
RESEARCH ARTICLE

Application of hybrid ANN-whale optimization model in evaluation
of the field capacity and the permanent wilting point of the soils

Babak Vaheddoost1 & Yiqing Guan2
& Babak Mohammadi2

Received: 8 August 2019 /Accepted: 24 January 2020
# Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Field capacity (FC) and permanent wilting point (PWP) are two important properties of the soil when the soil moisture is
concerned. Since the determination of these parameters is expensive and time-consuming, this study aims to develop and evaluate
a new hybrid of artificial neural network model coupled with a whale optimization algorithm (ANN-WOA) as a meta-heuristic
optimization tool in defining the FC and the PWP at the basin scale. The simulated results were also compared with other core
optimization models of ANN and multilinear regression (MLR). For this aim, a set of 217 soil samples were taken from different
regions located across the West and East Azerbaijan provinces in Iran, partially covering four important basins of Lake Urmia,
Caspian Sea, Persian Gulf-Oman Sea, and Central-Basin of Iran. Taken samples included portion of clay, sand, and silt together
with organic matter, which were used as independent variables to define the FC and the PWP. A 80–20 portion of the randomly
selected independent and dependent variable sets were used in calibration and validation of the predefined models. The most
accurate predictions for the FC and PWP at the selected stations were obtained by the hybrid ANN-WOAmodels, and evaluation
criteria at the validation phases were obtained as 2.87%, 0.92, and 2.11% respectively for RMSE, R2, and RRMSE for the FC, and
1.78%, 0.92, and 10.02% respectively for RMSE, R2, and RRMSE for the PWP. It is concluded that the organic matter is the most
important variable in prediction of FC and PWP, while the proposed ANN-WOA model is an efficient approach in defining the
FC and the PWP at the basin scale.
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Introduction

Field capacity (FC) and permanent wilting point (PWP) are
usually evaluated as two vital parameters in irrigation, agri-
culture, and study of the water and the minerals within the soil
(Rab et al. 2011). The definition of the FC is slightly modified
in the glossary of the soil science (SSSA 1984) as the amount
of moisture or the remained water in the soil sample after
which 2–3 days of excessive water is drained from the soil
or as the water content when the soil suction is − 33 kPa. This
can usually be reached when several days from the

precipitation or irrigation within a uniformly structured soil
are passed. On the other hand, PWP is defined as the water
content in the soil which plants cannot extract from the soil
profile. It represents a lower limit of water available for the
plant which is retained by the soil particles under a tension of
1500 kPa (Slatyer 1967). Thereby, the FC and the PWP are
two parameters in evaluation of the moisture in calculation of
the available water for irrigation.

Hence, for a relatively small area with an acceptable
homogeneity, in terms of soil physicochemical properties,
it would be possible to gain a good approximation of the
moisture by performing an adequate number of costly and
time-consuming field and lab experiments (Veihmeyer
and Hendrickson 1949; Keshavarzi et al. 2012). On the
other hand, other properties related to textural character-
istics of the soil are valuable in defining hydraulic prop-
erties, and simulation of the deep and subsurface flow in
modeling the movement of the water in the soil.

In this respect, characteristics like the amount of water in
the soil sample, as the difference between FC and PWP, can be
evaluated to describe the ability of water retention which is an
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essential information in irrigation management, modeling the
movement of water in the soil, rainfall-runoff simulation, and
environmental management (Pachepsky and Rawls 2003;
Wosten et al. 2001). In practice, the amount of FC and PWP
are physically assessed and evaluated together with other
properties of soil such as dry bulk density, amount of sand,
silt, clay, and organic matter. However, the measuring of the
FC, PWP, and several properties of soils such as dry bulk
density in large scale is very costly (Mohanty et al. 2015)
and time-consuming, while many researchers believe that they
are vital in evaluation of the soil properties. Thereby, re-
searchers usually prefer to define the FC and the PWP using
simple techniques, e.g., pedotransfer functions with accurate
methods to detour the need for costly information.

