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Marine alga “Bifurcaria bifurcata”: biosorption of Reactive Blue 19
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Abstract
In this study, we have investigated the removal efficiency of two organic pollutants: methylene blue (MB) and Reactive Blue 19
(RB19) dyes by using a brown marine alga abundantly available on the Moroccan coastlines called Bifurcaria bifurcata (Bif-
Bcata). During the experiments that were conducted in batch mode, we have studied the effect of some parameters such as pH,
Bif-Bcata mass, contact time, and initial dye concentration in order to optimize the most suitable biosorption conditions. The
biosorption tests on Bif-Bcata showed that the equilibrium is reached after 15 min for both dyes MB and RB19. The optimal pH
values are 5.6 and 1.0 for MB and RB19, respectively. Kinetic studies revealed that the biosorption of both dyes follows the
pseudo-second-order model. The biosorption isotherms demonstrated that the Langmuir model is the most appropriate to
describe the biosorption equilibrium for both dyes MB and RB19 with maximum biosorption capacities reaching 2744.5 mg/g
forMB and 88.7mg/g for RB19. According to these results, it is clear that Bif-Bcata can be considered a promising biomaterial to
be used as an effective biosorbent for the elimination of cationic and anionic dyes from textile effluents.

Keywords Biosorption . Alga . Bifurcaria bifurcata . Methylene blue . Reactive Blue 19

Introduction

The development of various anthropogenic activities, indus-
trialization and excessive urbanization, and environmental
pollution by various effluents has become a major ecological
problem (Ait Ahsaine et al. 2018). Water, considered the most
important natural resource in the world, is increasingly threat-
ened by the pollution because of organic and inorganic toxic
substances that are released directly into the aquatic environ-
ment: oceans and rivers (Zbair et al. 2018d, 2019a). Synthetic
dyes are organic compounds used extensively in textile, leath-
er, paper, food, pigments, plastics, and cosmetic industries to
color the produced matter (Lakshmipathy and Sarada 2016).
In fact, the different dyes released into aquatic environments
are qualified either as direct toxic or protoxic substances that
can lead to other dangerous derivatives after their

metabolization. As a result, they are at the origin of several
pathologies such as skin allergy and irritation and can even be
carcinogenic (DeVito 1993; Ganesh et al. 1994; BenMansour
et al. 2007, 2009). For that, it is necessary to implement the
appropriate techniques for treating these pollutants. Several
methods were used for this purpose. Due to the low biode-
gradability of dyes, biological treatment processes are not very
efficient for their decolorization; hence, they are generally
treated by physicochemical techniques (Mafra et al. 2013)
such as adsorption on activated carbon, ultrafiltration, electro-
dialysis, advanced oxidation processes, and reverse osmosis
(Ait Ahsaine et al. 2016; Zbair et al. 2018c; Haffad et al. 2019;
Anfar et al. 2019). Unfortunately, the last ones are less adapt-
able and more expensive, which has encouraged researchers
to find out other alternative techniques. In fact, biosorption is
considered a “cost-effective technique” for the treatment of
colored water (Lakshmipathy and Sarada 2016; Tran and
Chao 2018). Many biosorbent materials have been used to
remove dyestuffs, including watermelon rind (Citrullus
lanatus) (Lakshmipathy and Sarada 2016), fly ash and bottom
ash (Aarfane et al. 2014a), orange peel (Lazim et al. 2015),
spent tea leaves (Lazim et al. 2015),Moroccan date pits (Badri
et al. 2018), and brown seaweed (Sargassum muticum) (El
Atouani et al. 2019).
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In the objective of natural resources valorization (Benzidia
et al. 2015, 2017; Ouasfi et al. 2019a, 2019b), for the removal
the cationic and anionic organic pollutants, we have proposed
to study the biosorption capability of textile dyes by using
algal biomass as a biosorbent which is of great interest, due
to its efficiency, abundance, and affordable cost. We, there-
fore, selected the brown alga Bifurcaria bifurcata (Bif-Bcata),
a widely available biomaterial on Moroccan coasts, to study
the biosorption ability of two dyes: methylene blue (MB) and
Reactive Blue 19 (RB19) which are cationic and anionic dyes,
respectively.

During this study, we have determined the optimal condi-
tions for the biosorption of MB and RB19 onto Bif-Bcata by
studying the influence of the following parameters: pH, Bif-
Bcata mass, contact time, initial dye concentration. The kinet-
ic study and the modeling of biosorption isotherms were also
examined using appropriate models.

