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Abstract
In recent years, Tri An, a drinking water reservoir for millions of people in southern Vietnam, has been affected by harmful
cyanobacterial blooms (HCBs), raising concerns about public health. It is, therefore, crucial to gain insights into the outbreak
mechanism of HCBs and understand the spatiotemporal variations of chlorophyll-a (Chl-a) in this highly turbid and productive
water. This study aims to evaluate the predictable performance of both approaches using satellite band ratio and machine learning
for Chl-a concentration retrieval—a proxy of HCBs. The monthly water quality samples collected from 2016 to 2018 and 23
cloud free Sentinel-2A/B scenes were used to develop Chl-a retrieval models. For the band ratio approach, a strong linear
relationship with in situ Chl-a was found for two-band algorithm of Green-NIR. The band ratio-based model accounts for
72% of variation in Chl-a concentration from 2016 to 2018 datasets with an RMSE of 5.95 μg/L. For the machine learning
approach, Gaussian process regression (GPR) yielded superior results for Chl-a prediction fromwater quality parameters with the
values of 0.79 (R2) and 3.06 μg/L (RMSE). Among various climatic parameters, a high correlation (R2 = 0.54) between the
monthly total precipitation and Chl-a concentration was found. Our analysis also found nitrogen-rich water and TSS in the rainy
season as the driving factors of observed HCBs in the eutrophic Tri An Reservoir (TAR), which offer important solutions to the
management of HCBs in the future.

Keywords Tri An Reservoir . Sentinel-2A/B . Chlorophyll-a . Harmful cyanobacterial blooms . Band ratio regression . Machine
learning . Gaussian process regression

Introduction

Among the most common lake/reservoir problems is harmful
cyanobacterial blooms (HCBs), the consequence of excessive
release of nutrients and pollutants from anthropogenic activi-
ties (Paerl 2017). HCBs have been recognized as an emerging
issue, causing a broad range of environmental, social, and
economic damage (Lee et al. 2015; Schaeffer et al. 2018).
HCBs, for instance, may lead to incidents of hypoxic or an-
oxic conditions causing mortality (Chorus and Bartram 1999).
Surface blooms have caused the degradation of water quality
and have had negative effects on recreational opportunities
and the economy (Paerl and Huisman 2008). HCBs are also
well known for their toxic secondary metabolites, known as
cyanotoxins, including hepatotoxins, neurotoxins, and
dermatotoxic compounds. These toxins have had detrimental
effects on higher trophic levels, mortality, and illness in aquat-
ic animals as well as adverse health risks to humans (Pham
and Utsumi 2018). The impacts of HCBs on human life have
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been exacerbated as a result of eutrophication and global
warming (Paerl and Paul 2012; Visser et al. 2016).

It is, therefore, crucial to monitor and understand the spatial
and temporal variations of Chl-a concentration, representing
HCBs, in the raw water storage units. Recently, remote sens-
ing has been strongly suggested as a practical approach not
only for Chl-a long-term observation but also water quality
analysis, mainly because of its capability to capture synoptic
data of a large area during the algal bloom (Bresciani et al.
2018). This new approach contrasts with the traditional field-
based methods, which are usually costly, labor intensive, and
have a low frequency of in situ measurement (Mu et al. 2019;
Quang et al. 2017; Schaeffer et al. 2018). An accurate remote
estimation of Chl-a concentration in turbid productive waters
is essential for large-scale and multi-temporal studies.
However, the deficiency of appropriate satellite sensors and
Chl-a retrieval model have left researchers with unresolved
challenges (Le et al. 2009; Mishra and Mishra 2012; Toming
et al. 2016).