For instance, since the measurement of the silt, sand, clay,
and OM is less costly and convenient, Ghorbani et al. (2017)
suggested to use artificial intelligence methods considering
silt, sand, clay, and OM data in order to define the FC and
PWP in the soils. Likewise, scientists are trying to provide
alternative ways to evaluate FC and PWP using other optimi-
zation or machine learning techniques. Notably, some studies
reported that clay, sand, and silt content together with OM is
effective in predicting FC and PWP either by using parametric
or nonparametric modeling techniques (e.g., Bishop and
McBratney 2001; Khosla et al. 2002; Mzuku et al. 2005; Liu
et al. 2006; Merdun et al. 2006).

The nonparametric nature of artificial intelligence tech-
niques in this respect represents significant advantages since
they do not require a conceptual approach (Moazenzadeh et al.
2018; Moazenzadeh and Mohammadi 2019; Mohammadi
2019a, b; Aghelpour et al. 2019). Similarly, such develop-
ments found to be successful according to Minasny and
McBratney (2002), Sarmadian et al. (2009), Keshavarzi
et al. (2010), Rab et al. (2011), Jafarnejadi et al. (2012), and
Mohanty et al. (2015), while Sarmadian and Taghizadeh
(2008), Moazenzadeh et al. (2019), Jahani and Mohammadi
(2018), andMoazenzadeh andMohammadi (2019) used these
techniques in studying FC and the PWP.

Despite the widespread application of these methods, there
are also significant drawbacks to the application of these
models. The primary disadvantage of such models is their
dependence on the tuning parameters of the optimal learning
process, while the main concern is the predictability and per-
formance of these models in action (Chen et al. 2017). In this
respect, trial and error is usually used in parameter estimation
while it can be time-consuming and sometimes gives unreal-
istic estimations (Ghorbani et al. 2017). Most recently, the
practice of meta-heuristic optimization algorithms demon-
strated a considerable solution to alleviate the difficulties in
parameterization of these models (Kisi et al. 2015). These
algorithms also enable the parameter estimation automatically
and improves the model performance. Hence, various biolog-
ically inspired meta-heuristic algorithms have been invented

to cope with optimization issue, using imitation of the biolog-
ical phenomena (Mirjalili and Lewis 2016).

Along with the development of soil moisture models, in-
vention and widespread of more efficient computers and ma-
chine learning techniques accelerated the application of these
approaches, while there were also drawbacks in practice. For
instance, while linear models had to face nonlinearity, dynam-
ical approaches deal with the curse of dimensionality and
state-space discretization. On the other hand, nonlinear solu-
tions had problems in trapping into local extremes while the
stochastic methods have to do with large-scale changes and
randomness. Thereby, real-world issues such as defining FC
and PWP started to benefit from some nonparametric and
ranked based approaches (Ghorbani et al. 2017).

Herein, the whale optimization algorithm (WOA) is pro-
posed as an optimizing method at the core of an ANN model.
The aim of this study is to develop a hybrid model for coupling
the whale optimization algorithmwith ANN (ANN-WOA). The
portion of clay, silt, and sand together with measured OM of the
soil samples was used in prediction of FC and PWP. Besides, the
performance of the suggestedmodel was evaluated against basic
artificial neural network (ANN) and multilinear regression
(MLR) in prediction of the FC and PWP, to validate the appli-
cability of the ANN-WOA in practice.

Materials and methods

Study area

The performance of the models was tested in a real-life case
including samples taken from soil profiles across the East and
West Azerbaijan provinces located in north of Iran, covering
more than 50,000 km2 (East Azerbaijan province being
45,650 km2 and West Azerbaijan province being
34,437 km2). The study area partially covers four important
water basins in Iran including Lake Urmia, Caspian Sea,
Persian Gulf-Oman Sea, and Central Iran basins. The study
area has a semi-arid and cold climate while the average annual
precipitation particularly around Lake Urmia is about
300 mm/year (Vaheddoost and Aksoy 2017). The climate of
this area is largely under influence of air fronts coming from
the Atlantic Ocean and Mediterranean, while the highest and
the lowest temperatures are about 35 °C (July) and − 17 °C
(January) respectively.

Figure 1 depicts the study area as well as the location
of the taken samples from the basins, and sub basins of
the study area.