Materials and methods

Adsorbate molecules

Methylene blue is a cationic dye belonging to the thiazine
group, whereas Reactive Blue 19 is an anionic dye being part
of the anthraquinone family. Their main characteristics are
given in Table 1. The stock solution of methylene blue and
Reactive Blue 19 was prepared by dissolving a mass of 1 g in
1 L of distilled water. Then, a series of dilutions are made in
order to obtain appropriate concentrations.

Preparation of the biosorbent material

The Bifurcaria bifurcata (Bif-Bcata) alga was collected from
the Sidi Bouzid site in El Jadida city during the low tide
period. Once arrived at the laboratory, it was washed with
water, dried in a ventilated place and then in the oven at
60 °C for 24 h, and crushed and sieved to obtain a size of
0.5 mm. Figure 1 shows the raw material obtained.

Characterization methods

Fourier-transform infrared spectroscopy (FTIR) was used to
identify the functional groups present on the surface of
Bifurcaria bifurcata (Bif-Bcata) alga. The crushed Bif-Bcata
was analyzed by a FT-IR 8400S spectroscope (Shimadzu).
The spectrum was recorded between 4000 and 500 cm−1

(4-cm−1 resolution, 64 sweeps).
The morphology and elementary composition of Bif-Bcata

were characterized using a Hitachi S3400N scanning electron
microscope equipped with an X-ray energy spectrometer
(EDS) dispersion with an acceleration beam of 15 kV.

The determination of pH zero-point charges (pHZPC) was
carried out by preparing several solutions (volume = 50 mL)
of NaCl (0.01 M) in a closed Erlenmeyer flask and adjusting
the pH of each solution to values between 2 and 10 by adding
NaOH or HCl (1 M). The same amount of Bif-Bcata (mass =
50 mg) was added to each of the Erlenmeyer, which are then
stirred at 25 °C for 24 h. Finally, the final pH of each
Erlenmeyer flask is measured. The initial pH is represented
as a function of the final pH, and the point of zero charges

Table 1 The main characteristics of MB and RB19 dyes

Methylene Blue Reac�ve Blue 19 

Empirical formula C16H18ClN3S C22H16N2Na2O11S3

Molecular weight (g/mol) 319.85 626.54

λmax (nm) 664 590

Chemical structure

CAS Number 61-73-4 2580-78-1
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(pHzpc) is the point where the curve pH final versus initial pH
crosses the line pH initial = pH final (Zbair et al. 2018b).

Biosorption experiments

Effect of biosorbent mass

Fifty milliliters of 10 mg/L MB or RB19 solution was added
to variable biosorbent masses at a fixed pH = 5.6 (MB) and
pH = 1 (RB19), temperature (25 °C), and shaking time

(120 min). For each dose, equilibrium concentration was mea-
sured and the uptake percentage and adsorption capacity were
calculated.

Effect of solution pH

Fifty milliliters of 10 mg/L MB or RB19 solution was
shaken for 120 min at a temperature of 25 °C, with a
constant amount of biosorbent (0.02 g for MB and 0.1 g
for RB19) and at different pH values. The pH was ad-
justed either with the addition of diluted HCl or NaOH.
For each pH value, equilibrium concentration was mea-
sured, and then the uptake percentage and adsorption
capacity were calculated.

Effect of contact time

A mass of Bif-Bcata (0.02 g for MB and 0.1 g for RB19) was
added to 50 mL of aqueous MB or RB19 solution (10, 30, and
60 mg/L) and stirred at 200 rpm to study the effect of contact
time (0 to 120 min). After predetermined time intervals, the
mixture of Bif-Bcata and MB or RB19 was immediately sep-
arated and analyzed by a UV-Visible spectrophotometer to
measure the absorbance and calculate the residual concentra-
tion in solution.

Fig. 1 The Bifurcaria bifurcata crude material

Fig. 2 Characterization of Bif-
Bcata: FTIR (a); SEM image (b);
EDS (c) analysis
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Effect of the initial concentration

The effect of initial concentration on the adsorption of MB or
RB19 by Bif-Bcata was investigated employing different con-
centrations of MB or RB19 ranging from 0 to 1000 mg/L at
pH values 5.6 (MB) and 1 (RB19), and Bif-Bcata dosage of
0.02 g for MB and 0.1 g for RB19; the solution was then
shaken for 120 min at a temperature of 25 °C. For each initial
concentration, equilibrium concentration was measured, and
then the uptake percentage and adsorption capacity were
calculated.

