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Abstract
Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame retardants (BFRs), present in the environment, animals,
and humans. Their levels, distribution, and human exposure have been studied extensively, and over the last decade, various legal
measures have been taken to prohibit or minimize their production and use due to the increasing amount of evidence of their
harmful effects on human and animal health.Our aim here was to make a comprehensive and up-to-date review of the levels and
distribution of PBDEs in the aquatic environment, air, and soil, in indoor dust, and in humans. To fulfill this, we searched through
Web of Science for literature data reported in the last five years (2015–2019) on levels of at least six key PBDE congeners in
abovementioned matrices. According to our summarized data, significant PBDE mass concentrations/fractions are still being
detected in various sample types across the world, which implies that PBDE contamination is an ongoing problem. Secondary
sources of PBDEs like contaminated soils and landfills, especially those with electronic and electrical waste (e-waste), represent a
particular risk to the future and therefore require a special attention of scientists.

Keywords Brominated flame retardants . PBDE . Persistent organic pollutants . POPs . Human exposure . Environmental
matrices . Review

Polybrominated diphenyl ethers (PBDEs) are a class of bro-
minated flame retardants (BFRs) that came into use in the
1970s as additives to retard/reduce the combustibility of a
variety of textile materials, furniture fillers (polyurethane
foam), and electronic equipment (UNEP 2015).

There are 209 theoretically possible PBDE congeners di-
vided into 10 congener groups depending on the number of
bromine atoms, but they all share a common structure
consisting of a brominated diphenyl ether molecule with two
benzene rings connected with an oxygen atom (Fig. 1). For
commercial use, they are mixed in various percentages (La
Guardia et al. 2006) and marketed in three formulations
named after the prevalent congener group in the mixture: (1)

the “penta” formulation, (2) the “octa” formulation, and (3)
the “deca” formulation. Respectively, they accounted for 11%,
6%, and 83% of the global production in 2001 (La Guardia
et al. 2006; US EPA 2010).

In contrast to certain BFRs that are mixed with plastic
before polymerization to form covalent bonds, PBDEs are
added to polymers without forming chemical bonds with the
materials and can therefore easilymigrate into the surrounding
air, dust, soil, and water during their lifetime (Zhang et al.
2011; UNEP 2015; Anh et al. 2017). They were first measured
in the environment in the 1980s (Andersson and Blomkvist
1981), and have penetrated all environmental compartments
ever since (US EPA 2010). In 2009, the United Nations
Environment Programme’s Stockholm Convention added
them to the group of persistent organic pollutants (POPs) be-
cause they have an environmental half-life of several years,
can travel long distances in the atmosphere, have a tendency to
bioaccumulate and biomagnify in the food web, and are toxic
to humans and animals (UNEP 2001; DeWit 2002). To reduce
these risks, the European Union banned the use of the penta
and octa commercial mixtures in 2004 and the use of the
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decaBDE mixture in electrical and electronic equipment in
2008. The USA followed suit by discontinuing production
of the penta and octa mixtures in 2004 (Harrad et al. 2006;
US EPA 2010) and of decaBDE in 2013 (US EPA 2014). In
2009, the Stockholm Convention banned the production, use,
import, and export of the penta and octa commercial mixtures
and in 2017 of decaBDE (Bramwell et al. 2017).

Despite these actions, massive reserves of products con-
taining PBDEs are still in circulation and will continue to
release them into the environment for a long time (Abbasi
et al. 2015). Part of the problem is the rapidly growing e-
waste (Ohajinwa et al. 2019) consisting of discarded electrical
and electronic equipment that contains several toxic
chemicals, including PBDEs (Robinson 2009; Ilankoon
et al. 2018). It is the most prominent in Asian countries that
import and recycle e-waste through legal and illegal channels.
In these countries, soils at e-waste sites are an important sec-
ondary source of pollution (Leung et al. 2007; Tue et al.
2013).

The objective of this review is to summarize the data pub-
lished in the last five years about the distribution and content
of PBDEs in humans and various environmental compart-
ments worldwide. It also addresses concerns about high
PBDE levels detected in the areas where e-waste is collected
or processed.

Environmental fate and human exposure

Semivolatile pollutants like PBDEs get into the atmosphere as
a result of combustion from domestic and industrial sources,
emissions from waste incineration or motor vehicles, and
(il)legal e-waste landfills (Farrar et al. 2004; Pozo et al.
2016; Degrendele et al. 2018). Their levels and gas/particle
partitioning in the atmosphere depend on the physico-
chemical properties of a particular PBDE congener, environ-
mental conditions, and the abundance, composition, and size
of suspended particles (Besis et al. 2017; Degrendele et al.
2018). Once PBDEs are sorbed onto airborne particles, they
reach aquatic and terrestrial environments. Atmospheric trans-
port can take them over long distances, which has been con-
firmed by the detection of PBDEs in areas as remote as the
Arctic and Antarctica (Law et al. 2014; Vecchiato et al. 2015;
Khairy et al. 2016; Markham et al. 2018). Being hydrophobic,
PBDEs tend to attach to particulate matter and therefore accu-
mulate in sediment and soil, both serving as PBDEs environ-
mental sinks (Law et al. 2006; Anh et al. 2017; Mcgrath et al.
2017; Pei et al. 2018; Tiwari et al. 2018; Ma et al. 2019).