Data used

Data used in this study are obtained between October and
November 2016, from 217 soil samples considering
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nonirrigated lands scattered across the East Azerbaijan
and the West Azerbaijan provinces in northwest of
Iran (Fig. 1). Afterward, the portion of the clay (<
0.002 mm), silt (0.002–0.05 mm), and sand (0.05–
2 mm) in the samples was acquired using the hydrom-
eter method. Also, the organic matter (OM) of the soil
samples was measured by the Walkley–Black method
(Nelson and Sommers 1982), while the soil moisture
was determined at − 10 kPa (FC) for undisturbed sam-
ples, and − 1500 kPa (PWP) for disturbed samples
using ceramic plate bubble-tower suction tables. Soil
samples were taken from the depths of the soil used
for agriculture (depths of 10–30 cm). The interested
reader may refer to Romano et al. (2002) for more
details.

In this respect, the statistical characteristics of these
samples are given in Table 1.

For a better overview over the nature of the relation-
ship between clay (< 0.002 mm), silt (0.002–0.05 mm),
sand (0.05–2 mm), and OM as independent variables
with FC and PWP, a scatter plot (Figs. 2 and 3) together
with the correlation matrix of the pair observations is
used (Table 2). Although the correlation matrix of the
variables could be used in selecting the best and the
most reliable variable in depicting the linear relation-
ships, the possible nonlinear or dynamic nature of the
relations was taken into account by considering curve
fitting. In this respect, analysis given in Figs. 2 and 3
shows that although sand, silt, and clay have poor linear
relationship with FC and PWP (Table 2), there is still a
great possibility of nonlinear relationship between those
allocated variables. This relationship particularly be-
tween sand and FC or PWP shows a convergence once
the amount of clay increases. The other illustrations at
Figs. 2 and 3 also show that there are deviations from

the mean in all samples which indicates to a large va-
rieties in the soil profiles.

Based on Table 2, the most correlated independent param-
eter with FC and PWP is OM. The same results are confirmed
by Figs. 2 and 3 while second-degree curve fittings are used to
evaluate the relationship between OM versus FC and PWP,
with R2 of 0.47 and 0.57 respectively. Other parameters, i.e.,
clay, sand, and silt, showed more random relationship while
neither a linear (Table 2) nor a 2nd degree nonlinear (Figs. 2
and 3) relation could explain the core relationship between the
dependent and independent variables perfectly. This

Table 1 Statistical characteristics of variables

Variable Mean SD σ2 Max. Min.

All data Clay (%) 14.45 13.55 0.93 65.60 1.09

Sand (%) 45.53 18.03 0.39 90.00 5.90

Silt (%) 40.04 13.12 0.32 79.50 2.50

OM (%) 4.27 2.89 0.67 13.07 0.17

FC 31.52 10.83 0.34 57.78 6.83

PWP 17.74 6.69 0.37 34.72 1.91

Training data Clay (%) 13.94 13.55 0.97 65.60 1.09

Sand (%) 46.87 17.34 0.36 85.01 5.90

Silt (%) 39.23 12.27 0.31 79.50 8.85

OM (%) 4.37 2.90 0.66 13.07 0.17

FC 31.53 10.98 0.34 57.78 10.87

PWP 17.73 6.77 0.38 34.72 4.08

Validation data Clay (%) 16.54 13.50 0.81 50.30 2.06

Sand (%) 40.13 19.91 0.49 90.00 8.45

Silt (%) 43.31 15.84 0.36 69.05 2.50

OM (%) 3.85 2.85 0.74 11.45 0.20

FC 31.50 10.31 0.32 57.06 6.83

PWP 17.75 6.43 0.36 30.60 1.91

SD standard deviation, σ2 coefficient of variation

Fig. 1 Study area including the East and West Azerbaijan provinces in northwest of Iran
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shortcoming expected to be addressed by the ANN-WOA
which is the main motivation for the present study.

