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Abstract
Copper and nonylphenol are two commonly found chemicals in the aquatic environment, particularly in the distribution area of
the amphibian Rhinella arenarum. The current work evaluated the lethal toxicity of equitoxic and non-equitoxic binary mixtures
of copper and nonylphenol on embryos and larvae of the South America toad by means of the standardized test, AMPHITOX.
Joint toxicity of mixtures was assessed in several proportions of these compounds at different exposure times and was analyzed at
different level of mortality effect (LC10, LC50 and LC90). Considering the LC50, the equitoxic mixture was always antagonistic
independently of the exposure time and the developmental stage. Joint toxicity showed mainly an antagonistic pattern; nonethe-
less, some time-dependent additive interactions were observed. Regarding the LC10, synergistic interactions were found in
embryos and larvae exposed to two different mixture proportions at several exposure times. This highlights the possible syner-
gism of these chemicals at environmentally relevant concentrations. These results point out the relevance of assessing joint
toxicity of environmental pollutants for environmental risk assessment.
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Introduction

Aquatic ecosystems are frequently polluted with chemicals
derived from industrial, agricultural and domestic activities.
Despite the need to assess single toxicity of specific
chemicals, the behavior of substances in mixtures may not
correspond to that predicted from data of the individual sub-
stances. The interactions between components may cause
complex and substantial changes in the apparent properties
of the constituents (Altenburger et al. 2003). Evidence shows
that 70–80% of chemical mixtures exhibit additive toxicity,
but 10–15% are synergistic and 10–15% antagonistic (Warne
2003). This questions the ecological relevance of safety limits

of single contaminants, as chemical risk management is main-
ly based on the toxic effects of single compounds.
Determining and predicting mixture toxicity on non-target
organisms, especially for contaminants that commonly coexist
in the environment, have been focal points in toxicity research
(Aronzon et al. 2016; Brodeur et al. 2016; Brodeur et al. 2014;
Li et al. 2018; Sanches et al. 2017; Wang et al. 2018). There
are several experimental and analytical models to evaluate
mixture toxicity. The concentration addition (CA) and inde-
pendent action (IA) are two traditional concepts that have
been widely utilized (Altenburger et al. 2003). CA is based
on the assumption that mixture components have the same or
similar modes of action, while IA is based on the idea that
each mixture component acts on a different receptor and they
contribute to a common response together. However, toxico-
logical interactions between the chemicals and their effects
can occur independently of the main mode of action, and the
toxic modes of action of many chemicals remain unknown.
The median drug effect analysis/combination index (CI) was
first described by Chou and Talalay in 1984, but more recent-
ly, it has acquired relevance by the CompuSyn’s program
implementation (Chou 2006) which is a widely used method
in toxicology for analyzing mixture toxicity interactions
(Wang et al. 2015). The method does not require previous
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knowledge of the mechanisms of action of each chemical and
takes into account both the potency and the shape of the dose-
effect curve of each chemical. As the type of interaction may
also vary with the effect level on which the mixture is being
assessed (Son et al. 2016; Yang et al. 2017), CompuSyn’s also
enables to analyze quantitatively the mixture interaction at
different effect levels corresponding to different proportions
of lethal effects (LC10, LC50 and LC90).

Copper and nonylphenol are common contaminants, par-
ticularly in Argentina because they are agro-inputs frequently
applied in fields. Both substances are present in the distribu-
tion area of the native amphibian species, Rhinella arenarum
(Babay et al. 2014; Ossana et al. 2016; Reynoso and Andriulo
2013). Copper is frequently used as fungicide, algaecide and
animal feed additive (Serén 2013), while nonylphenol is com-
monly used as an adjuvant for pesticides formulations. They
are also present in sludges employed as soil fertilizers
(Hildebrandt et al. 2007). Current regulations fixed a maximal
copper concentration of 2 μg/L in surface freshwater for
aquatic life protection (Argentine law 24,051 decree 831/
93). However, copper eventually reaches concentrations
higher than 2000 mg/L in periurban surface water bodies
(Ossana et al. 2016) and 31 μg/L in surface waterbodies of
agriculture areas (Reynoso and Andriulo 2013), both in the
distribution area of R. arenarum. Despite that copper is essen-
tial for living organisms, it could be toxic if water concentra-
tions increase as a consequence of anthropogenic activities
(Cappello and Fortunato 2013; USEPA 2006). Copper can
catalyze the formation of highly reactive hydroxyl radicals
and initiate oxidative damage, interfering with important cel-
lular events (Gaetke and Chow 2003). Copper exposure has
been shown to affect behavior, metabolism, immunity, en-
zyme activities, ionic regulation and epithelial cells in gills
and intestine in fish (Handy 2003). A previous study on
R. arenarum showed a lowest LC50–24 h of 17 (15.8–18.4)
μg Cu2+/L at organogenic stages. Moreover, copper has a high
teratogenic potential, eliciting diverse adverse effects such as
reduced body size, axial flexures, microcephaly, acephaly,
mouth malformations, agenesis/underdeveloped gills,
agenesis/underdeveloped tail and hydropsy (Aronzon et al.
2011).