Aquatic environments are exposed to PBDEs not only
through atmospheric deposition but also through effluent
and sewage sludge fromwastewater treatment plants and land-
fill leaches (Aigars et al. 2017; Tombesi et al. 2017; Liu et al.
2018; Pei et al. 2018). With their low vapor pressure, very low

water solubility, and high octanol/water partition coefficient
(log Kow), PBDEs in aquatic environments adsorb onto the
organic fraction of sediments, suspended particulate matter, or
enter aquatic organisms. There, they bioaccumulate in lipid-
rich tissues of organisms and biomagnify along food chains
(Webster et al. 2010; Govaerts et al. 2018). This is why aquatic
organisms tend to be highly burdened with PBDEs.

Terrestrial animals, in turn, are much less exposed to bio-
available PBDEs, and—to our knowledge—only three studies
have reported PBDE levels in them over the last five years:
two in carnivore species from the USA (Boyles and Nielsen
2017; Boyles et al. 2017) and one in two herbivore and one
omnivore species from Latvia (Zacs et al. 2018).

Humans are exposed to PBDEs through diet, inhala-
tion, accidental ingestion of dust, and dermal contact.
According to the European Food Safety Authority
(EFSA 2011), the main source of exposure would be food
of animal origin with higher fat content (fish, meat, and
dairy products), in which PBDEs tend to accumulate due
to their lipophilicity. One of the first reports that found a
strong association between the consumption of contami-
nated fish and elevated PBDE levels in human serum
comes from Sweden. Median PBDE level in the serum
of Swedes who did not consume fish was 0.4 ng/g lipid
weight (lw) (< 0.1–2.5; 10–90 percentile) compared to
2.2 ng/g lw (0.96–5.7; 10–90 percentile) in consumers
who ate between 12 and 20 meals of fatty Baltic Sea fish
per month (Sjödin et al. 2000). Another recent study from
the USA also suggests that people who eat over 10 serv-
ings of seafood per week have a significantly higher
∑PBDE in serum than those who eat less than 1 serving
per week (Kuo et al. 2019).

Martellini et al. (2016) reported PBDEs in various food-
stuffs commonly consumed in Italy (meat, eggs, milk, cheese,
fish, fish oil, and mussels). The highest mass fraction of total
PBDEs was measured in dairy products (18,537 pg/g ww),
meat (12,672 pg/g ww), and eggs (9729 pg/g ww).
PentaBDEs were dominant in fish oil, while BDE 209 domi-
nated in other food groups. The authors also showed that
exposure to PBDEs through food varied considerably with
region and personal food habits.

Lorber (2008) pointed out much higher PBDE levels found
in a US population than the rest of the world, even though
PBDE levels in US foodstuffs were not. These findings

m+n=1-10

Fig. 1 General structure of the PBDE congeners
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pointed to dust inhalation and/or ingestion as one of the most
significant routes of human exposure to PBDEs, especially
considering the dominantly indoor lifestyle (house, car,
school/kindergarten, office/working place). That PBDE expo-
sure through dust inhalation/ingestion is even greater than
from food has been confirmed by several reports (Schecter
et al. 2006; Wu et al. 2007; Stapleton et al. 2008; Lorber
2008; Fraser et al. 2009; Johnson-Restrepo and Kannan
2009; Wei et al. 2009). Indoor environments are contaminated
with PBDEs from flame retardants in a wide range of consum-
er products that remain in use for a long time, such as poly-
urethane foam in furniture and automobile seats, textiles, and
electrical and electronic equipment. From these products,
PBDEs are released into the ambient air through volatilization,
mechanical abrasion, and/or sorption to dust particles. Higher
PBDE concentrations in dust from the USA than from Europe
and Asia seems to directly correlate with the historical usage
of PBDEs (Whitehead et al. 2011). Similarly, higher PBDE
human body burdens found in California (Zota et al. 2008;
Rose et al. 2010) and the UK (Bramwell et al. 2017) than in
the rest of the USA and Europe seem to be related to very strict
fire protection regulations in California and the UK.

Regardless of the exposure routes, the most vulnerable group
to PBDE exposure are children. Numerous studies found higher
PBDE levels in children’s blood than in blood of their mothers
(US EPA 2010; Lunder et al. 2010; Shin et al. 2016; Terry et al.
2017), parents (Fischer et al. 2006; Wu et al. 2015), or generally
of the adult population (Toms et al. 2009; Rose et al. 2010).

Similar to other lipophilic contaminants, PBDEs enter the
organism as early as in the prenatal period, as evidenced by
their findings in the umbilical cord blood (Herbstman et al.
2008; Zota et al. 2018), placenta (Dassanayake et al. 2009),
fetal blood (Mazdai et al. 2003), and fetal liver (Zota et al.
2018). Breastfeeding, however, is the period of life when
PBDE intake is at its peak (Jones-Otazo et al. 2005; Johnson-
Restrepo and Kannan 2009). PBDEs accumulated in breast
milk are directly transferred to infants, who receive very high
doses per the unit of mass. Exposure to PBDEs continues
through early childhood, but the dominant exposure route is
now dust ingestion and inhalation associated with their frequent
hand-to-mouth activity and the extensive contact with floors,
carpets, and other dusty surfaces (EPA 2008; Stapleton et al.
2008). An interesting survey conducted by Hoffman et al.
(2017) on children’s blood and hand wipe samples showed that
toddlers who licked their fingers while eating, who playedmore
with plastic toys, and who were more active in general had
higher PBDE levels on their hands and in their serum.