Since the OM is the footprint of living organisms, it is
expected to be found within the soil structure of the study
area, which are wetland and an agricultural zone. The OM

together with micro-organisms participates in binding soil
particles, resulting in a more aggregative soil structure,
that means a well-structured soil which performs better
in aeration, water infiltration, and resistant to erosion.
Hence, OM with the highest linear and nonlinear bound

Fig. 2 Relationship between FC
with clay, silt, sand, and OM

Fig. 3 Relationship between
PWPwith clay, silt, sand, andOM
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can be recognized for its availability and importance in
the study and prediction of FC and PWP.

Since the data analysis indicated to a potential lack of fit in
parameter estimation (i.e., low R2 exposed at Figs. 2 and 3),
nonparametric methods were also used in this study to deal
with the rank and the presence of outliers in the sample data.
Thereby, all of the 217 sample sets were divided into two
randomly selected halves, the training and the validation.
Thus, 174 observation sets out of 217 observations (80%)
were randomly selected and used as the training samples,
while a set of 43 observations (20%) were used in validation
of the models. To avoid over fitting and undefined conditions,
data separation at the previous step (i.e., the definition of
training and validation data sets) was performed randomly.
Then, all of the observation data sets were normalized using

X n ¼ X i−Xmin

Xmax−Xmin
ð1Þ

while normalized values, Xn, are calculated using observation
values Xi, together with the maximum (Xmax), and the mini-
mum (Xmin) observed data of each sample sets to reduce the
effect of dimensionality and outliers.

Several nonparametric models are used, while the clay,
sand, silt, and OM data were selected as independent var-
iables (i.e., inputs of the model) in estimation of FC and
PWP separately (i.e., outputs). For this aim, Matlab codes
were developed and the ANN, ANN-WOA, and MLR
models were obtained.

Multi linear regression

Linear regression as a parametric approach found to be handy
in previous studies. In this method, the goal is to determine
coefficients αi, and an intercept, c to define the relationship
between the dependent and independent variables as

y ¼ ∑
n

i¼1
αixi þ c ð2Þ

where n is the number of independent variables. Coefficients
of the MLR are obtained by minimizing the difference

between the observed values and model outputs using ordi-
nary least square approach.

Artificial neural networks

ANN models are robust nonlinear modeling techniques,
which can facilitate the establishment of links between input
and output variables via allocated weights and activation func-
tions (Mohammadi, 2020) In this study, theMatlab software is
used to implement and train a feed-forward back-propagation
neural network with a variety of activation functions, different
number of neurons, and hidden layers. Also, a multi-layered
feed-forward perceptron (MLP) approach is used in parameter
optimization of the models. Hence, a three-layered MLP and
Levenberg–Marquardt back-propagation algorithm was used
in training stage together with a tangent and a linear transfer
functions in hidden and output layers, respectively. The
interested reader may also refer to the recent studies of
Jahani and Mohammadi (2018) and Moazenzadeh and
Mohammadi (2019) for more information about the applica-
tion of ANN models.

Whale optimization algorithm

Whale optimization algorithm was introduced byMirjalili and
Lewis (2016) to solve the optimization problems using an
evolutionary method. The theory of WOA algorithm inspired
from the bubble-net feeding behavior of the humpback
whales. The Humpback Whales hunt the small fishes and
other marine creatures by creating the bubbles along the cir-
cles. In WOA algorithm, the target prey is considered the best
solution and the possible situation of the Humpback Whales
around the prey is formulated as (Mirjalili and Lewis 2016):

X
!

t þ 1ð Þ ¼ X
!*

tð Þ−A!: C
!
:X
!*

tð Þ−X! tð Þ
����

���� ð3Þ

where t is the running iteration, X
!

is the location vector of the
whale, and X* is the location vector of the best solution and

updated if there is a better solution, while the A
!¼ 2 a!: r!− a!

and C
!¼ 2: r! are coefficient vectors to be estimated. In this

respect, a! is linearly reduced from 2 to 0 as iteration pro-
ceeds, while r! is a randomly selected vector ∈ [0,1].