Adsorption isotherm

The study of MB or RB19 adsorption isotherms on the
Bif-Bcata was carried out using batch equilibrium tech-
nique according to the following procedure: 50.0 mL of
MB or RB19 solutions (10–1000 mg/L) was added to a
fixed mass of Bif-Bcata of 0.02 g for MB and 0.1 g for
RB19 at optimized pH (pH = 5.6 (MB) and pH = 1

(RB19)). The mixture was shaken at a constant temper-
ature for a fixed period of time. The solution was then
filtered and the concentrations of MB or RB19 before
and after adsorption were measured using a UV-Visible
spectrophotometer. Based on the experimental results,
many indicators were determined and two isotherm
models (Langmuir and Freundlich) were studied using
the obtained data.

The amount of MB and RB19 biosorbed at equilibrium
expressed in terms of milligrams per gram and the removal
efficiency is given in percentage were evaluated using the
following equations (Al-Zboon et al. 2011):

Qe ¼
C0−Ceð Þ

m
� V

% Removalð Þ ¼ C0−Ceð Þ
C0

� 100

where:

Qethe amount adsorbed in milligrams of adsorbate per
gram of adsorbent
C0the initial concentration of MB or RB19 in milligrams
per liter
Cethe residual concentration of MB or RB19 in milli-
grams per liter
mthe adsorbent amount expressed in grams
Vthe solution volume of MB or RB19 in liters

Results and discussion

Characterization of Bif-Bcata

Fourier-transform infrared spectroscopy

The FTIR spectra of Bif-Bcata biosorbent (Fig. 2a) show sev-
eral peaks which means that this biosorbent is rich in func-
tional groups that can be an advantage in biosorption process.
The broadband centered at 3277 cm−1 indicates the presence
of OH groups on Bif-Bcata surface. The two weak signals
observed at 2925 and 2852 cm−1 are associated with C–H
groups. Furthermore, the peak noticed at around 1728 is rec-
ognized to C=O groups (Zbair et al. 2018e). Besides, the in-
tense band at 1616 cm−1 is related to asymmetric stretching of
carboxylate O–C–O (Kloareg 1991). Also, the bands posi-
tioned at 1415, 1224, and 1020 cm−1 might be assigned to

Fig. 3 a Effect of biosorbent mass on the amount adsorbed of MB and
RB19. b Effect of biosorbent mass on the removal efficiency of MB and
RB19 (V = 50mL;C0 = 10mg/L; t = 2 h; pH = 5.6 (MB); pH = 1 (RB19);
T = 25 °C)
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C–C–H and O–C–H deformation, C–O stretching, C–O and
C–C stretching vibrations of pyranose rings, and sulfates
groups (Kloareg 1991).

Scanning electron microscopy

The morphological characteristic of Bifurcaria bifurcata (Bif-
Bcata) alga was evaluated by a scanning electron microscope.
The micrographs of Bif-Bcata and the EDS analysis are
shown in Fig. 2b, c, respectively. Figure 2 b shows a rather
irregular and nonporous material.

EDS analysis

The EDS analysis presented in Fig. 2c shows the presence of
C, O, Cl, K, Na, Mg, P, and S in Bif-Bcata alga. These ele-
ments are in different quantities. Indeed, the amount of C, O,
Cl, and K is very high, whereas that of Na, Mg, P, and S is
lower.

Fig. 4 a Determination of point zero charges (pHPZC). b Effect of pH on MB biosorption. c Effect of pH on RB19 biosorption

Fig. 5 Effect of contact time on the biosorption of MB and RB19 onto
Bifurcaria bifurcata alga (V = 50mL;m (alga) = 20 mg (MB);m (alga) =
100 mg (RB19); pH = 5.6 (MB); pH = 1 (RB19); T = 25 °C)
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MB and RB19 removal studies

Effect of biosorbent mass

Figure 3 a indicates that the Bif-Bcata dose has an effect on the
amount of biosorbed dyes (MB or RB19). For MB, the
amount biosorbed at equilibrium (Qe) decreases rapidly from
22.8 to 4.6 mg/g in the range from 0.02 to 0.1 g of Bif-Bcata
mass and then continues to decrease slowly until it reaches
0.5 g where an equilibrium plateau begins to appear.
Concerning RB19, we can observe a similar behavior, a rapid
decrease in the amount biosorbed from 7.2 to 3 mg/g in an
interval of Bif-Bcata mass ranging from 0.02 to 0.1 g. Then, it
keeps decreasing slowly until 0.5 g where we start to see an
equilibrium plateau.