Nonylphenol is one of the major degradation products of
the widely used surfactant nonylphenol polyethoxylate
(Soares et al. 2008). Nonylphenol has been pointed out as
the most critical metabolite of alkylphenol polyethoxylates
because of its enhanced resistance to biodegradation, toxicity
and ability to accumulate in aquatic organisms (Arukwe et al.
2000; Tyler et al. 1998). This compound is considered an
emerging pollutant and is thought to be a potential threat to
ecosystems and human health. In Argentina, nonylphenol use
is unrestricted and widespread, and it is not currently covered
by water-quality regulations (Babay et al. 2014; Farré et al.
2008). Despite the lack of actual information, maximal

concentration of 27 μg/L has been reported (Babay et al.
2008). It has been demonstrated that nonylphenol binds to
amphibian estrogen receptors (Lutz and Kloas 1999), induces
feminization of Xenopus laevis males and stimulates vitello-
genin m-RNA synthesis in cultured amphibian hepatocytes
(Kloas et al. 1999). Early larval stages of R. arenarum
(S.25) were very susceptible to nonylphenol, with a 336-h
LC50 of 0.11 mg nonylphenol (NP)/L. This organic com-
pound also caused severe sublethal effects, including
malformations and delayed development with a low 168-h
NOEC of 25 μg NP/L (Aronzon et al. 2014).

Amphibians have high sensitivity to diverse pollutants,
mainly at embryo and larval stages. So, they are widely used
in ecotoxicological studies and represent a useful tool for
assessing the environmental risk of different physicochemical
agents (Bach et al. 2016; Ferrari et al. 2005; Ibarra et al. 2016;
Pérez Coll et al. 2017; Wolkowicz et al. 2016). Moreover,
amphibians breed in shallow, lentic and/or ephemeral water
bodies, even at agricultural landscapes, where pollutants
might be concentrated during spring/summer, time coincident
with their reproductive season (Mann et al. 2009).
AMPHITOX test is a battery of bioassays using embryo and
larval stages of Rhinella arenarum (Pérez Coll et al. 2017), a
representative Argentinean species. Despite that it is consid-
ered a non-threatened species (Lavilla et al. 2000) or of least
concern; this status is not updated (Kwet et al. 2004) and
previous studies warn about the vulnerability of this species
(Bionda et al. 2013). The evaluation of joint toxicity has also
been performed by means of toxicity bioassays with amphib-
ians (Brodeur et al. 2014; Svartz et al. 2016; Wu et al. 2018;
Yu et al. 2015).

The main aim of present study was to assess the joint lethal
effects of equitoxic and non-equitoxic binary mixtures of cop-
per and nonylphenol in the South American toad, R. arenarum
by means of the standardized AMPHITOX protocol.Mixture
toxicity was assessed during the embryo and larval develop-
ment in order to identify the most sensitive period. The exper-
imental design included simultaneous single bioassays with
copper and nonylphenol as well as several mixture propor-
tions of chemicals. Lethal toxicity of the mixtures was evalu-
ated at different exposure times up to sub-chronic period.

Materials and methods

Preparation of test solutions

Solutions of individual copper and nonylphenol

Seven test solutions of copper, ranging in concentrations be-
tween 3 and 375 μg Cu2+/L, were prepared by diluting a stock
solution of 30 mg Cu2+/L with CuCl2·2H2O (purity 99%, lot
11570; Riedel-de Haën) in AMPHITOX Solution (AS). AS
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composition, prepared in deionized water, was NaCl 36 mg/L,
KCl 0.5 mg/L, CaCl2 1 mg/L and NaHCO3 2 mg/L.
Experimental copper concentrations were measured randomly
four different times with an inductively coupled plasma mass
spectrometer (ICPMS) with collision cell (Agilent 7500cx
model). The error between nominal and measured concentra-
tions was between 2 and 4%.