Toxicity

Knowledge about the mechanisms of toxic PBDE action and
effects on human health is still quite limited. Toxicity has

mostly been investigated in animal studies, and several recent
studies have evaluated the associations between PBDE con-
centrations in human tissues (e.g., blood, breast milk) and
various health effects (ATSDR 2017).

Animal models report adverse effects at low doses of
pentaBDEs and octaBDEs (from 0.6 and 2 mg/kg body
weight, respectively) and much higher doses of decaBDEs
(80 mg/kg body weight) and include effects on neurobehav-
ioral development and thyroid hormone levels for pentaBDEs,
fetal toxicity/teratogenicity for octaBDEs, and morphological
effects in the thyroid, liver, and kidney of adult animals for
decaBDEs (Darnerud 2003). Carcinogenicity studies have for
now been limited to decaBDEs and show some effects only at
very high doses, which is probably why the International
Agency for Research on Cancer (IARC) still has not classified
decaBDEs in respect to its carcinogenicity to humans
(Darnerud 2003).

Glazer et al. (2018) reported short- and long-term behav-
ioral impairments in zebrafish embryos exposed to low con-
centrations of BDE 47 (0.01–0.3 μM) and BDE 99 (0.003–
20 μM). They also found that exposure to very low concen-
trations had no visible effects on larval activity but adult be-
havior was still strongly affected.

Epidemiological studies point to an association between
prenatal PBDE exposure and lower birth weight, lower levels
of thyroid-stimulating hormone (TSH), lower intelligence
quotient (IQ), increased incidence of hyperactivity disorder,
and impai red cogni t ive , motor, and behaviora l
neurodevelopment (Gibson et al. 2018). Postnatal exposure
is associated with similar effects, including lower IQ and in-
creased incidence of hyperactive or aggressive behavior.

One possible explanation for the observed neurological
impairments might be related to changes in the thyroid hor-
mone status. The development of the nervous system highly
depends on thyroid hormones, thyroxine (T4) in particular,
and is the most sensitive to environmental effects from the last
trimester of pregnancy to two years of age. In vitro evidence
suggests that PBDEsmay disrupt thyroid hormone production
by binding to thyroid hormone receptors, because PBDEs and
T4 have a similar stereochemical structure (Marchesini et al.
2008). Animal and human studies indicate that PBDEs may
alter the circulating levels of thyroid hormones (Costa et al.
2008; Turyk et al. 2008; van der Ven et al. 2008; Meeker et al.
2009; Chevrier et al. 2010).

Chemical analysis

Analytical methods for PBDE determination are generally
similar to those used for determining polychlorinated biphe-
nyls, but de Boer and Cofino (2002) pointed that improve-
ments are still needed, especially when it comes to the analysis
of BDE 209, which requires a different approach.
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PBDE analysis in environmental and human samples takes
several steps (sample pretreatment, extraction, extract clean-
up, and final instrumental analysis), and we will mention only
frequently used techniques in this review, without going into
detail.

Sample pretreatment means moisture removal from sam-
ples where is necessary and/or convenient. Extraction will
highly depend on sample type and available laboratory equip-
ment. The most common extraction methods from solid sam-
ples include Soxhlet extraction, ultrasound extraction, accel-
erated solvent extraction (ASE), microwave-assisted extrac-
tion (MAE), and supercritical fluid extraction (SFE) (de la
Cal et al. 2003; Regueiro et al. 2006; Wang et al. 2010;
Annunciação et al. 2017). For liquid samples, the most com-
mon method is liquid-liquid (LLE) (Byczkiewicz and
Jabłoński 2015; Darrow et al. 2017; Pei et al. 2018; Kuo
et al. 2019) and solid phase extraction (SPE) (Thomsen et al.
2002; Covaci et al. 2003; Thomsen et al. 2007). Extract clean-
up depends on the matrix. Sediments and soils may require
sulfur removal, whereas biota require lipid removal, which
can be done with sulfuric acid treatment, gel permeation chro-
matography (GPC), or column adsorption chromatography on
sorbents like silica, alumina, or Florisil (Boyles et al. 2017;
Giulivo et al. 2017; Novak et al. 2017; Persson et al. 2019).
Instrumental analysis is based on gas-chromatographic (GC)
separation on nonpolar or semi-polar capillary columns with
mass spectrometric (MS) detection (Vecchiato et al. 2015;
Newton et al. 2015; Martellini et al. 2016; Mcgrath et al.
2016; Pozo et al. 2016; Kademoglou et al. 2017; Liu et al.
2018; Pei et al. 2018; Ohajinwa et al. 2019; Wu et al. 2019).