Figure 3 b shows that the Bif-Bcata dose influences also the
removal efficiency for both dyes. When the mass of Bif-Bcata
was varied from 0.02 to 1 g, the removal efficiency of MB
changes from 91.33 to 93.3% with a maximum of 96.13%
removal corresponding to 0.5 g of Bif-Bcata, while the remov-
al proficiency of RB19 changes from 29 to 43% with a max-
imum of 68.67% removal using the same amount of Bif-Bcata
(0.5 g).

In fact, when we are working with a low Bif-Bcata masses
(from 0.02 to 0.5 g), the removal efficiency increased by in-
creasing the mass of Bif-Bcata; this can be explained by the
availability of accessible sites in Bif-Bcata for MB or RB19.
With increasing doses of Bif-Bcata (m > 0.5 g), the number of
adsorption sites can be increased, but MB and RB19 molecules
have difficulties to approach these sites because of the conges-
tion. The presence of the big amount of Bif-Bcata favors the
agglomeration of particles, thus a diminution in the total surface
area of Bif-Bcata and consequently a decrease in the adsorption
capacity (Benzidia et al. 2015; Ouasfi et al. 2019a).

By analyzing the data of Fig. 3a, b, we notice the following
conclusions:

& ForMB biosorption, the high efficient removal obtained is
96% corresponding to 0.96 mg/g using 0.5 g of Bif-Bcata,
while only 0.02 g of Bif-Bcata is sufficient to achieve an
elimination percentage of 91% with an adsorption capac-
ity of 22.8 mg/g (we loss 5% in adsorption efficiency, but
25 times more of Bif-Bcata mass was gained).

& For the biosorption of RB19 and following the same rea-
son as before, we can notice that the optimal mass is 0.1 g
corresponding to 60.5% of removal efficiency and 3 mg/g

Fig. 6 Effect of MB and RB19 initial concentration on the biosorption capacity of Bifurcaria bifurcata alga (V = 50 mL; m (alga) = 20 mg (MB) and
100 mg (RB 19); pH = 5.6 (MB), 1 (RB19); t = 2 h; T = 25 °C)

Table 2 Non-linear equations of kinetic models

Kinetic model Equation Description References

Pseudo-first-order Qt =Qcal(1 − exp K1t) Qt (mg/g): the amount adsorbed at time t; Qcal (mg/g): the amount
adsorbed calculated at equilibrium; K1 (1/min): the PFO rate
constant; t (min): the contact time

Lagergren (1898)

Pseudo-second-order Qt ¼
K2 Q2

cal tð Þ
1þK2Qcal tð Þ K2 (g/mg min): the PSO rate constant Ho (2006)

Intraparticle diffusion Qt ¼ Kip t
1
2 þ C Kip (mg/g min1/2): rate coefficient; C (mg/g):

thickness of the boundary layer
Weber and Morris (1963)
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of adsorption capacity (we lose about 8% of biosorption
efficacy, but we gain 5 times more on biosorbent mass).

Finally, and in order to carry out the rest of our experi-
ments, we have retained the following optimum masses of
Bif-Bcata: 20 mg for MB and 100 mg for RB19.

Effect of solution pH

In all biosorption studies, the pH remains an important
factor, since it can influence both the structure of the
biosorbent and the adsorbate but also the interaction mech-
anism (Tran et al. 2017c; Zbair et al. 2018c; Anfar et al.
2019). The surface charge of a given biosorbent will, there-
fore, depend on the pH and ionic strength of the solution
which the material is contacted with (Tran et al. 2017a).
This charge can be positive, negative, or null depending on
the operating conditions (Zbair et al. 2018a). An important
surface characteristic is point zero charges (pHPZC) that
defines the pH for which the surface charge is null. The
results obtained are summarized in Fig. 4.

At pH values lower than pHPZC (zone before the intersec-
tion), we observe that the curve is above the straight line,
which means that the Bif-Bcata surface charges are globally
positive and at pH values higher than pHPZC (zone just after
the intersection), the curve is below the straight line; this in-
dicates that the Bif-Bcata surface is negatively charged. The
intersection of the curve with the straight line gives us the
pHPZC value which is equal to 5.8.