Numerous studies have used satellite data to monitor the
occurrence of algae blooms in coastal and inland waters, most
of which follow models based on the correlation between the
inherent optical properties (or apparent optical properties) and
the water quality parameters (Bresciani et al. 2018; Lins et al.
2017; Quang et al. 2017; Zhang et al. 2016). It has been
recognized that, as a result of the complex interaction between
the inner and outer constituents, the variation of Chl-a con-
centration in water usually results in a nonlinear relationship
between phytoplankton abundance and a group of water qual-
ity, hydrology, and meteorology factors (Lou et al. 2016; Yi
et al. 2018a). Moreover, due to the presence of multiple con-
stituents such as detritus, non-algal particles (NAPs), and col-
ored dissolved organic matter (CDOM), the use of remote
sensing for monitoring Chl-a in inland waters has been far less
successful compared to their application in open oceans (Chen
et al. 2017; Li et al. 2018; Liu and Tang 2012). To overcome
such limitations, the local-based satellite band ratio has been
preferred, or most recently, the advanced machine learning
methods have been contributing various practical models to
Chl-a retrieval in lakes/reservoirs.

In general, the input data of machine learning models con-
sist of either remote sensing reflectance (as reviewed above)
or water quality parameters. Normally, the latter approach
with water quality data inheres in the apparent advantages
due to the certainty of water sampling and analysis, which
consequently assures the accuracy of the input data for the
model’s performance. The selected research papers in this
group include artificial neural network (ANN)with back prop-
agation and/or support vector machine regression (SVR)
(Chen et al. 2017; Kown et al. 2018; Park et al. 2015; Wang
et al. 2018; Xie et al. 2012), principle component analysis and
multivariate linear regression (Keller et al. 2018); more recent-
ly, extreme learning machine has considerably contributed to

research in this field (Lou et al. 2016; Yi et al. 2018a). In most
cases, SVR is preferred, mainly because of its proven advan-
tages with an accepted accuracy for both training and test
phase (Karamizadeh et al. 2014). To reduce the amount of
input data, Li et al. (2018) applied a minimum redundancy/
maximum relevance (mRMR) and random forest to select the
key factor for random forest and support vector machine
models.

In Vietnam, HCBs occur consistently and at a higher fre-
quency in both inland and coastal waters. However, the pre-
diction of HCBs has only been examined using physical and
band ratio-based models from the satellite data (Dippner et al.
2011; Ha et al. 2017a; Ha et al. 2017b; Liu and Tang 2012;
Tang et al. 2004). The machine learning methods have seldom
been used for this task, despite their proven performance (Blix
et al. 2017; Blix and Eltoft 2018b; Bui et al. 2017; Keller et al.
2018). In addition, the question of using a linear model for
Chl-a prediction remains valid in case of complex optical
properties of water. Hence, there is a notable deficiency of
knowledge about bio-optical variability in freshwater systems,
which is exploiting machine learning.

Using Tri An as a typical case study for eutrophic deep
reservoir, a detailed assessment of machine learning and sat-
ellite band ratio regression approaches was performed to eval-
uate the predictabilities of diverse ensemble models. The aims
of this study are as follows: (a) to predict Chl-a concentration
using band ratio regression, extracted from remote sensing
data and machine learning algorithms, exploiting water qual-
ity parameters and comparing their results to recommend the
one with better performance and (b) to analyze the spatiotem-
poral variation and elucidate the mechanism of HCBs in TAR.
It is hoped that this work will contribute to an initial assess-
ment of the variability of HCBs in the highly turbid reservoirs
of Vietnam.

Methods

Study site description

The Tri An Reservoir is one of the biggest reservoirs in
Vietnam, located in Dinh Quan district, Dong Nai province,
within a quadrat bounded by 11°05′–11°17′N, 106°58′–
107°16′E (Fig. 1). The reservoir is designed for multiple pur-
poses, involving drinking and industrial water supply, agricul-
tural irrigation and fisheries, recreational and tourist resources,
flood control, and hydropower operation. Its surface area,
maximum depth, mean depth, and volume are respectively
320 km2, 27 m, 8.5 m, and 2.7 billion m3. The annual mean
values of rainfall, air temperature, and wind speed are roughly
estimated to be 2400 mm, 33 °C, and 9 m/s, respectively.
During the past decade, a high frequency of HCBs has been
recorded, dominated by Microcystis and Anabaena colonies
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with the presence of cyanotoxins (Dao et al. 2016). Based on
the data of TN (0.25–1.3 mg/L) and TP (0.05–0.14 mg/L)
concentrations, TAR falls into the eutrophic category.