There are many articles on the determination of PBDEs in a
variety of environmental samples, but the determination of
one frequently reported congener, BDE 209, is particularly
demanding because (1) it is not stable at high temperatures
in the GC injector and GC column; (2) it is sensitive to deg-
radation by UV light; (3) in the MS source it behaves differ-
ently than chlorinated and lower-brominated compounds (de
Boer and Cofino 2002); and (4) it may easily adsorb onto
small dust particles in the laboratory, which may result in
sample contamination (Covaci et al. 2003). Thermal decom-
position of BDE 209 can be avoided by using a short GC
column and a thermally inert GC injection port (Beser et al.
2014), but this means that it should be analyzed separately
from other PBDEs. Another way to address the difficulties
w i t h BDE 209 de t e rm ina t i on i s t o u s e l i qu i d
chromatography–tandem mass spectrometry (LC-MS/MS)
(Abdallah et al. 2009).

Levels and distribution

To avoid repeating data presented in previous review articles
covering massive amounts of earlier data (de Wit 2002; Law

et al. 2006, 2014; Mcgrath et al. 2017; Tang and Zhai 2017),
we limited our literature search to the last five years of re-
search (2015 to September 2019). This is currently a very
active research area, and the number of articles reporting
PBDE levels in environmental samples is constantly increas-
ing. Since there is no list of key toxic PBDE congeners to be
monitored, reports vary from just one to more than 10 conge-
ners. However, as certain congeners dominated in commercial
formulations, they were also more frequently detected in en-
vironmental and biota samples than others, which ultimately
led to narrowing the range of research to the following con-
geners: BDE 47, BDE 99, BDE 100, BDE 153, and BDE 154
as representatives of the penta formulation (occasionally in-
cluding BDE 28 and BDE 138 as well), and BDE 183 and
BDE 209 as representatives of the octa and deca formulations,
respectively. We decided to take in consideration studies that
include at least six congeners. Studies not reporting data on
BDE 209 were not excluded from this review, as we are well
aware of the difficulties involved in BDE 209 analysis, which
has narrowed down the possibility of accurate measurements
to a limited number of laboratories.

To make comparison easier between studies, we compared
the sums of the mass fractions of all analyzed PBDE conge-
ners in specific research (ΣxPBDE), unless indicated other-
wise. For the same reason, we also did our best to present
reported data as uniformly as possible. PBDE mass
fractions/concentrations in soil and sediment samples were
mostly expressed in ng/g dry weight (dw), in air samples in
pg/m3, and in dust samples in ng/g of dust. In human and biota
samples, mass fractions have been lipid-normalized and re-
ported in ng/g of lipid weight, because these contaminants
are highly lipophilic and accumulate in lipids. Some authors
(Sühring et al. 2016; Aigars et al. 2017; Novak et al. 2017;
Trabalón et al. 2017), however, report mass fractions in biota
in ng/g of wet weight (ww), which facilitates assessment of
human intake and comparison with Environmental Quality
Standards (EQS) in biota set in the EU Directive 2013/39/
EU for the evaluation of potential ecotoxicological risk of
certain pollutants in aquatic environments. The EQS in biota
refers to the sum of mass fractions of six PBDE congeners—
BDE 28, 47, 99, 100, 153, and 154—and is set to 0.0085 ng/g
ww. This is the limit mass fraction below which no harmful
effects are expected in wildlife or humans.

Aquatic environment

Aquatic organisms are highly susceptible to bioaccumulation
and biomagnification of organic pollutants, which can cause
serious health problems, especially in species at the top of
food chains. Accordingly, consumption of fish has been rec-
ognized as one of the main sources of human exposure to
organic pollutants through food, and in these terms, fish is
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probably the most investigated sample for PBDE contamina-
tion (Sühring et al. 2016; Anh et al. 2017; Govaerts et al.
2018).

Many studies have investigated PBDE levels and distribu-
tion in aquatic environments all over the world (Sühring et al.
2016; Aigars et al. 2017; Annunciação et al. 2017; Novak
et al. 2017; Markham et al. 2018; Pei et al. 2018). Eljarrat
and Barceló (2018) summarized literature data on PBDE
levels in river fish samples and compared them to the corre-
sponding EQS limits to see if they were exceeded. Taking into
account even the best case scenario, the vast majority of fish
samples from Europe exceeded the EQS limits at least hun-
dred times over. Reports for Asia and North America were
even worse. Authors also discuss controversy around EQS,
implying that it is set too low and that it should be revised as
soon as new toxicological data will be available.

Table 1 shows PBDEmass fractions in fish reported on wet
weight basis. The highest levels of 11 ng/g ww were found in
Norway (Govaerts et al. 2018). If we exclude this extreme, the
highest level of 1.3 ng/g ww is two orders of magnitude over
the EQS. Moreover, even the lowest reported level (0.03 ng/g
ww) is 3.5 times higher than the EQS set for biota.

Recently, Giulivo et al. (2017) compared PBDE levels in
sediment and biota samples from three European rivers, one
continental (the Sava), one Mediterranean (the Evrotas in
Greece), and one Alpine (the Adige, Italy). The biota samples
contained all of the analyzed PBDE congeners (BDE 28, 47,
99, 100, 153, 154, 183, and 209), while none of the sediment
samples contained BDE 153, 154, or 183. Furthermore, the
biota samples had significantly higher sum PBDEs. BDE 209
was the most abundant congener in the continental and Alpine
river sediments, while BDE 47 was the most abundant conge-
ner in the Mediterranean river sediments as well as fish sam-
ples. These findings suggest lower use of decaBDE in com-
mercial mixtures in the Mediterranean.