The effect of the solution pH on the biosorption efficiency
of MB and RB19 dyes onto Bif-Bcata was studied by varying
the pH between 1 and 10. The outcomes obtained are shown
in Fig. 4b, c.

The analysis of the results in Fig. 4b indicates several dif-
ferent steps in the pH evolution. Indeed, it can be observed
that at low pH values, the amount biosorbed of MB onto Bif-
Bcata is relatively small. When the pH is between 1 and 4, the
curve shows a rapid increase of Qe until it reaches a value of
23.4 mg/g. Thereafter, the evolution was quasi constant be-
tween pH 5 and 6. Finally, a low decrease was observed be-
tween pH 6 and 10. The maximum biosorption is therefore
situated at pH range between 5 and 6. Therefore, the optimal
pHwas 5.6 which corresponds to the best biosorption efficien-
cy. Subsequently, we performed all next biosorption experi-
ments of MB at this optimal pH value of 5.6.

At acidic pH, the biosorption of MB is low. The active sites
on Bif-Bcata surface are poorly ionized and the concentration
of [H3O

+] is higher in solution favoring the protonation of these

Fig. 7 Non-linear fit models (PFO, PSO, IPD) for MB and RB19
biosorption onto Bifurcaria bifurcata alga

Table 3 Kinetic model parameters (PFO, PSO, IPD) for MB adsorbed onto Bifurcaria bifurcata alga

C0 (mg/L) Pseudo-first-order Pseudo-second-order Intraparticle diffusion model

Qe, exp (mg/g) Qe, cal (mg/g) K1 (min−1) R2 Qe, cal (mg/g) K2 (g/mg min) R2 Kip (mg/g min1/2) C (mg g−1) R2

10 22.95 22.25 0.165 0.992 23.03 0.020 0.997 1.75 7.26 0.682

30 66.69 62.86 0.113 0.982 67.05 0.003 0.994 5.23 17.62 0.764

60 115.50 107.27 0.061 0.953 121.37 0.001 0.981 9.66 19.97 0.894

C0 (mg/L): the initial concentration of MB or RB19; Qe, exp (mg/g): the experimental amount adsorbed at equilibrium; Qe, cal (mg/g): the amount
adsorbed calculated at equilibrium
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sites. Above pH = 2, the concentration of H+ decreases com-
pared with that of cationic MB, resulting in an increase in the
rate of biosorption. At a high pH greater than 5, the active sites
are deprotonated allowing a high affinity for the cationic MB
dye instead of H3O

+ ions (Anfar et al. 2017; Zbair et al. 2018d).
So at pH < pHPZC, the MB molecule and the surface of Bif-

Bcata are positively charged, which favors electrostatic repul-
sions and therefore, the adsorption efficiency is relatively low.
For a pH between 5 and 6 (pHPZC = 5.8), the MB molecule and
Bif-Bcata surface are not protonated, which favors electrostatic
interactions, thus increasing the percentage of biosorption. At
higher pH values (pH > pHPZC), the MB molecule is cationic
whereas the Bif-Bcata surface is negative, which reinforces the
biosorption either by electrostatic interaction or by dispersion and
the biosorption rate remains almost constant. Above pH 9,MB is
in a very basic medium, which explains the slight decrease in the
adsorption rate (Hamdaoui and Chiha 2007).

Figure 4 c shows the pH effect on biosorption of RB19
onto Bif-Bcata. At pH = 1, the elimination efficiency is
maximum and equal to 60.5%, which corresponds to
3 mg/g in biosorbed quantity. Then, at pH = 2, it decreases
to 39.2%. Then, for pH values higher than 2, a dramatic
decrease was observed and the removal efficiency is in-
creased from 39.2 to about 1%. At basic pH, biosorption
is not favorable. The maximum biosorption is observed at
pH 1; therefore, the subsequence of our experimental work
was performed at pH = 1.

At pH= 1, the biosorption of RB19 is maximum. The con-
centration of [H3O

+] is high enough to allow the protonation of
the RB19 sulfonate groups, which favors the interaction between
the RB19 and the functional groups of the Bif-Bcata. Above
pH = 2, the concentration of H+ is not sufficient to protonate
RB19 anions, resulting in a rapid decrease in biosorption rate.
At high pH, the active sites of the Bif-Bcata and the RB19 are
strongly ionized so the biosorption is not favorable.