Water parameters measurement

The data on water quality were collected monthly from five
monitoring stations at a 2-m depth from April 2016 to
February 2018 (Fig. 1). The samples were preserved with
ice in the field until further processing in the laboratory on
the same day. Water pH, temperature, and DO were measured
in situ with a multi-detector (WTW Multi 3320, Weilheim,
Germany), while Secchi disk was used for determining trans-
parency. To identify Chl-a fraction in water samples, a known
volume of raw water samples (100–300 mL) was filtered
through glass-fiber filters (Whatman GF/C, England), then
Chl-a was extracted using 90% acetone overnight in the dark at
4 °C. After centrifugation, Chl-a concentration was measured at
630–750 nm using a spectrophotometer (UV-VIS, Harch, 500)
and calculated using the trichromatic equations (APHA, 2005).

Chemical parameters were analyzed colorimetrically in
triplicate with a spectrophotometer (Hach DR/2010) using
the following APHA (2005) methods: nitrate 4500NO3

− (B),
phosphate 4500PO4

3− (B), total nitrogen Kjeldahl, 4500 N
(C), and total phosphorous 4500P (D). To measure the total

suspended solids (TSS), 300–400 mL of raw water samples
were filtered into a pre-weighed glass-fiber filter and dried
completely at 95 ± 5 °C. The TSS concentration was estimated
gravimetrically. In addition, the monthly rainfall and wind
speed data, published by the Southern Regional
HydroMeteorological Center (Vietnam), were collected in or-
der to elucidate the driving factors, generating a high Chl-a
concentration variation and HCBs mechanism in TAR.

Image processing

In this study, band ratio-based model was developed using
Sentinel 2A/B and in situ Chl-a data. The Multispectral
Instrument (MSI), launched on 23 June 2015 for 2A and 07
March 2017 for 2B, was a filter-based push-broom-type im-
ager, acquiring imagery every 5 days. The MSI sensor ob-
serves the Earth at 13 spectral bands, spreads over the VNIR
and SWIR domains (443–2190 nm) with spatial resolutions,
ranging from 10 to 60 m (Gascon et al. 2017). Level-1C,
orthorectified georeferenced, and radiometrically calibrated
to Top-Of-Atmosphere (TOA) reflectance image was
downloaded from Sentinels Scientific Data Hub and per-
formed on the Sentinel Application Platform (SNAP) version
6.0 onWindows 10 (64-bit). In particular, a series of 23 cloud
free images (Fig. 2), acquired from November 2015 to

Fig. 1 Location of the eutrophic Tri An Reservoir and the five monthly sampling stations (yellow triangulars)
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February 2019, were used to develop the model and analyze
the spatial patterns of Chl-a concentration. In this study, cloud
cover was estimated for the whole image with no cloud above
the water body (Fig. 2). After cloud masking and removal
using ArcGIS, the cloud-free time series were used to process
next steps.

Atmospheric correction was carried out in order to remove
the noises from the aerosol particles in the atmosphere. There
are several atmospheric correction methods, including
Sen2Cor, 6SV, ACOLITE, DOS (Dark Object Subtraction),
and ATCOR, and the evaluation of the best atmospheric cor-
rections is still ongoing in the scientific community (Martins
et al. 2017; Chen et al. 2017; Sola et al. 2018). In this study,
we employed Sen2Cor to perform correction of atmospheric
effects, since it commonly outperforms in the highly turbid
waters (Grendaitė et al. 2018; Mueller-Wilm et al. 2018;
Sola et al. 2018). Furthermore, the ATCOR algorithm-based
Sen2Cor processor has recently been renovated to improve
accuracy for deriving the surface reflectance over water by
using the surfaces of the Climate Change Initiative Land
Cover (Mueller-Wilm et al. 2018). Hence, Sen2Cor was used
to calibrate TOA reflectance to surface water reflectance (Rw).
Then, the Rw values from band 1 to band 7 were used as input
for the band ratio model approach (Fig. 3a).