Nonylphenol (Fluka, technical grade, purity 96.9%. CAS
number: 84852-15-3, marketed by Sigma-Aldrich) stock so-
lution of 45.4 g/L was prepared in acetone. Seven test solu-
tions of nonylphenol, ranging in concentrations between
0.025 and 4 mg NP/L, were prepared in AS. Nonylphenol in
four randomly chosen test solutions was quantified according
to Babay et al. (2008) by reverse-phase HPLC coupled to
fluorescence detection at excitation and emission wavelengths
of 230 and 300 nm, respectively. A C-8 column (250 ×
4.6 mm, 5 μm, Grace, USA) and isocratic elution with
MeOH/H2O (80:20) were employed. The errors between
nominal and measured concentrations were between 2 and
7%.

Solutions of equitoxic and non-equitoxic binary mixtures
of copper and nonylphenol

Mixture toxicity was evaluated using a fixed ratio design
according to the method described previously by
Aronzon et al. (2016). Different binary mixtures were
combined using different ratios. Each combination was
named as the minimum entire relation of toxic units
(TU) (Sprague 1970; van der Geest et al. 2000). Based
on this concept, a value of 1 TU represents the concen-
tration of the toxicant that elicits a particular response; in
the case of the present study 50% mortality at 168 h
(168-h LC50). First, these LC50 for embryos and larvae
were estimated according to previous work (Aronzon
et al. 2014; Aronzon et al. 2011), but then were re-
calculated according to the data of simultaneous expo-
sure obtained in this study and specified for each assay.
In the case of equitoxic mixture, copper and nonylphenol
were combined in equal proportion of its toxicity, so it
was named 1Cu/1NP.

Stock solutions of equitoxic and non-equitoxic mixtures
were prepared dissolving single stock solutions of copper
and nonylphenol in AS. Exposure solutions of the different
binary mixtures were prepared by diluting the corresponding
volume of mixture stock solution in AS, in order to maintain
the compound proportions. Copper and nonylphenol mixture
toxicity bioassays were performed according to Table 1 con-
ditions.Mixture toxicity interactions were evaluated bymeans
of lethal effects. Therefore, the chosen concentrations could
be higher than the environmental ones, but they were selected
to elicit lethal effects.

Animal acquisition and husbandry

Healthy R. arenarum adults, weighing approximately 200–
250 g, were obtained in Lobos (Buenos Aires province,
Argentina: 35° 11′ S; 59° 05′ W), where no sources of con-
tamination are nearby. Adults were maintained in laboratory
conditions for 2–3 months. Toads care, fecundation, embryo
and larval husbandry and experimental protocols were con-
ducted according to AMPHITOX protocols (Herkovits and
Pérez-Coll 2003; Pérez Coll et al. 2017). Briefly, toads were
kept in aquaria with AS at 20 ± 2 °C, alternating 12-h light/
dark cycles and fed with cockroaches and crickets bred in
laboratory. Ovulation of R. arenarum females was induced
by means of an intraperitoneal injection of 5000 IU of human
chorionic gonadotropin (Gonacor 5000 ®) per female (Mann
and Bidwell 2000). Oocytes were fertilized in vitro with a
10% sperm suspension obtained by a testicular macerate ho-
mogenate in 1 mL of AS. Sperm viability was evaluated by
means of spermatozoid morphology and mobility under opti-
cal microscopy (Olympus CX41, 400× magnification).
Fertility success was considered acceptable with rates greater
than 75%. Survival greater than 70% at neural stage was re-
quired for good embryo quality. Embryos were dejellied by
means of egg ribbon immersion in 2% thioglycolic acid and
0.37 M of NaOH in AS, at pH 7.2. Then, embryos were
exhaustively washed with AS and kept in shallow plastic con-
tainers with 5 L of AS at 20 ± 2 °C, alternating 12-h light/dark
cycles until blastula (S.4) and larval (S.25) stages, which were
defined according to Del Conte and Sirlin (1951).

Bioassay experimental design

Embryos or larvae were exposed to copper and nonylphenol
independently and in mixtures from early blastula (S.4) and
complete operculum (S.25) stages onwards for sub-chronic
(168 h) periods.

Batches of 10 embryos or larvae were placed in covered 10-
cm-diameter glass Petri dishes containing 40 mL of test solu-
tion, in triplicate. Simultaneously, triplicated control of 10 em-
bryos or larvae was maintained in AS. A solvent control group
was carried out with AS plus acetone (0.5% v/v) at the highest
concentration used for nonylphenol test solution, also in tripli-
cate (ASTM 1993). Both controls were simultaneously main-
tained andmortality did not differ significantly from each other.