So for pH < pHPZC (pH = 1), the RB19 molecule that is
normally anionic is found protonated in a strongly acidic me-
dium and the surface of Bif-Bcata is positive. This situation
favors non-electrostatic interactions between the RB19 func-
tional groups and the surface of our adsorbent (Bif-Bcata) and
consequently increases the efficiency of the biosorption. For a
pH between 5 and 6 (pHPZC = 5.8), the RB19 molecule and
the surface of Bif-Bcata are not protonated, which favors elec-
trostatic repulsions, thus reducing the rate of biosorption. At
higher pH values, the RB19 molecule is anionic while the
surface of Bif-Bcata is negative, which further enhances elec-
trostatic repulsions and maintains a very low biosorption rate.

Effect of contact time

The result shown in Fig. 5 illustrates the evolution of the
biosorption efficiency of MB and RB19 by Bif-Bcata in the
function of contact time. During the first 15 min, we observe
that the biosorption efficiency increased rapidly to reach 82%

Fig. 8 Non-linear isotherm
models of MB and RB19
biosorbed onto Bifurcaria
bifurcata alga (V = 50 mL; m
(alga) = 20 mg (MB) and 100 mg
(RB 19); pH = 5.6 (MB), 1
(RB19); t = 2 h; T = 25 °C)

Table 4 Kinetic model parameters (PFO, PSO, IPD) for RB19 adsorbed onto Bifurcaria bifurcata alga

C0 (mg/L) Pseudo-first-order Pseudo-second-order Intraparticle diffusion model

Qe, exp (mg/g) Qe, cal (mg/g) K1 (min
−1) R2 Qe, cal (mg/g) K2 (g/mg min) R2 Kip (mg/g min1/2) C (mg g−1) R2

10 3.08 2.86 0.098 0.971 3.10 0.054 0.989 0.24 0.73 0.803

30 6.39 5.84 0.059 0.951 6.64 0.012 0.979 0.52 1.04 0.888

60 11.71 10.93 0.063 0.971 12.30 0.007 0.991 0.97 2.13 0.882

C0 (mg/L): the initial concentration of MB or RB19; Qe, exp (mg/g): the experimental amount adsorbed at equilibrium; Qe, cal (mg/g): the amount
adsorbed calculated at equilibrium
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and 47% for MB and RB19, respectively, then continues to
increase moderately, before stabilizing and reaching equilibri-
um with a performance of 91.8% and 60.98% for MB and
RB19, respectively.

Based on the results obtained in Fig. 5, it can be deduced that
the biosorption kinetics of both dyesMB and RB19 is composed
of two distinct steps. The first step is fast and indicates that the
MB/RB19 adsorbs on easily accessible sites (externalmass trans-
fer), while the second step is slow and is characterized by a
diffusion of MB/RB19 to less accessible sites (internal mass
transfer) (Aarfane et al. 2014b; Ouasfi et al. 2019b).

Effect of the initial concentration

The study of the effect of MB initial concentration on the
adsorption capacity of Bif-Bcata was carried out by varying
the MB concentration from 0 to 1000 mg/L. The results ob-
tained are shown in Fig. 6. The curve indicates a rapid increase
in biosorption capacity for concentrations ranging from 0 to
1000 mg/L. The retention capacity continues to improve with
increasing initial concentration, indicating the existence of
attraction forces between the Bif-Bcata surface and cationic
MB. Then, an equilibrium plateau appears when the concen-
tration reaches the value of 600 mg/L, which may reflect the
saturation of the active sites involved in the biosorption pro-
cess (Benzidia et al. 2015; Ouasfi et al. 2019a).

We have also studied the influence of the initial concentra-
tion of RB19 on the biosorption capacity of Bif-Bcata by
operating this time with concentrations ranging from 0 to
1000 mg/L. The results obtained are illustrated in Fig. 6.

Figure 6 indicates that the biosorbed amount of RB19 in-
creases rapidly from 20 to 400mg/L. The biosorption capacity

continues to go upwith the increase of the initial concentration
without the appearance of the equilibrium plateau. This can be
explained by the existence of a large number of active sites
(Ahmad et al. 2015) on the Bif-Bcata surface that may be
available to uptake RB19 at concentrations reaching
1000 mg/L or even higher. The same behavior was observed
when using watermelon rinds (Ahmad et al. 2015) as adsor-
bent under experimental conditions pH = 2 and T = 30 °C.

Kinetic study

It is very important to predict the rate at which the pollutant is
removed (Tran et al. 2017b). Kinetic modeling of the
biosorption process allows describing the possible biosorption
mode, to quantify the amount biosorbed at equilibrium and also
to evaluate the kinetics parameters (Foo and Hameed 2010).

