli et al. (2011)

M. mustelus South Africa 0.03 – 0.95 – Zaera and Johnsen (2011)

M. albipinnis Mexico 0.19 ± 0.69 0.05 ± 0.28 – – Hurtado-Banda et al. (2012)

M. mustelus South Africa 0.74 ± 0.20 (♀) – – – Bosch et al. (2013)

M. mustelus South Africa 1.37 ± 0.05 (♂) – Bosch et al. (2013)

M. manazo Japan 0.78 ± 0.46 (♀) 0.61 ± 0.75 (♀) – – Endo et al. (2013)

M. manazo Japan 1.15 ± 0.57 (♂) 1.17 ± 1.73 (♂) – Endo et al. (2013)

M. canis England 3.3 ± 2.1 – – – Taylor et al. (2014)

M. mustelus South Africa 0.96 ± 0.69 – 0.70 ± 0.44 – Bosch et al. (2016)

M. henlei Mexico 0.34 ± 0.11 0.11 ± 0.09 – – Espinoza-García (2016)

M. manazo Japan 1.18 ± 0.61 (♀) 2.08 ± 2.10 – – Endo et al. (2017)

M. manazo Japan 0.81 ± 0.51 (♂) 0.91 ± 1.09 – Endo et al. (2017)

M. henlei Costa Rica 0.16 ± 0.9 – – – Sandoval-Herrera et al. (2016)

M. henlei Mexico 0.08 ± 0.11 0.09 ± 0.26 0.03 ± 0.01 0.13 ± 0.05 This study

Table 3 Molar ratio of Se and Hg in selected tissues of M. henlei,
including the health benefit value of selenium (HBVSe)

Tissue [Hg] [Se] μmol Hg μmol Se Se/
Hg

HBVSe

Muscle 0.08 ± 0.11 0.03 0.34 ± 0.32 0.38 ± 0.17 1.83 0.08

Liver 0.09 ± 0.26 0.13 0.27 ± 0.22 0.34 ± 0.67 7.78 1.60
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consumption by the Health Department of Australia
(1.0 μg g−1 ww) (Nauen 1983) and of the USA (6.5 μg g−1

dry weight) (Skorupa et al. 1996). Based on this, values ob-
tained for M. henlei muscle and liver in the NMP do not
represent a risk of intoxication from Se.

Studies on Se presence in sharks are scarce in Mexico.
However, in other regions, Se concentrations have been
assessed in Mustelus species, such as M. griseus (Japan) and
M. mustelus (South Africa), where it was found that Se values
were higher thanHg values inmuscle tissue (Ueda and Takeda
1983; Zaera and Johnsen 2011). It should be mentioned that
this is not a general pattern for the Mustelus genus, as it was
reported that Se values were lower than Hg concentrations in
M. manazo and M. mustelus (Ueda and Takeda 1983; Bosch
et al. 2016); this could be due to factors such as element
bioavailability in ecosystems and stage of organisms. It has
been reported that there are greater quantities of Se in the liver
because that is where Hg detoxification occurs (Branco et al.
2007), which would explain that in M. henlei, the greatest Se
concentrations were found in liver tissue. Moreover, demeth-
ylation and Hg accumulation occur in the liver through the
effect of the selenoproteins of glutathione (GSH), that contrib-
ute to eliminate Hg by excreting it in the bile as cysteine-
mercury (Patrick 2002; Branco et al. 2007). That is, Se tends
to be found in greater concentrations in the liver because it
dominates in the competition for space in the liver; the oppo-
site occurs in muscle, where Hg is more dominant due to its
affinity with muscular tissue and with the thiol groups of pro-
teins (Lacerda et al. 2000; Raymond and Ralston 2004).
Despite the possibility of this affinity and even though Se
concentrations in muscle are lower than those of liver, in this
study, there were no significant differences of Se concentra-
tions between the two tissues. There were no significant dif-
ferences in Se values between males and females, or between
juveniles and adults for the two analyzed tissues, which could
be due to the same intraspecific factors that influenced Hg
concentrations, such as similar type of food, habitat, and prob-
ably the same availability of both elements.

Toxicological and health benefit assessment—Se:Hg
molar ratio

According the concentrations found here of Hg in M. henlei,
such Hg values should not represent a risk to human health
(NOM-031-SSA1-1993; NOM-0242-SSA1-2009). However,
as a precautionary measure, we recommend that an adult man
(70 kg) should consume only up to 183 g per week of
M. henlei meat to reduce possible risks; a specimen with Hg
concentration below 1.0 μg g−1 was found in this study.
Women (60 kg) can consume up to 96 g of M. henlei meat,
and children (16 kg) can consume up to 26 g per week.
Although these recommendations can appear strict, the US-
EPA (United States Environmental Protection Agency) has

stated that rigorous restrictions are meant to protect human
health. However, concentrations as well as the time of expo-
sure should be taken into account, to establish whether expo-
sure was acute or chronic.

The Se benefit value measured through the HBVSe index
was very low in muscle compare with other predators as the
silky shark Carcharhinus falciformis (HBVSe = 52.3; Bodin
et al. 2017) or dolphinfish Coryphaena hippurus (HBVSe =
1.77; Vega-Sánchez et al. 2019) because Hg concentrations
were higher than Se concentrations. The opposite (Se > Hg)
was found in M. henlei liver tissue, indicating a benefit pro-
vided by a greater quantity of Se compared with Hg in the
liver tissue. This was also previously reported for the shark
Prionace glauca, based on the Se/Hg molar ratio (Escobar-
Sánchez et al. 2011). Some shark species such as Sphyrna
zygaena have been reported to display a greater Se molar
proportion compared with Hg (Escobar-Sánchez et al. 2010),
which in addition to neutralizing the effects of Hg could allow
the animal to have enough Se for physiological processes.
Considering the Hg and Se values obtained in the present
study, which are below established regulations, there is no risk
of intoxication caused by these elements from the consump-
tion of M. henlei muscle, but given the low Se values found,
there is no benefit to health from the consumption of this
marine product.

Conclusions

This is the first study on the relationship between Hg and Se in
M. henlei in the world. Low Hg concentrations in M. henlei
could be attributed to feeding habits and own specific param-
eters of the species such as a relatively low metabolic and
growth rates or life habits (e.g., reproductive mode, habitats).
A positive and significant (p < 0.05) correlation was observed
between Hg in muscle and total length, with Hg concentration
increasing with size. There were no significant differences for
the Hg and Se concentrations between males and females, so
the two sexes could be sharing the same habitat, feeding on the
same resources, using the same migratory routes, with no
relevant differences influenced by the dissimilarities in the
growth rate, metabolism, or reproduction between sexes.
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