The samples along the continental, Sava river were collect-
ed in four countries through which it passes, including four
locations in Croatia. There, the ∑8PBDE ranged from below
the limit of detection (< LOD) to 16.7 ng/g dw in sediment,
and from 11.9 to 461 ng/g lw in fish, which was higher than in
the Mediterranean or the Alpine river. The conversion of the
PBDE concentrations in fish samples from the Sava from the
lipid to wet weight basis showed that all samples exceeded the
EQS threshold. In general, however, all PBDE levels, regard-
less of the river, were comparable to other European countries.
The Sava and the Adige PBDE sediment levels were also
comparable to one Australian report (Anim et al. 2017).
Giulivo et al. (2017) also reported that BDE 209 contributed
with more than 90% to the sum of congeners. In contrast,
lower PBDE levels were reported in sediment samples collect-
ed from five rivers and eight lakes in Latvia (Aigars et al.
2017). In that study, BDE 209 was not detected in any of the
sediment samples but was dominant in fish samples. For

comparison, several orders of magnitude higher PBDE levels
were detected in sediment samples collected around a flame
retardant manufacturing plant in China (Song et al. 2016),
along the second largest Chinese Yellow River (Huang He)
(Pei et al. 2018), and in the vicinity of a sewage treatment
plant on the south coast of Korea (Lee et al. 2018).

Air and soil

According to literature, atmospheric levels of PBDEs depend
on deposition processes, meteorological conditions, long-
range atmospheric transport, and the vicinity of PBDE sources
to the sampling site (urban/industrial vs. background loca-
tions). Between 2011 and 2014, Degrendele et al. (2018) mon-
itored atmospheric PBDE levels (BDE 28, 47, 85, 99, 100,
153, 154, 183, and 209) at a background site in central
Europe, which is known to have no sources of PBDEs.
Their findings indicated an increase in lower-brominated
PBDE congeners in the atmosphere on the global scale, most
likely because of debromination of higher brominated conge-
ners by photolysis. As if to confirm that assumption, higher
brominated PBDE levels (BDE 99, 100, 153, and 209) de-
creased over the same period. A similar PBDE profile was
reported in background air in Europe by Besis et al. (2017).
Pozo et al. (2016), in turn, reported lower air PBDE levels for
coastal areas of Sicily. In addition, only three (BDE 47, 99,
and 100) of the 26 analyzed PBDEs were detected routinely.
To estimate the main factors affecting PBDE air mass concen-
trations in Spain, Roscales et al. (2018) collected a larger
number of seasonal air samples at five urban and seven back-
ground sites between 2008 and 2015. The analysis included
14 PBDEs (BDE 28, 47, 66, 85, 99, 100, 153, 154, 183, 184,
191, 196, 197, and 209). Urban air samples had higher median
∑14PBDE than the background samples, but the single highest
levels were measured in two samples collected at the same
background site in 2014. In both cases, this finding was owed
to a rise in BDE 209. This congener also dominated the rest of
the air samples, regardless of the sampling site. The authors
also reported no significant reduction in PBDE levels in
Spanish air over the observed period, despite the European
ban and global regulations limiting the production and usage
of PBDEs. In comparison to Spain, a heavily industrialized
region in Turkey had much higher air PBDE levels (Cetin
et al. 2019). Air samples were collected from 23 sites every
month for one year, and eight PBDE congeners were analyzed
(BDE 28, 47, 99, 100, 153, 154, 183, and 209). Again, BDE
209 was the dominant congener. Air samples collected at
industrial/urban locations had the highest PBDE levels,
followed by urban, suburban, and rural locations. Seasonal
variations were also observed: summer had higher average
PBDE air levels (118.5 ± 98.7 pg/m3) than winter (79.7 ±
59.1 pg/m3). This may be owed to greater volatilization from
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nearby sources at higher temperatures. Another Turkish study
of Istanbul air (Kurt-Karakus et al. 2017) reported similar
PBDE levels (BDE 17, 28, 47, 66, 85, 99, 100, 138, 153,
154, 183, and 209) for urban (620 pg/m3), suburban
(280 pg/m3), and rural (110 pg/m3) neighborhoods.

Air-to-soil transfer is one of the main sources of soil PBDE
contamination. Higher brominated PBDE congeners (> 5 bro-
mine atoms) create strong bonds with organic matter in soil.
Soils are therefore important secondary sources of pollution
(Law et al. 2006; Ma et al. 2019), especially in the vicinity of
industrial activities involving PBDEs (Newton et al. 2015;
Cetin et al. 2019; Ma et al. 2019; Xu et al. 2019), including
e-waste recycling (Wang et al. 2017; Ohajinwa et al. 2019).
This was confirmed by Li et al. (2016), who investigated
PBDE levels in soil samples collected at urban, rural, back-
ground, and industrial/e-waste recycling locations in Japan,
China, South Korea, Vietnam, and India. BDE 209 dominated
among 23 congeners in the majority of samples, and its mass
fraction was more than 20 times higher than that of the sum of
the remaining 22 congeners at some sampling locations.
Urban locations had the second highest ∑23PBDE, followed
by rural, and background locations. By country, soil
∑23PBDE followed this order: Japan > China > South Korea
> India > Vietnam in urban (450 > 75 > 39 > 3.4 > 1.1 ng/g,
respectively) and rural (161 > 28 > 10 > 0.79 > 0.75 ng/g, re-
spectively) locations. As expected, the highest PBDE levels
were observed at e-waste recycling and BFR industrial sites.
This industrial impact on PBDE levels has also been reported
by Xu et al. (2019).∑13PBDE in soils collected at three plastic
manufacture plants and their vicinity ranged from 2.21 to
18,451 ng/g dw, with an overall mean of 1004 ng/g dw.
These levels decreased with the distance from the contaminat-
ed area. Again, BDE 209 was the most common and also the
most abundant congener.