Non-linear fitting of the pseudo-first-order (PFO), pseudo-
second-order (PSO), and intraparticle diffusion (IPD) kinetic
models was used to describe the biosorption kinetics of MB
and RB19 on Bif-Bcata. The PFO, PSO, and IPD equations
used in this study are presented in Table 2.

The initial concentrations of 10, 30, and 60 mg/L for MB
and RB19 were chosen to study the biosorption kinetics
(Fig. 7). According to the results obtained from the PFO and
PSO kinetic models (Tables 3 and 4), it can be seen that for the
biosorption kinetics of both dyes MB and RB19, the values of
the regression coefficients R2 are closer to the unity in the case
of PSO model. In addition, the amount biosorbed calculated
theoretically (Qe, cal) was found close to that found experimen-
tally (Qe, exp). Hence, the PSOmodel gives a better description
of the biosorption kinetics of MB and RB19 onto Bif-Bcata.

Table 5 The non-linear equations of the Langmuir and Freundlich models

Models Equation Description References

Langmuir Qe ¼ Qmax KL Ce
1þKL Ce

Qe (mg/g): the amount adsorbed at equilibrium; Qmax (mg/g): the maximum
adsorption capacity; KL (L/mg): the Langmuir constant; Ce (mg/L):
the concentration \of adsorbate at equilibrium

Langmuir (1916)

RL ¼ 1
1þKL�C0

KL (L/mg) is the Langmuir constant and C0 (mg/L) is the initial concentration.
According to RL values, we can conclude that the adsorption is irreversible
(RL = 0), favorable (0 < RL < 1), linear (RL = 1), or non-favorable (RL > 1).

Foo and Hameed (2010)

Freundlich Qe ¼ K F C
1
n
e KF ((mg/g) (L/mg)1/n): the Freundlich constant; 1/n: heterogeneity factor.

According to the value of 1/n, the adsorption can be irreversible (1/n = 0);
non-favorable (1/n > 1); favorable (0 < 1/n < 1)

Freundlich (1907)

Table 6 Parameters of isotherms models of MB and RB19 biosorbed onto Bifurcaria bifurcata alga

Langmuir model Freundlich model

Qmax (mg/g) KL (L/mg) RL R2 KF (mg/g) (L/mg)1/n n R2

MB 2744.5 0.012 0.046 0.986 189.8 2.56 0.912

RB19 88.7 0.004 0.238 0.994 2.32 1.96 0.974
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To study the transfer mechanism of dyes MB and RB19 on
the surface of the alga Bif-Bcata, kinetic results were analyzed
using the IPD model in its non-linear form. For both MB and
RB19 dyes, the plot of the IPD model does not pass through
the origin, which indicates the existence of some boundary
layer effect (Al-Zboon et al. 2016). According to Fig. 7, at
the beginning of the adsorption process, the rate is more im-
portant than the second step. The MB and RB19 dyes are
firstly biosorbed on the external surface of Bif-Bcata.
Subsequently, and after saturation of the external layer, the
MB/RB19 could diffuse towards the internal active sites of
Bif-Bcata but more slowly because of the increasing resis-
tance to diffusion. These results led to conclude that the
biosorption of MB and RB19 dyes onto Bif-Bcata took place
in two stages: very fast chemical adsorption and slow
intraparticle diffusion (Zbair et al. 2019b).

Adsorption isotherms

The biosorption isotherms studies of MB and RB19 were
carried out to determine their modes of interaction with
Bifurcaria bifurcata alga. The interpretation of the surface
properties and biosorption capacities of the Bif-Bcata requires
the modeling of equilibrium data by Langmuir and Freundlich
models (Fig. 8). The Langmuir model assumes monolayer
adsorption on a homogeneous surface composed of a limited
number of identical sites. All sites are energetically equivalent
and no interaction between the adsorbed molecules occurs
(Langmuir 1916). On the other side, the Freundlich model
supposes interactions between the adsorbed molecules, due

to multilayer adsorption on heterogeneous surfaces
(Freundlich 1907). The non-linear equations of the
Langmuir and Freundlich models are given in Table 5.