We do not have in situ reflectance measurements from the
reservoir under investigation carried out simultaneously with
the Sentinel-2 overpass. In order to validate the results obtain-
ed by Sen2Cor method, we used Sentinel-2 Level-2A atmo-
spherically corrected data commenced from the Open Hub on
2 May 2017 and subsequently on the ServHub (Adriana and
Richard 2017). In total, 60 points were randomly extracted
from two images Level-2A on Jan. 13, 2019, and Jan. 28,
2019 to validate the robustness of atmospheric correction in
TAR. The correlation between surface water reflectance

calculated from Sen2Cor and the one extracted from Level-
2A atmospherically corrected data supplied by the ServHub
indicates a very good atmospheric correction for water pixels
in TAR (Fig. 3b).

Band ratio regression model development

Several studies have discussed the time gap between in situ
measurements and the satellite overpass, indicating a maxi-
mum of ± 8 days is reasonable in case of the stationary con-
dition of the water environment (Johnson et al. 2013; Tan et al.
2017; Maeda et al. 2019). A 5-day lag, therefore, was accept-
able to develop Chl-a retrieval algorithm in the present study,
since the cyanobacterial blooms in TAR have extended for
several weeks (based on field observation).

To eliminate the distortion on water surface reflectance,
the average value using a 3 × 3 pixel box, centered on
each sample station, was calibrated to perform a direct
comparison with the in situ measurements (Quang et al.
2017).

To select the best satellite bands for the band ratio model,
the statistical relationship between a color index (i.e., band
ratio) and the in situ measurement of Chl-a was tested (Chen
et al. 2017; Grendaitė et al. 2018; Mishra et al. 2017). Among
the satellite bands, the two- and three-band empirical models
using reflectance in red and near-infrared (NIR) spectral re-
gions have commonly been reviewed in inland waters.
Therefore, a wide range of spectral band from blue to NIR
regions was adopted to develop the linear model for Chl-a
retrieval in this study. A total of 22 observations which were
below 5 days different from satellite overpass (roughly 32%)
were carried out for model development. The remaining 47
observations (roughly 68%) were selected to validate the
model’s performance.

Fig. 2 Date acquisition and cloud
cover (%) of obtained Sentinel-
2A/B images
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Machine learning regression model performance

In total, 117 observations of nine (9) water quality parameters,
including total phosphorous (TP), total nitrogen (TN), total
suspended solid (TSS), nitrate (NO3

−), phosphate (PO4
3−),

pH, temperature (temp), transparency (trans), and dissolved
oxygen (DO), were considered input data for machine learn-
ing models. Due to a wide variation of water quality values,
Chl-a concentration, and the difference in measurement unit,
all the parameters were log-transformed to keep a normal dis-
tribution of the input data. The inputs for the model were
selected from a correlation analysis with a coefficient of
Pearson correlation higher than 0.3. In this research, four ma-
chine learning methods and one multivariate linear regression
model (MLR) were compared to test their performance in
terms of Chl-a prediction. The machine learning models in-
clude Gaussian Processor Regressor (GPR), Random Forest
Regressor (RFR), Support Vector Machine Regressor (SVR),
and Multi-layer Perceptron Regressor (MLP). Details about
the algorithms and their operation can be found at https://
scikit-learn.org/stable/ and in the research paper (Pedregosa
et al. 2011). The performance of five models was adapted in

Python environment using scikit-learn library within a two-
step processing. At first, the hyper-parameters were tuned
using a grid search with a fivefold cross-validation for the
RFR, SVR, and MPL models. In case of the GPR model,
various kernels were randomly tested to select the best kernel
that corresponded to the dataset in this research. Then, the
performance of the involved models was tested through the
training and validation phases in a 10 cross-validation using
Shuffle Split technique for the sampling. For the total dataset,
60 and 40% were respectively divided for training and valida-
tion phases.