Significantly lower mass fractions were detected in soils
sampled across Azerbaijan (Aliyeva et al. 2018). Only six
out of ten analyzed PBDE congeners were detected, and the
mean and median of Σ6PBDE were 167 and 91.1 pg/g dw,
respectively. Curiously enough, mean Σ6PBDE in soils from
industrial sites were not significantly different from mean
Σ6PBDE in soils from non-industrial areas. The authors sug-
gested that in their case, PBDE levels were affected by wider
regional sources instead of significant point sources inside the
country.

There are only a few PBDE soil level studies outside Asia.
Eight PBDE congeners of environmental concern (BDE 28,
47, 99, 100, 153, 154, 183 and 209) were analyzed in soils
collected in the UK (Drage et al. 2016), France (Gaspéri et al.
2018), and Australia (Mcgrath et al. 2016). In the UK and
France, PBDE levels were associated with urbanization.
BDE 209 was dominant across all these studies, with the
highest levels measured in e-waste recycling sites (Mcgrath
et al. 2016). The domination of BDE 209 was also reported byT
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Tombesi et al. (2017) in soils sampled from different locations
of Bahía Blanca city and the surrounding region (Argentina).

Due to long-range atmospheric transport and persistence,
PBDEs were also detected in soil samples collected at as re-
mote sites as the Arctic and Antarctica. Their levels measured
kept mainly at the pg/g level (Wang et al. 2015; Ma et al.
2019), but Vecchiato et al. (2015) suggested that research
stations in Antarctica could be significant sources of PBDEs
and similar compounds, where they found soil levels as high
as 33 ng/g dw.

Indoor dust

Dust as a significant source of human exposure to PBDEs has
attracted a lot of attention over the recent years, especially in
terms of PBDE burden in a variety of indoor environments
(Zhu et al. 2015; Civan and Kara 2016; Anh et al. 2017; Kurt-
Karakus et al. 2017; Muenhor and Harrad 2018; Ohajinwa
et al. 2019; Kuo et al. 2019; Rantakokko et al. 2019; Tao
et al. 2019). Table 2 summarizes the data published over the
last five years. Comparisons between studies can be challeng-
ing because of the differences in dust sampling methods, size,
and type of the area that has been vacuumed (specific room or
entire household), presence of specific products which could
increase PBDE levels, and the timing of sampling. Allgood
et al. (2017) found that dust settled at elevated surfaces and
dust settled on the floor has a different PBDE profile, and that
human exposure assessments will much depend on the place
from which the accumulated dust is sampled. Furthermore,
PBDE levels in dust vary by season. In university laboratories
in China, winter recorded the highest levels, and the variations
coincided with changes in BDE 209 levels (Jin et al. 2018).
Studies from different parts of the world compared PBDE dust
levels in a variety of indoor environments, such as house-
holds, offices, stores, classrooms, cars, and theaters (Zhu
et al. 2015; Sun et al. 2016; Cristale et al. 2016;
Kademoglou et al. 2017; Kurt-Karakus et al. 2017; Muenhor
and Harrad 2018). Just like in air and soil, their distribution in
dust samples also depended on the level of urbanization, i.e.,
they were higher in urban/industrialized areas than in rural
areas. Some studies also suggest that the presence of electron-
ic devices in the indoor environment increases PBDE levels in
dust (Sun et al. 2016; Allgood et al. 2017; Muenhor and
Harrad 2018; Sugeng et al. 2018).

Historically higher use of PBDEs in the USA and Canada
has also reflected on much higher PBDE levels in indoor dust
than in Europe and Asia. Allgood et al. (2017) reported very
high median mass fractions of Σ10PBDE in dust samples (up
to 23,508 ng/g) collected at various locations of the University
of California campus in Irvine, USA. In Europe, dust samples
collected across UK had PBDE mass fractions nearly as high
as those reported in the USA and Canada. This may be related

to stringent fire safety regulations in the UK and the wide-
spread use of carpets (Tao et al. 2016; Kademoglou et al.
2017). In other European countries (Turkey, Norway,
Sweden, Finland, and Spain) the highest PBDE levels in dust
were at least one order of magnitude lower (Civan and Kara
2016; Cristale et al. 2016; Kademoglou et al. 2017; Kurt-
Karakus et al. 2017; Rantakokko et al. 2019; Tao et al. 2019).

Venier et al. (2016) compared PBDE indoor levels of three
countries: the USA, Canada, and the Czech Republic. Median
∑10PBDE in dust, air, and window films followed this order:
USA > Canada > Czech Republic (3650 > 1770 > 163 ng/g;
148 > 60 > 3 pg/m3, and 7.0 > 6.5 > 0.98 ng/m2, respectively).
In contrast, Wong et al. (2017) found no significant differ-
ences in total PBDE dust levels between Australia, UK,
Canada, Sweden, and China.