Mortality was evaluated every 24 h by means of smooth
movements of the Petri dishes, followed by stimulation with a
light source. In case of no response, heartbeat was checked
under a Zeiss Stemi DV4 stereoscopic microscope. Dead in-
dividuals were removed every 24 h, test solutions were
renewed every other day and temperature was maintained at
20 ± 2 °C. Larvae were fed with 6 ± 0.5 mg of balanced fish
food TetraColor® every other day. Toxicity bioassays with
s ingle substances and mixtures were performed
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simultaneously with embryos and larvae obtained from the
same clutches, ensuring identical experimental conditions
and avoiding variability in animal sensitivity (Chou 2006).
All experiments were conducted according to the international
standards on animal welfare (Canadian Council on Animal
Care in Science 1993) and were controlled and approved by
the Institutional committee for the care and use of animals in
experimentation (CICUAE) of the National University of San
Martín (UNSAM).

Data analysis

Lethality data were statistically analyzed by the USEPA Probit
Program (USEPA 1988). LC50s were obtained for each single
chemical and mixture ratio used. To establish statistical differ-
ences between the LC50 values, a comparison was made,
considering the difference statistically significant when the
higher LC50/lower LC50 ratio exceeded the critical value
(95% confidence interval) established by the American
Public Health Association (2005).

Mixture interactions were analyzed using the median-ef-
fect/combination index (CI) developed by Chou (2006). This
method is based on the median-effect principle (mass-action
law) (Chou 1976) that demonstrates that there is a unique and
corresponding relationship between concentration and effects,
independently of the number of substances and mechanism of
action or inhibition. The CompuSyn’s program (Chou and
Martin 2005) was used for the calculation of CI values at
different effect levels (Fa), with Fa = (%lethality/100). CI <
1, CI = 1 and CI > 1 indicate synergism, additivity and antag-
onism, respectively.

Results

The toxicity of copper and nonylphenol, determined indepen-
dently and simultaneously from 72 to 168 h, is shown in

Fig. 1a. As the mortality data of embryos exposed to
nonylphenol at 24 h and 48 h were not appropriated for
Probit analysis, the corresponding LC50s could not be obtain-
ed. Copper was between 35 and 50 times more toxic than
nonylphenol to R. arenarum embryos at 72 h and 168 h, re-
spectively. Toxicity of both chemicals was time-dependent
and significantly (p < 0.05) increased with exposure time.
Copper LC50 decreased from 0.14 (0.12–0.16) mg Cu2+/L
at 24 h to 0.0205 (0.018–0.024) mg Cu2+/L at 168 h, while
nonylphenol LC50 decreased from 1.5 (1.37–1.78) mg NP/L
at 72 h to 0.96 (0.93–1) mg NP/L at 168 h.

In embryo assays, the toxicity of each mixture proportion
was time-dependent, significantly increasing (p < 0.05) with
exposure time (Fig. 1c). The combination index values pre-
sented in Table 2 indicate the interaction at different effect
levels (Fa = 0.1, 0.5 0.9). Combination index (CI) at Fa = 0.5
was antagonistic for the equitoxic mixture toxicity indepen-
dently of the exposure time. The effects of non-equitoxic mix-
tures of 3Cu/2NP and 2Cu/1NP on embryos were also antag-
onistic and independent of exposure time. However, the joint
toxic effects of 1Cu/2NP were time-dependent. It was shown
an antagonistic interaction at the acute period, but it became
additive at the sub-chronic exposure. The joint toxic effects of
2Cu/3NP were mainly antagonistic, except for 120 h, showing
an additive interaction.

The CI values at 0.9 effect level also indicated antagonism
for almost all combinations and at all exposure times. The
exceptions were 1Cu/2NP and 2Cu/3NP mixtures, which
showed additive interactions at 144–168 h and 72–120 h,
respectively.

Joint toxicity at the effect level of 0.1 showed a different
pattern. Equitoxic and 2Cu/1NP mixtures were antagonistic
for all exposure times. Despite that 1Cu/2NP and 3Cu/2NP
were also antagonistic, an additive interaction was observed at
the sub-chronic exposure in both cases. Additive effects were
also observed for 2Cu/3NP mixture at acute period but syner-
gistic effects were recorded from 120 to 168 h (Table 2).

Table 1 Conditions of equitoxic and non-equitoxic mixtures of copper (Cu) and nonylphenol (NP) in toxicity bioassays. Cu-LC50 = 0.0205 mg/L and
NP-LC50 = 0.9649 mg/L for embryos and Cu-LC50 = 0.051 mg/L and NP-LC50 = 0.377 mg/L for larvae at 168 h of exposure

Developmental
period

Mixture stock solution (mg/L) Mixture stock solution in toxic units (TU) Exposure concentrations (mg/L)

Embryo 2.58 mg/L (2.3% Cu; 97.7% NP) 1Cu/1NP 0.258; 0.516; 0.77; 1.031; 1.278; 1.547; 2.58