Evaluation criteria

The performance of the Chl-a retrieval models in TAR was
evaluated using the following indicators: square of correlation
coefficient (R2), which provides the variability measure for the
data reproduced in the model; root-mean-square error
(RMSE) and mean absolute error (MAE), which measure re-
sidual errors, providing a global idea of the difference between
observation and modeling; explained variance score (EVS)
returns a score for the explanation of the variance of the
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measured and modeled values, and Bias explains the discrep-
ancies between the measured and simulated Chl-a concentra-
tion. See Eqs. (1), (2), (3), (4) and (5) below for the formulas.

R2 ¼ 1−∑
xmeasuredi −xestimatedi

� �2

xmeasuredi −xmeasuredmean

� �2 ð1Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
N

i¼1
xestimatedi −xmeasuredi

� �2

N

vuuut ð2Þ

MAE ¼ 1

N
∑N

i¼1 xestimatedi −xmeasuredi

� �2 ð3Þ

Bias ¼ ∑N
i¼1x

estimated
i −xmeasuredi

N
ð4Þ

EVS ¼ 1−
Var xmeasuredi −xestimatedi

� �

Var xmeasuredið Þ ð5Þ

Results

The variation of water quality parameters

The monthly mean and standard deviation of water quality
variables from March 2016 to February 2018 in TAR are
shown in Fig. 4. The surface water temperature in TAR did
not vary much over the sampling period, ranging from 27.1 to
32.5 °C; however, pH largely changed from 6.0 to 9.0.
Transparency exhibited a wide variation from 36 to 191 cm

Fig. 4 Mean values of water
quality parameters in the Tri An
Reservoir (from Mar 2016 to
Feb 2018). Data were presented
as mean values ± SD
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among five sampling sites, which was a similar trend to TSS
(from 0.05 to 3.92 mg/L). The mean dissolved oxygen ranged
from 4.4 to 7.2 mg/L. TAR is nitrogen eutrophicated with a
higher and wider range of nitrate (0.17–0.6 mg/L) and TN
(0.47–8.4 mg/L) compared to phosphate (0.04–0.14 ml/L)
and TP (0.09–0.57 mg/L), respectively. A wide range of
Chl-a (mean value varied from 15.48 to 1310 μg/L) was ob-
served during the sampling period. The highest mean Chl-a
concentrations were recorded during May to November and
reached several peaks in June (360 μg/L), September
(500 μg/L), and November 2016 (1310 μg/L) as heavy
blooms occurred (Fig. 5a–c). A repeated cycle began at a
low concentration in the dry months (Fig. 5d), with a mini-
mum of 31 μg/L in January 2017 followed by an increasing in
May 2017 (Fig. 4).

Algorithms for Chl-a concentration retrieval

Band ratio-based linear regression model

Through all the cross-regression analysis, the relationship be-
tween Chl-a and blue-green ratio was low, approximated by
linear function. By following the same principle of the blue-
green ratio model and considering the ratio between reflec-
tance in the near-infrared and reflectance in the red region,
various algorithms were tested for Chl-a retrieval in this study
(Table 1). As noted previously, the linear regression-based
algorithms for Chl-a retrieving from remote sensing data are

preferred (Grendaitė et al. 2018; Ha et al. 2013; Ha et al.
2017a; Lins et al. 2017; Ritchie et al. 2003). This means that,
among various models including linear, quadratic, and expo-
nential functions with similar R2 and RMSE, the linear regres-
sion algorithms will be the optimal selection. For this reason,
the model No. 3 with R2 of 0.72 and RMSE of 5.95 μg/L
(highlighted in italic) will be used as Chl-a prediction model
(Figs. 6 and 7). It is clear that the estimated Chl-a has a small
RMSE value compared to the mean in situ Chl-a (varied from
15.48 to 1310 μg/L), confirming the appropriateness of our
model for estimating Chl-a in TAR when the acquisition times
differ. Despite a better performance (R2 > 0.74) of the ratio B3/
B6 vs. Chl-a concentration found in this study, this model was
not exploited for Chl-a retrieval due to high RMSE
(187.03 μg/L).