As concerns PBDE profiles in dust, a number of studies
singled out BDE 209 as the dominant congener (Zhu et al.
2015; Cristale et al. 2016; Kim et al. 2016; Venier et al. 2016;
Kademoglou et al. 2017; Korcz et al. 2017; Kurt-Karakus
et al. 2017; Rantakokko et al. 2019; Tao et al. 2016, 2019).
In dust from Australia, the UK, Sweden, and China, BDE 209
dominated in the congener profile, ranging from 50 to 70% of
total PBDEs, while in Canada, it accounted for only 20% of
total PBDEs (Wong et al. 2017). BDE 209 in house dusts was
also reported to vary a lot, especially in studies with a large
number of samples. For example, in a study of PBDE levels in
129 house dusts collected in Warsaw, Poland, BDE 209
ranged from 36 to 336,000 ng/g (median 270 ng/g) (Korcz
et al. 2017). In indoor dust samples collected in China, BDE
209 ranged from 8.36 to 37,400 ng/g (median 1090 ng/g) (Zhu
et al. 2015). Although the components of the decaBDE mix-
ture taking over the dominance in indoor air and dust due to
the phase-out of commercial pentaBDE (Björklund et al.
2012), this is not yet true for areas with high historical use
of the pentaBDE mixture.

PBDEs in humans

Like other POPs, PBDEs have a tendency to accumulate in
lipid-rich compartments. This is why breast milk is the most
common and practical tool used for human biomonitoring. It
is an ideal bioindicator not only of infant but also of human
exposure and the sampling method is not invasive. In a large
systematic review, Zhang et al. (2017) summarized global
research data on PBDE concentrations in human breast milk
specimens collected from 2000 to 2015. The most commonly
reported PBDE congeners were BDE 28, 47, 99, 100, 153,
154, and 183. The medians of total PBDE mass fractions
ranged from 19.9 to 54.5 ng/g lw in North America, from
0.4 to 6.3 ng/g lw in Europe, and from 1.5 to 11.5 ng/g lw
in Asia. In other words, PBDEs were about 20 times higher in
North America than in Europe or Asia. These findings
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Table 2 ΣPBDEs (number of analyzed congeners in parenthesis) in dust samples (expressed as ng/g dust) and human samples (expressed as ng/g lipid
weight (lw)) analyzed worldwide

Location Sample type Reference

Dust House dust Office dust Industry dust

China (different provinces) 0.445–939 (13)a,* Zhu et al. 2015
8.36-37,400b,*

Turkey (Kocaeli) 29.32 - 4790 (14) Civan and Kara 2016

Spain (Barcelona) 3.0–184 a (7)* Cristale et al. 2016
1103–14,990 b *

Korea (9 cities) 99.5–4878 (36) Kim et al. 2016

UK (Birmingham) 180–370,000 (8) 270–110,000 (8) Tao et al. 2016

USA (Bloomington, Indiana) 47–4410 a (10) Venier et al. 2016
75–7450 b (10)

Canada (Toronto) 53–8360 a (10)

223–4860 b (10)

Czech Republic (Brno) 0.05–193 a (10)

16–788 b (10)

China (Hangzhou) 56.5–2207 (8) 188–4357 (8) Sun et al. 2016

South Korea (Ansan, Jeju, Pyungchon, Seoul) 645.8–6360.1 (21) Shin et al.2016

Turkey (Istanbul) 400–12,500 (12) 330–32,200 (12) Kurt-Karakus et al. 2017

Vietnam 25.6–69 (8) 250–300 (8) 8–8740 (8) Anh et al. 2017

UK 25.5–7325 (17)a 16.6–1500 (17)a Bramwell et al. 2017
UK 33.0–107,000 (17)b 728–40,000 (17)b

Thailand (different provinces) 0.59–260 (10) Muenhor and Harrad 2018

Sweden (Stockholm) 82–1400 (17) Tao et al. 2019

China (Guangzhou) 118–27,980 (20) Tang et al. 2019

Blood Human milk Umbilical cord

Humans Uppsala (Sweden) 1.0–11 (10) 0.53–6.6 (10) Darnerud et al. 2015

Denmark 1.22–111.1 (7) Antignac et al. 2016
Finland 1.47–19.02 (7)

France 0.45–15.27 (7)

USA (California; 2003–2005) 11.2–435 (19) Guo et al. 2016
USA (California; 2009–2012) 10.1–1310 (19)

South Korea (Ansan, Jeju, Pyungchon, Seoul) <LOQ – 13.6 (21) 0.3–19.8 (21) <LOQ – 49 (21) Shin et al. 2016

North America 44.7–88.9 (7) Zhang et al. 2017
Asia 2.4–3.3 (7)

Europe 2.2–3.1 (7)

USA (Atlanta) 6.5–937.1 (7)** Darrow et al. 2017

USA (Knoxville) 9.94–61.8 (35) 17.3–120 (35) Terry et al. 2017

UK 0.78–12.6 (17)a 1.33–21.0 (17)a Bramwell et al. 2017
< 1.13–19.8 (17)b < 0.19–1.04 (17)b