1.88 mg/L (4.5% Cu; 95.5% NP) 2Cu/1NP 0.264; 0.377; 0.565; 0.753; 1.13; 1.88

1.86 mg/L (3.4% Cu; 96.6% NP) 3Cu/2NP 0.186; 0.373; 0.559; 0.745;0.931; 1.118; 1.86

2.18 mg/L (1.2% Cu; 98.8% NP) 1CU/2NP 0.241; 0.482; 0.724; 0.874; 1.093; 1.53; 1.857

2.03 mg/L (1.5% Cu; 98.52% NP) 2Cu/3NP 0.203; 0.406; 0.609; 0.812; 1.015;1.421; 2,03

Larvae 0.83 mg/L (10.8% Cu; 89.2% NP) 1Cu/1NP 0.166; 0.249; 0.332; 0.415; 0.581; 0.747; 0.83

1.3 mg/L (13.85% Cu; 85,15%NP) 4Cu/3NP 0.13; 0.26; 0.39; 0.52; 0.65;0.91; 1.3

0.92 mg/L (19.6% Cu; 80.4% NP) 2Cu/1NP 0.092; 0.184; 0.276; 0.368; 0.46; 0.644; 0.92

1.01 mg/L (26.7% Cu; 73.7% NP) 3Cu/1NP 0.101; 0.202; 0.303; 0.404; 0.505; 0.707; 1.01
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The larval toxicity of copper and nonylphenol, which
were also determined independently and simultaneously
from 24 to 168 h, is shown in Fig. 1b. Copper was between
11.5 and 7.4 times more toxic than nonylphenol to
R. arenarum larvae. The toxicity of copper remained con-
stant along exposure time with a 24-h LC50 of 0.054
(0.043–0.063) mg Cu2+/L. Nonylphenol toxicity signifi-
cantly increased (p < 0.05) with exposure time. Thus,
LC50 decreased from 0.62 (0.59–0.65) mg NP/L at 24 h
to 0.38 (0.35–0.40) mg NP/L at 168 h. Toxicity of 3Cu/
1NP mixture significantly increased (p < 0.05) along expo-
sure time, but toxicity of 1Cu/1NP, 2Cu/1NP and 4Cu/3NP
mixtures was not time-dependent (Fig. 1d).

The CI values at 0.5 effect level showed an antagonistic
effect for both equitoxic and non-equitoxic mixtures of 4Cu/
3NP and 2Cu/1NP at all exposure times. However, the joint
toxic effect of 3Cu/1NP was time-dependent, showing antag-
onism at the acute period and additive interaction towards the
sub-chronic exposure. The CI values at 0.9 effect level also
indicated antagonism for almost all combinations and all ex-
posure times, except for 3Cu/1NP at 120 h and 168 h, and for
1Cu/1NP at 72 h. Despite that CI values at 0.1 effect level also
showed antagonist patterns for equitoxic and 4Cu/3NP at all
exposure times, joint toxicity of 2Cu/1NP was time-depen-
dent, with additive responses at the acute period and antago-
nism from 120 h. Moreover, joint toxicity of 3Cu/1NP was

Fig. 1 Lethal concentration 50 (LC50) with 95% confidence intervals of
copper (Cu) and nonylphenol (NP). a Embryos exposed from early blas-
tula stage (S.4) onwards and b larvae exposed from complete operculum
stage (S.25) onwards. LC50 with 95% confidence intervals of different

mixture proportions for R. arenarum, c embryos exposed from early
blastula stage (S.4) onwards and d larvae exposed from complete oper-
culum stage (S.25) onwards. The corresponding stages of development
are expressed with the exposure times. Larvae remain at S.25 all the time
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synergistic for almost all exposure times, except at 48 h
(Table 3).

Discussion

The simultaneous presence of copper and nonylphenol in the
aquatic ecosystems of Argentina is coincident with the distri-
bution area of Rhinella arenarum. This fact leads to the im-
perative need to perform joint toxicity assessment of these
chemicals on amphibian species (Babay et al. 2014; Babay
et al. 2008; Ossana et al. 2016), particularly in embryos and
larvae because of their high sensitivity (Herkovits and Pérez-
Coll 2003).We have previously shown the lethal and sublethal
risk of these isolated chemicals on R. arenarum. Moreover, it
was shown that both chemicals induce malformations and
delayed development. The lethal toxicity of both chemicals
at the two developmental stages was not different from that
shown in previous works, highlighting the robustness and

reproducibility of the AMPHITOX method (Aronzon et al.
2014; Aronzon et al. 2011). As the interaction effects might
depend on the compound proportions in the mixture (Wang
et al. 2009) and the environmental exposure concentrations
will be dynamic and possibly change over time, the joint tox-
icity of copper/nonylphenol solutions was assessed in differ-
ent ratios and at different exposure times. Indeed, solutions
with equitoxic and non-equitoxic proportions were included;
these last ones represent more environmentally realistic and
relevant conditions, although the selected ratios do not cover
all the spectrum of possible combinations in the environment.