Bubble-net attacking approach includes (i) a shrinking

encircling which is represented by reduction in a! and A
!
,

together with (ii) the spiral updating position that is employed
to imitate the spiral motion of the whales in periphery of the
hunt by calculating the space between the hunt (X*, Y*) and
hunter (X, Y):

X
!

t þ 1ð Þ ¼ D
0!
:ebl:cos 2πlð Þ þ X

!*
tð Þ ð4Þ

Table 2 Correlation matrix of variables

Clay Silt Sand OM FC PWP

Clay 1.00 − 0.09 − 0.69 − 0.33 − 0.11 − 0.19
Silt 1.00 − 0.66 − 0.14 0.03 − 0.14
Sand 1.00 0.35 0.07 0.25

OM 1.00 0.77 0.75

FC 1.00 0.81

PWP 1.00
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In this respect, D
!0

¼ X
!*

tð Þ−X! tð Þ
��� ��� defines the space

between the hunt and ith whale, b is a constant in deter-
mination of the logarithmic helix-shaped motion, and l is
a random number ∈ [− 1,1]. Thereby, the motion of the
whales around the hunt is conceptualized along a spiral-
shaped paths by shrinking the circles towards the pray
(i.e., goal). The following mathematical model is used to
conceptualize the whale behavior,

X
!

t þ 1ð Þ ¼ X
!*

tð Þ−A!:D
!

if p < 0:5

D
!0

:ebl:cos 2πlð Þ þ X
!*

tð Þ if p≥0:5

8<
: ð5Þ

where p∈ [0,1] and determines the probability of main-
taining the rotation mode or taking a shrinking
encircling to update their location. In searching phase
(exploration), the Humpback Whales search for a hunt
randomly compared to the location of the other whales
(Kaveh and Ghazaan 2017). Hence, the whales update
their location in accordance with randomly selected
searching factor, instead of the best searching factor as

D
!¼ C

!
:X
!

rand−X
!��� ��� ð6Þ

X
*

t þ 1ð Þ ¼ X
!

rand−A
!
:D
! ð7Þ

where X
!

rand signifies a random position determined
from the current population. Some of the most impor-
tant parameters in WOA algorithm are maximum num-
ber of iterations (MaxIt), number of whales (nPop0),
minimum limit for generating unit (Pi), total losses (r),
total load demand (Mutation rate), up coefficient vector
(A), and down coefficient vector (C). The interested
reader may also refer to Mirjalili and Lewis (2016)
and Aljarah et al. (2018) for more details.

The hybrid model

ANN model does not require complicated calculations,
but it needs to adjust network weights and coordinate
neurons when performing local converging and optimiza-
tion. One of the novelties of this study is to apply the
newly developed WOA into a hybrid ANN-WOA model
to fulfill a rapid and efficient weight estimation for PWP
and FC estimation at basin scale.

The performance of the WOA based on the ANN is
determined using weights, while the bias of each neuron
in the ANN is optimized using the WOA. ANN-WOA
stops when a mathematical fit between the ANN
weights and the WOA is reached, or the maximum
number of iteration occurs. Hence, this could be evalu-
ated as an estimating technique which utilize both ANN

and optimization algorithm capabilities. The flow chart
of the ANN-WOA is given in Fig. 4.

Performance criteria and evaluation methods

For evaluating and make comparison between the results
of models, several performance criteria are used. The
determination coefficient (R2), root mean square error
(RMSE), and root relative mean square error (RRMSE)
are used to define a model with the best fit and lowest
errors. Therefore, the goal in using the determination
coefficient is to evaluate the goodness of fit between
observation (validation set) and results as

R2 ¼ 1

n
�

∑ xi−x
� �

yi−y
� �

σxð Þ σy
� �

0
@

1
A

2

ð8Þ

where n is the number of data, x and y are observed
and estimated values, and σx and σy are the standard
deviation of the observed and estimated data.

Other performance criteria of RMSE and RRMSE can also
be evaluated as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ xi−yið Þ2

n

s
ð9Þ

RRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑n

i¼1 xi−yið Þ2
r

∑n
i¼1xi

� 100 ð10Þ

Results and discussion

To make a strong model, the selection of input variables
is a crucial step. Hence, a new hybrid model called
ANN-WOA is used to be evaluated against ANN and
MLR models in estimation of FC and PWP at the basin
scale. The feed-forward back-propagation neural net-
works with the Levenberg–Marquardt training algorithm
are employed on the ANN models, while a combination
of tangent and linear functions is used in approximation
of the activation functions at hidden and output layers,
respectively. Trial and error procedure has been used to
determine the number of hidden neurons, as well as
obtaining the most accurate model with the least possi-
ble error (Deo and Ahin 2016). Then, a set of 174 data
sample sets is used for training the models.