The performance of our new linear model (No. 3,
Table 1) was then validated using 47 in situ measurements
of Chl-a concentration, retrieved during field campaigns
performed synchronous to satellite overpasses, with a
maximum of 5-day time difference (Fig. 8). It was also
noted that 47 these observations were different from those
in the training phase (22 observations). This study dem-
onstrated that the Green - NIR band ratio model was suc-
cessful in the prediction of Chl-a concentration in TAR,
with R2 greater than 0.70 and with very small values of
RMSE and Bias. These results attest to our model’s ability
to handle the relationship between water surface reflec-
tance and Chl-a concentration.

Fig. 5 Heavy bloom of
cyanobacteria in June (a),
September (b), November, 2016
(c) and water without bloom (d)
from the Tri An Reservoir
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Water quality parameters-based machine learning
for Chl-a retrieval

Input feature selection

In this paper, a feature selection was conducted using the
correlation analysis to reduce the inputs from nine (9) to five
(5) water quality parameters. Despite a good option for this

selection through the OOB (Out Of Bag) score of random
forest model, as suggested by Li et al. (2018), the correlation
analysis between the log10 Chl-a and water parameters was
used to create homogeneous inputs for all the compared
models (Table 2).

The data for TAR presented a high correlation between
total nitrogen and Chl-a concentration with a coefficient of
0.86. The total phosphorous and total suspended solid

Fig. 6 Scatter plots comparing
satellite retrieved and observed
Chl-a using 22 training data
observations
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Table 1 Regressionmodels for chlorophyll-a retrieval (B1 = 443 nm, B2 = 490 nm, B3 = 560 nm, B4 = 665 nm, B5 = 705 nm, B6 = 740 nm, and B7 =
783 nm)

No. No. Samples for
training

No. Samples for
testing

Variables (x) Model R2 RMSE
(μg/L)

Bias Mean Chl-a
(μg/L)

1 22 47 B1/B3 vs log10Chl − a y = − 1.0668x + 2.4018 0.27 3.12 0.02 26
2 B6/B3 vs log10Chl − a y = − 1.5854x + 2.3435 0.69 4.22 0.14

3 B3/B6 vs log10Chl − a y = 0.3438x + 0.7736 0.72 5.95 0.24

4 B3/B6 vs log10Chl − a y = − 0.0538x2 + 0.6149x + 0.469 0.73 4.53 0.16

5 B3/B6 vs Chl-a y = 36.363x − 36.111 0.74 187.03 − 20.43
6 B3/B7 vs Chl-a y = 37.271x − 37.804 0.71 186.82 − 19.45
7 B3/B7 vs log10Chl y = 0.355x + 0.7514 0.70 6.42 0.25

8 B7/B3 vs log10Chl y = − 1.5224x + 2.314 0.65 5.00 0.15

9 B2/B6 y = 51.278x − 39.882 0.69 185.21 − 29.56
10 B2/B7 vs Chl-a y = 52.037x − 40.838 0.65 185.10 − 28.63
11 B2/B6 vs log10Chl − a y = 0.4699x + 0.7636 0.63 5.00 0.15

12 B2/B7 vs log10Chl − a y = 0.481x + 0.7478 0.61 4.35 0.16

13 B6 vs Chl-a y = 1.322x−1.101 0.49 202.24 − 12.73
14 B7 vs Chl-a y = 131.65x2 − 24.824x + 2.4481 0.49 4.74 0.20

15 (B5 + B6)/B4 vs
log10Chl − a

y = −0.4811x + 2.4517 0.20 4.62 − 0.03

16 B5/B4 vs log10Chl − a y = 1.5412x−0.023 0.0002 3.25 − 0.03
17 B5-(B4 + B6)/2 vs

log10Chl − a
y = 2.3932x0.1022 0.13 2.92 − 0.03

18 (B1-B2)/(B1 + B2) vs
log10Chl − a

y = − 2.4056x + 1.5881 0.22 3.08 − 0.05

RMSE value has been converted into unit of μg/L with the variables using log10 Chl-a. The italic line in the table indicates the best performance of the
linear model.