Copper toxicity was 50 and almost 12 times more toxic
than nonylphenol in the embryonic and larval periods, respec-
tively. This marked differential toxicity shows the need of
expressing mixture toxicity in terms of the relative toxicity
of each compound, as toxic units, instead of total concentra-
tions. Copper toxicity expressed in the sub-chronic exposure
(168 h) was time-dependent only for embryo exposure, which
might be due to the stage-dependent susceptibility (Aronzon

Table 2 Combination index (CI) with 95% confidence intervals at different effect levels (Fa) for different copper (Cu) and nonylphenol (NP) mixture
ratios and different exposure times on R. arenarum embryos exposed from early blastula stage (S.4) onwards

Combination index (CI)

Mixture stock solution in
toxic units (TU)

Exposure time (h) Effect level (0.1) Interaction Effect level (0.5) Interaction Effect level (0.9) Interaction

1CU/2NP 72 1.85 ± 0.14 Antagonistic 1.53 ± 0.08 Antagonistic 1.43 ± 0.20 Antagonistic

96 2.14 ± 0.13 Antagonistic 2.02 ± 0.18 Antagonistic 2.38 ± 0.48 Antagonistic

120 1.90 ± 0.18 Antagonistic 1.89 ± 0.11 Antagonistic 1.99 ± 0.19 Antagonistic

144 1.35 ± 0.28 Antagonistic 1.36 ± 0.35 Antagonistic 1.45 ± 0.78 Additive

168 0.85 ± 0.50 Additive 1.15 ± 0.54 Additive 1.64 ± 1.53 Additive

2Cu/3NP 72 1.52 ± 0.34 Antagonistic 1.61 ± 0.35 Antagonistic 2.01 ± 1.31 Additive

96 1.75 ± 0.41 Antagonistic 2.16 ± 0.52 Antagonistic 3.37 ± 2.48 Additive

120 0.36 ± 0.15 Synergistic 1.22 ± 0.28 Additive 4.62 ± 4.11 Additive

144 0.37 ± 0.15 Synergistic 1.24 ± 0.18 Antagonistic 3.79 ± 1.70 Antagonistic

168 0.37 ± 0.15 Synergistic 1.25 ± 0.20 Antagonistic 4.41 ± 2.04 Antagonistic

1Cu/1NP 72 2.03 ± 1.07 Antagonistic 1.36 ± 0.32 Antagonistic 3.22 +/−16.87 Additive

96 13.19 ± 6.39 Antagonistic 6.85 ± 5.11 Antagonistic 12.27 +/−63.83 Additive

120 10.82 ± 1.967 Antagonistic 8.98 ± 0.89 Antagonistic 7.71 ± 1.35 Antagonistic

144 10.18 ± 2.07 Antagonistic 8.72 ± 0.95 Antagonistic 7.7 ± 1.48 Antagonistic

168 10.50 ± 1.66 Antagonistic 8.70 ± 0.80 Antagonistic 7.26 ± 0.10 Antagonistic

3Cu/2NP 72 1.34 ± 0.18 Antagonistic 1.43 ± 0.13 Antagonistic 1.81 ± 0.43 Antagonistic

96 1.83 ± 0.16 Antagonistic 1.57 ± 0.11 Antagonistic 1.85 ± 0.41 Antagonistic

120 1.61 ± 0.22 Antagonistic 1.81 ± 0.11 Antagonistic 2.17 ± 0.22 Antagonistic

144 1.53 ± 0.32 Antagonistic 1.74 ± 0.14 Antagonistic 2.15 ± 0.33 Antagonistic

168 1.09 ± 0.12 Additive 1.76 ± 0.10 Antagonistic 2.90 ± 0.40 Antagonistic

2Cu/1NP 72 2.03 ± 0.27 Antagonistic 1.60 ± 0.29 Antagonistic 1.47 ± 0.42 Antagonistic

96 1.41 ± 0.31 Antagonistic 1.54 ± 0.21 Antagonistic 2.38 ± 0.79 Antagonistic

120 1.33 ± 0.32 Antagonistic 1.87 ± 0.27 Antagonistic 2.87 ± 0.74 Antagonistic

144 1.45 ± 0.24 Antagonistic 1.61 ± 0.14 Antagonistic 1.92 ± 0.26 Antagonistic

168 1.40 ± 0.21 Antagonistic 1.63 ± 0.11 Antagonistic 1.93 ± 0.31 Antagonistic
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et al. 2011). The main biochemical toxicity of Cu is derived
from its effects on the structure and function of biomolecules
(DNA, proteins, membrane molecules) or through oxygen-
radical mechanisms (Gaetke and Chow 2003). So, the stage-
dependent toxicity might be due to the development of the
antioxidant response, mainly of glutathione-related enzymes
(Ferrari et al. 2008).