The best MLR models for FC and PWP were respectively
obtained as
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FC %ð Þ ¼ −5:666þ 0:308*Clay %ð Þð Þ
þ 0:295*Silt %ð Þð Þ þ 0:158*Sand %ð Þð Þ
þ 3:212*OM %ð Þð Þ ð11Þ

PWP %ð Þ ¼ −62:143þ 0:761*Clay %ð Þð Þ
þ 0:707*Silt %ð Þð Þ þ 0:723*Sand %ð Þð Þ
þ 1:791*OM %ð Þð Þ ð12Þ

The related determination coefficients of the MLR meth-
od at Eqs. 11 and 12 are 0.66 and 0.59 respectively, which
are mediocre results and are in agreement with the analysis
given in Figs. 2 and 3. Parameter setting is an important part
in machine learning modeling process (Mohammadi,
2019c, d), so the best ANN model was obtained using a
three-layered MLP with a tangent and linear sigmoid acti-
vation function at the core of hidden and output layers, re-
spectively. Up to 1000 iteration is used in optimization,
while the optimum number of neurons was reached by try
and error using adding up technique, of 30 neurons at max-
imum. The hybrid ANN-WOA model was then optimized
and calibrated using details given in Table 3.

In this respect, given results in Tables 3 and 4 show
that the ANN-WOA is the best model at training and
validation stage due to the core of the WOA which helps
the model in faster and accurate convergence while
preventing it from being trapped at local extremums.
Similar results are obtained in estimation of the PWP
(Table 4).

The scatter plot of all models under confidence band of
95% and 90% is also given (Fig. 5). Similarly, the lowest
discrepancy and highest likelihood is associated with the
ANN-WOA (Fig. 5). There are fewer values which are
overpassed the confidence limit while most of the points are
located near the perfect fit line, y = x. It is obvious that the
shrinking and encircling mechanism together with the spiral
updating position of the vectors towards the prey (i.e., the best
results) is an efficient way in obtaining the weights of the
ANN model. When compared to the back propagation (in
ANN) or least square error (in MLR), WOA shows that the
encircling approximation used in descending the distance and
finalization in defining the global extremum is an efficient
way in function approximation.

In general, all models showed good performances, in rec-
ognizing the pattern of the relationship between independent
variables and FC or PWP. It is concluded that the hybrid
ANN-WOA has upper hand which makes it more

Fig. 4 Flow chart of the ANN-WOA model used

Table 3 Parameters of WOA algorithm in calibration of hybrid ANN-
WOA model

Symbol Quantity Value

MaxIt Maximum number of iterations 500

nPop0 Number of whales 15

Pi min Minimum limit for generating unit 2

r Total losses 0.30

Mutation rate Total load demand 0.05

A Up coefficient vector 0.20

C Down coefficient vector 0.15
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satisfactory in practice. Since ANN and ANN-WOA are
nonparametric models, it is essential to update the core
algorithm of models overly to make sure that the best
performance is obtained at each time.

Figures 6 and 7 show the distribution of the estimated and
observed data in validation sample set. These figures illustrate
the probability mass function of the ANN-WOA, which is
located within the 25% and 75% quartile of the observation

set. However, the ANN-WOA shows more accurate estima-
tion for FC compared to PWP. Based on Fig. 6, minima, max-
ima, and the standard deviations of the models showed differ-
ent variations. Hence, it is not confident to use them in ap-
proximation of the models. The only dependable criterion
which shows more dependability is the median of the samples.
As shown in box plots of Fig. 6 and histograms of Fig. 7,
median of the predicted samples by ANN-WOA shows less
discrepancies from the observation values in validation data
set. Thereby, align with the concept of nonparametric ap-
proach, the median of the samples seems to be more depend-
able compared to the other moments of the distribution.
Figure 7 also shows that the MLR and ANN are over estimat-
ing the portion of FC (Fig. 7a) and PWP (Fig. 7b) in practice.
Similar results can be obtained from Fig. 5, while the
overpassing from the 90% or the 95% confidence limits oc-
curred and over estimation in MLR and ANN are inevitable.
Based on the convergence of the WOA, the circular arcs and
the displaced centers function approximation technique reveal
more promising results.