By comparing the correlation coefficients values (R2)
(Tables 6), the R2 values indicate that the Langmuir model pro-
vides a better description of the experimental data. This means
that the biosorption ofMB and RB19 dyes onto Bif-Bcata occurs
in monolayers on a homogeneous surface with the absence of
any interaction between the adsorbed molecules (MB/RB19).
Moreover, we also found an exceptional value of maximum
biosorption capacity (2744.5 mg/g) of MB, while 88.7 mg/g in
the case of RB19. In addition to that, the values of the parameter
KL, related to the affinity between MB/RB19 and Bif-Bcata,
were equal to 0.012 L/mg and 0.004 L/mg for MB and RB19,
respectively. This finding allows us to deduce that the active sites
of Bif-Bcata have 3 times more affinity for the cationic dye MB
than the anionic dye RB19. Another interesting parameter is also
used to confirm the adsorption mode; it is RL determined from
the Langmuir model (please see Table 5).

From the results of Table 6, the RL values were 0.046 and
0.238 for MB and RB19 adsorption, respectively. These two
values, between 0 and 1, clearly prove that the biosorption of
MB and RB19 onto Bif-Bcata is more favorable (Al-
Harahsheh et al. 2015).

We have compared the biosorption capacity of our Bif-Bcata
alga with other adsorbents already used and mentioned in the
literature for the removal of the two dyes MB and RB19
(Table 7). It is obviously clear that with the exceptional value
of Qmax = 2744.5 mg/g found for MB, our biosorbent is very
effective and can be considered a material of choice for the

Table 7 Comparison of the maximum adsorption capacities between the Bifurcaria bifurcata alga and other adsorbents cited in the literature for MB
and RB19 dyes at T = 25 °C using the Langmuir model

Adsorbents utilized Qmax (mg/g) Solution pH References

Methylene blue Bifurcaria bifurcata seaweed 2744.5 pH= 5.6 This work

Cotton industry waste 303 pH= 10 Tenev et al. (2019)

H3PO4-treated eucalyptus leaves 194.347 pH= 8 Ghosh et al. (2019)

Soybean hulls 169.90 pH = 7 Cusioli et al. (2019)

Wodyetia bifurcata biochar 149.34 Not reported dos Santos et al. (2019)

Kaolinite clay 102.04 pH = 8 Anoop Krishnan et al. (2015)

Palm leaflets 72.3 pH = 6 Zeghoud et al. (2019)

Palm frond base 70.87 pH = 6 Zeghoud et al. (2019)

Reactive Blue 19 NiO nanoparticles 98.83 pH = 6.5 Monsef Khoshhesab and Ahmadi (2016)

CCNTs 95.24 pH = 4 Hu et al. (2017)

Z300 powder 89.3 pH = 4 Ada et al. (2009)

Bifurcaria bifurcata seaweed 88.7 pH= 1 This work

Bis aldehyde-functionalized silica gel 73.529 pH= 4 Banaei et al. (2017)

Mg(OH)2-bentonite 66.9 pH = 2 Chinoune et al. (2016)

Z075 powder 38.9 pH = 4 Ada et al. (2009)

KSF-DP 30.76 Natural pH Silva et al. (2012)
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removal of cationic dyes. Furthermore, the adsorption capacity
of 88.7 mg/g obtained for RB19 is compared with other adsor-
bents. Given these indications, theBifurcaria bifurcata alga can
be used efficiently to remove the impact of both cationic and
anionic dyes from the environmental systems.

Conclusion

During this work, we have studied the biosorption capability of
two dyes MB and RB19, using a marine alga called Bifurcaria
bifurcata (Bif-Bcata), which is widely available along the
Moroccan Atlantic coastlines. The experimental results show
that the biosorption process depends on the mass of Bif-Bcata,
the initial dye concentration, and the pH of the solution. The
optimal masses of Bif-Bcata were 20 mg and 100 mg for the
biosorption ofMB and RB19, respectively. The best adsorption
efficiency was obtained at pH values 5.6 and 1 for MB and
RB19, respectively. The kinetic study for biosorption of MB
and RB19 follows the pseudo-second-order model. The model-
ing of biosorption isotherms revealed that the Langmuir model
is more appropriate to describe the biosorption equilibrium,
which means that the biosorption of MB and RB19 dyes onto
Bif-Bcata occurs in monolayers on a homogeneous surface,
with maximum biosorption capacities reaching 2744.5 mg/g
and 88.7 mg/g for MB and RB19, respectively. Considering
all these outcomes, we suggest that Bifurcaria bifurcata alga
can be considered a promising biomaterial to be used as an
effective adsorbent to remove pollution caused by cationic
and anionic dyes often found in liquid effluents.
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