Nonylphenol toxicity was time-dependent for both develop-
mental periods; in the case of larvae exposure, it might be prob-
ably due to the increase in the exposure time. Copper was the
most toxic; particularly during the embryonic period while
nonylphenol was more toxic during the larval period, confirming
previous results (Aronzon et al. 2014). Besides, the higher toxic-
ity of organic compounds on amphibian’s larval development
was previously informed (Svartz et al. 2016). This differential
sensitivity might be related to the lack or insensitivity of target
organs in the embryonic stages compared to the larval period

(Edginton et al. 2004).The results obtained in this study become
evidence of the existence of different types of interactions de-
pending on the compound proportions in the mixture, exposure
time and developmental stage. Based on the combination index
at 0.5 effect level (Fa(0.5)), the joint toxicity of different copper
and nonylphenol mixture proportions showed mainly an antag-
onistic pattern. This deviation from the additive interactionmight
be expected because of the different modes of action of both
compounds (Kraak et al. 1999). However, mixture interactions
cannot be easily explained in terms of the known primary mech-
anisms of action, because toxicological interactions can occur
independently of the primary mode of action (Chou 2006).
Indeed, lethality as an endpoint of the joint toxicity is probably
a result of the malfunctioning of a wide variety of processes
within the organism, caused by both primary and secondary
effects (Hermens et al. 1985; van der Geest et al. 2000).
Antagonistic interaction of copper in joint lethal toxicity with

Table 3 Combination index (CI) with 95% confidence intervals at different effect levels (Fa) for different copper (Cu) and nonylphenol (NP) mixture
ratios and different exposure times on R. arenarum larvae exposed from complete operculum stage (S.25) onwards

Combination index (CI)

Mixture stock solution in toxic units
(TU)

Exposure time
(h)

Effect level
(0.1)

Interaction Effect level
(0.5)

Interaction Effect level
(0.9)

Interaction

1Cu/1NP 48 1.74 ± 0.15 Antagonistic 1.72 ± 0.09 Antagonistic 1.84 ± 0.12 Antagonistic

72 1.63 ± 0.36 Antagonistic 1.52 ± 0.27 Antagonistic 1.48 ± 0.64 Additive

96 1.61 ± 0.35 Antagonistic 1.62 ± 0.26 Antagonistic 1.69 ± 0.61 Antagonistic

120 1.36 ± 0.25 Antagonistic 1.58 ± 0.27 Antagonistic 1.87 ± 0.70 Antagonistic

144 1.59 ± 0.28 Antagonistic 2.12 ± 0.45 Antagonistic 2.9 ± 1.05 Antagonistic

168 1.67 ± 0.28 Antagonistic 2.18 ± 0.41 Antagonistic 2.95 ± 1.05 Antagonistic

4Cu/3NP 24 8.21 ± 0.79 Antagonistic 7.11 ± 0.43 Antagonistic 6.23 ± 0.48 Antagonistic

48 8.15 ± 0.93 Antagonistic 7.63 ± 0.49 Antagonistic 7.28 ± 0.68 Antagonistic

72 7.05 ± 1.86 Antagonistic 6.05 ± 1.12 Antagonistic 6.07 ± 1.47 Antagonistic

96 7.08 ± 1.93 Antagonistic 6.54 ± 1.16 Antagonistic 6.13 ± 1.54 Antagonistic

120 5.13 ± 1.97 Antagonistic 5.13 ± 1.83 Antagonistic 5.21 ± 2.90 Antagonistic

144 5.34 ± 1.96 Antagonistic 5.17 ± 1.78 Antagonistic 5.13 ± 2.76 Antagonistic

168 5.38 ± 1.97 Antagonistic 5.22 ± 1.79 Antagonistic 5.17 ± 2.78 Antagonistic

2Cu/1NP 24 1.07 ± 0.31 Additive 1.36 ± 0.20 Antagonistic 1.78 ± 0.17 Antagonistic