In brief, it was concluded that the relationship between the
sand, silt, clay, andOM against FC given in Fig. 2 depicts OM as
the most important variable in prediction of FC. These results
were also confirmed in Table 2, while the Pearson’s correlation
coefficient of sand, silt, clay, and OM with FC is 0.07, 0.03, −

Fig. 5 Scatter plot of the best models for ANN, ANN-WOA, and MLR in estimating the a FC and b PWP

Table 4 Results of the best model fitting in estimation of FC and PWP

Model RMSE (%) R2 RRMSE (%)

FC Training data ANN 5.06 0.79 16.05

ANN-WOA 2.55 0.94 8.09

MLR 6.52 0.64 20.68

Validation data ANN 5.54 0.72 17.58

ANN-WOA 2.87 0.92 9.11

MLR 5.95 0.66 18.87

PWP Training data ANN 3.20 0.77 18.06

ANN-WOA 1.61 0.94 9.10

MLR 4.31 0.59 24.30

Validation data ANN 3.52 0.73 19.81

ANN-WOA 1.78 0.92 10.02

MLR 4.41 0.53 24.87
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0.11, and 0.77 are respectively. The results of evaluation for PWP
in Fig. 3 also showed similar results. Particularly, none of the
variables except OM could predict the PWP portions effectively.
The results of the Pearson’s correlation coefficients in Table 2
with PWP also showed that the OM had the upper hand in
prediction of the water content in the soil samples.

Results of the modeling were also in favor of the
ANN-WOA hybrid model which could predict the
amount of FC and PWP satisfactorily. In this respect,
the results obtained for FC were more accurate and it
was concluded that the spiral goal seeking provided by
the whale optimization algorithm (Fig. 4) effectively de-

Fig. 7 Histogram plot for analysis
prediction FC and PWP for all
models

Fig. 6 Box plot of the validation
phase of the models in estimation
of FC and PWP
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picts the relationship between sand, silt, clay, and OM
against FC or PWP.

Conclusions and recommendations

In this study, a newly developed ANN-WOA method is used
in estimating the FC and PWP. The study is based on the soil
samples taken from a study area covering the West Azerbaijan
and East Azerbaijan in north of Iran. In modeling, classical
MLR and ANN models together with hybrid of ANN-WOA
were used. The portion of clay, sand, silt, and OM in the soil
samples were used as the independent variables while the FC
and the PWP were evaluated as dependent variables in the
models. It is found that the OM has the highest linear and
nonlinear bound with the outputs, i.e., FC and PWP. This
depicts the importance of OM at the basin scale which should
be detailed in further studies. The nonlinear bound is also
conceptualized in the analysis by taking into account the rela-
tionship between PWP and FC with sand, silt, and clay. Later,
normalized data of randomly selected sets were used in train-
ing and validation of the models separately. Results of the
models were evaluated using several performance criteria
while the best and the second-best models found to be the
hybrid of ANN-WOA and the ANN models respectively.
The superior results of the ANN-WOA model found to be
linked to the fast and proper convergence of the ANN core
in defining the optimum solution while other models could
easily trap in local extremums.

Overall, the results of this study proved that the WOA is
a useful add-on tool for enhancing the predicting accuracy
of ANN models. The ANN-WOA can be considered as a
global optimizer since it includes exploration/exploitation
ability, while it can search the neighboring space for the
best solution. Based on the high accuracy of the proposed
ANN-WOA model, short-term forecasting scenarios using
hydrological variables (e.g., soil parameters, evaporation,
groundwater levels, rainfall, evaporation, flood, and
drought forecasting) could be an interesting topic in future
studies. The broader application is warranted, noting but
the effectiveness of the newly evaluated ANN-WOA mod-
el that must be explored in soil and water studies.
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