USA (New York) 0.45–20.20 (11)** 0.29–11.59 (11) Cowell et al. 2018

China (Shanghai) 0.280–12.330 (8) Xu et al. 2018

Australia (Queensland) 0.88–26 (7)** Drage et al. 2019

USA (Puget Sound region, WA) < 2.5–310 (12) Kuo et al. 2019

China (Beijing) 0.288–22.2 (8) Chen et al. 2019

Uganda (Nakaseke, Kampala) 0.59–8.11 (12) Matovu et al. 2019

* dust samples collected in private houses and public places (e.g., school, university, theater) ** children blood samples

LOQ, limit of quantification a sum of mass concentrations of all detected PBDE congeners except BDE 209 b mass concentration of BDE 209
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strongly suggest that this population is still exposed to some
PBDE sources. Furthermore, significantly higher PBDE
levels were reported in the breast milk of women living near
e-waste recycling plants for more than 20 years than in the
breast milk of women living there for less than three years,
which confirms that e-waste recycling is an important source
of PBDEs (Li et al. 2017).

Many investigations have focused on children as the most
vulnerable group. Darrow et al. (2017) reported higher serum
PBDE levels in children aged between 1 and 6 years than
Cowell et al. (2018) did in children aged between 2 and
9 years. Both studies were conducted in the USA, and in
both, BDE 47 was the most abundant congener. Cowell
et al. (2018) reported the highest mean concentrations of
BDE 47, 99, and 100 at the age of two years, which confirmed
that toddler are the most vulnerable group in terms of expo-
sure. They also showed that the levels of PBDE congeners
from the pentaBDE mixture significantly decreased over the
study period, which is consistent with the fact that its use
ceased in the meantime. A similar significant decrease in se-
rum PBDE levels was reported in Australian children after the
ban of commercial penta and octaBDE mixtures (Drage et al.
2019). The only research of PBDE levels in children from
Europe is the one by Drobná et al. (2019) in 6-year-olds from
Slovakia. Their data for individual PBDE congeners (as they
did not report the sum) showed relatively low levels compared
to other countries. Even so, the authors found an association
between PBDE exposure and poor preschool maturity test
results.

Information about BDE 209 levels in humans is scarce,
because it was not analyzed by most of the human studies.
Those few that did include it in analysis did not detect it or the
detection rate was very low, mostly because BDE 209 has a
much higher limit of detection than other congeners (Darrow
et al. 2017; Cowell et al. 2018; Drobná et al. 2019; Kuo et al.
2019). Darnerud et al. (2015) investigated the time trend of
BDE 209, 47, 99, 100, and 153, in pooled blood serum sam-
ples collected from Swedish first-time mothers between 1996
and 2010. They detected only BDE 153 and 209 in all samples
(BDE 209 had the highest mean mass fraction of 1.27 ng/g
lw), while other congeners were below the quantitation limit
(LOQ) in more than 70% of the samples. Linear regression
analysis showed that the levels of BDE 47, 99 and 100 de-
creased significantly in serum during the study period, BDE
153 showed an increasing trend, while there was no signifi-
cant trend for BDE 209. In addition, the authors compared
serum with breast milk PBDEs in matched samples and found
significant correlations between levels of seven BDE conge-
ners (28, 47, 100, 153, 154, 183, and 209). These correlations
were weaker for higher brominated BDE congeners
(Darnerud et al. 2015). In an investigation of serum PBDE
levels of the residents of Washington, median Σ11PBDE
(without BDE 209) was 28.70 ng/g lw (Kuo et al. 2019).

The highest mass fraction had BDE 209 (617.07 ng/g lw),
but it was detected in only 13% of the samples, probably
because of its relatively high LOD. The same study reported
high levels of BDE 209 in dust samples collected at the work-
place of the same people whose serum was analyzed.

Final remarks

PBDE findings reported in the last five years confirm that
measures taken to minimize the use of these contaminants
did not result in lower PBDE levels in the environment.
Research has also showed that PBDE levels always reflect
the proximity of a contamination sources, such as manufactur-
ing or sewage treatment plants, landfills, and/or e-waste
recycling industries. By far, the highest mass fractions of
PBDEs, especially of BDE 209, have been reported in soil
samples collected at industry locations in China (up to
19 μg/g dw).

Indoor dust PBDE levels are far higher in North America
and the UK than in the rest of the world as a consequence of
intensive BFR use in the past, and although this trend is de-
clining, human exposure is still notable. Exposure through
contaminated food has also been evidenced. Most of the fish
analyzed in the last five years contained PBDE levels above
the EU limit. In addition, the levels of lower-brominated
PBDE congeners seem to persist or even increase in the envi-
ronment as a result of the degradation of higher brominated
congeners, mainly BDE 209 (Zeng et al. 2010).

All these findings indicate that the efforts made so far to
eliminate PBDEs from the environment and reduce their neg-
ative impact on humans are not sufficient and that PBDEs
shall remain a significant global environmental problem for
many years to come.

This is why new measures need to be taken to remove the
remaining greatest source of contamination, solid waste, and
e-waste in particular. These measures should define efficient
means to achieve a sustainable waste management goal.
Informal recycling, one of the major issues of waste manage-
ment in developing countries, needs to be integrated into the
formal waste management sector. This is crucial for the health
of people involved in recycling, but also for the environment
and mankind in general.
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