48 1.33 ± 0.40 Additive 1.49 ± 0.22 Antagonistic 1.81 ± 0.17 Antagonistic

72 1.22 ± 0.34 Additive 1.57 ± 0.22 Antagonistic 2.08 ± 0.17 Antagonistic

96 1.23 ± 0.36 Additive 1.60 ± 0.22 Antagonistic 2.15 ± 0.14 Antagonistic

120 1.4 ± 0.28 Antagonistic 1.54 ± 0.21 Antagonistic 2.89 ± 0.29 Antagonistic

144 1.32 ± 0.29 Antagonistic 1.60 ± 0.23 Antagonistic 2.02 ± 0.35 Antagonistic

168 1.36 ± 0.29 Antagonistic 1.67 ± 0.19 Antagonistic 2.09 ± 0.27 Antagonistic

3Cu/1NP 24 0.75 ± 0.11 Synergistic 1.27 ± 0.21 Antagonistic 2.21 ± 0.73 Antagonistic

48 0.94 ± 0.1 Additive 1.39 ± 0.25 Antagonistic 2.18 ± 0.77 Antagonistic

72 0.73 ± 0.20 Synergistic 1.19 ± 0.18 Antagonistic 1.67 ± 0.36 Antagonistic

96 0.74 ± 0.21 Synergistic 1.11 ± 0.10 Antagonistic 1.71 ± 0.38 Antagonistic

120 0.62 ± 0.11 Synergistic 1.12 ± 0.28 Additive 2.04 ± 1.04 Additive

144 0.66 ± 0.26 Synergistic 1.20 ± 0.26 Additive 2.47 ± 2.40 Additive

168 0.48 ± 0.12 Synergistic 0.84 ± 0.17 Additive 1.43 ± 0.62 Additive
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other organic chemicals has been previously shown (Aronzon
et al. 2016; van der Geest et al. 2000). This might be partially
explained by a decreasing contribution of the essential metal to
the toxicity of the mixture, so a low concentration allows the
organism to regulate the metal incorporation, up to a certain
concentration in the water. On the other hand, it would be in
concentrations under metabolic control (Kraak et al. 1999).

At 0.5 effect level, the toxicity of equitoxic mixture on
embryos and larvae was always antagonistic and independent
of exposure time. Non-equitoxic mixtures of 3Cu/2NP and
2Cu/1NP on embryos, and 4Cu/3NP and 2Cu/1NP on larvae,
were also antagonistic and independent of exposure time.
However, the joint toxic effects of 1Cu/2NP and 2Cu/3NP in
embryos and 3Cu/1NP in larvae were time-dependent, show-
ing antagonism at acute period and additive interaction to-
wards the sub-chronic exposure.

It is worth pointing out that most of additive interactions
showed large confidence intervals (95%). This might be con-
sequence of poor fit of lethality data to the model; this is
expectable when assessing large ranges of concentration at
different exposure times. However, a better adjustment of le-
thality might differentiate joint toxicity in another type of in-
teraction. CompuSyn’s program allowed to calculate the com-
bination index at different effect levels. Joint toxicity at 0.1
effect level (Fa 0.1) was synergistic to 2Cu/3NP mixtures
from 120 h for embryonic exposure and to 3Cu/1NP for al-
most all exposure times for larvae. This joint toxicity variation
with effect level has been also informed for copper and other
chemicals (Son et al. 2016; Yang et al. 2017). This becomes
important because Fa (0.1) being equivalent to LC10, which
implies lowest concentration of 0.01 mg Cu2+/L and 0.2 mg
NP/L. This highlights that synergism may occur at environ-
mentally relevant concentrations of these chemicals, and more
realistic scenarios where copper is in greater proportion than
nonylphenol (Babay et al. 2014; Ossana et al. 2016).
Moreover, LC10 is a more appropriate measure for risk as-
sessment or environmental health purposes, as it is more con-
servative than LC50. Taking into account that these joint in-
teractions were assessed only by means of lethal effects, it is
interesting to point out the risk that simultaneous presence of
both substances may represent for R. arenarum even at very
low concentrations. Further studies will be required in order to
explain the results of this study from a mechanistic concept.
However, present findings are of immediate interest from a
regulatory point of view given the environmental relevance of
the assayed concentrations together with the imperative need
for amphibian conservation around the world.

Conclusion

Equitoxic mixtures of copper and nonylphenol resulted antag-
onistic, independently of exposure time and developmental

stage of the amphibian Rhinella arenarum. Although the most
environmentally relevant non-equitoxic mixtures were also
mainly antagonistic, joint toxicity was time-dependent. This
highlights the relevance of assessing the joint toxic effects at
different proportions of chemicals in the mixture and exposure
times. The analysis of mixture toxicity at different effect levels
allows detecting changes in mixture interaction. So, joint tox-
icity assessment becomes important as mixture exposure is a
more realistic scenario.
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