establish a lower relationship with Chl-a (0.43 and 0.57, re-
spectively) (Table 2). On the other hand, pH and temperature
help to explain the variation of Chl-a. Nonetheless, this con-
tribution is not significant with a low coefficient of Pearson
correlation. As described in the methodology section, the wa-
ter quality parameters with a Pearson correlation coefficient >
0.3 were selected. Hence, TP, TSS, TN, pH, and temperature
are considered the input for the models of Chl-a prediction.

Model performance and comparison

The tuned parameters and selected kernel for machine learn-
ing models (Table 3) were preserved during the cross-
validation running. Five water quality parameters, involving
TP, TN, TSS, pH, and surface water temperature, were select-
ed as the input to train and validate the linear and machine
learning models. The best model for Chl-a prediction was a
model with (a) the highest values of R2, EVS and the lowest
values of RMSE, MAE (Table 4), and (b) the closest permu-
tation of training and test scores in the learning curve (Fig. 9).

In addition, the model was perceived better, as it presented a
smaller standard deviation of the score in the learning curve.

As presented in Fig. 9, the learning curves indicated a sim-
ilar performance of the GPR, MLR, and MLP models, al-
though the slight differences were observed. For the men-
tioned indicators, GPR was determined as the best model for
Chl-a prediction from water quality parameters. This model
was able to explain more than 79% of Chl-a variation at the
study site with the lowest RMSE (3.06 μg/L) (significantly
lower than the mean of Chl-a value of 26 μg/L) (Table 4). The
stability and outperforming of the GPR model were also con-
firmed by a small standard deviation and closed permutation
of the training and cross-validation score. The MLR model
also demonstrated a good performance with a high R2 and
low RMSE (0.79 and 3.09 μg/L, respectively). However, the
test score had a wider standard deviation compared to the GPR
model (Fig. 9). The SVR and MLP models were both good in
the permutation of the test score. MLP was stable during the
learning process (Fig. 9); however, it was less accurate than
the GPR and MLR models. Conversely, RFR was the only
model that the training and test scores were not permuted
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during the learning, although the coefficient of determination
reached 0.72 (Fig. 9).

According to Table 4, our results presented an accepted
accuracy for Chl-a prediction with all the compared models.
The linear and machine learning models were rational to ex-
plain a wide range of Chl-a variation (roughly 6–4600 μg/L)
in TARwith the highest coefficient of R2 (0.79) and the lowest
RMSE (3.06 μg/L) of the GPR model. This RMSE was sig-
nificantly lower than the mean value of Chl-a (26 μg/L),
which determined the outperforming of the model for Chl-a
prediction. Nonetheless, all the involved models shared a
slightly large standard deviation of the validation scores due
to a wide range of Chl-a concentrations in TAR. The compar-
ison of the model’s performance also answered the question in
the introduction of this research, in that the multivariate linear
model still works well in the case of the existing cause-effect
relationship between the input (water quality) and output (Chl-
a concentration) parameters. The previous analyses illustrated

that the variation of Chl-a concentration can be interpreted by
the key factors, such as TSS and TN in TAR.

Spatiotemporal variation in Chl-a concentration from 2015
to 2019

Totally, 23 Sentinel-2A/B scenes that were acquired under the
lowest cloud coverage conditions from the late 2015 to the
early 2019 were applied to the linear model developed above
to clarify the spatiotemporal variation in Chl-a concentration.
These images were classified into rainy (May–October) and
dry seasons (November–April). To study the spatial distribu-
tion in different seasons, retrieving Chl-a from the pixels of
the Sentinel-2A/B was taken into account. Then, the relation-
ship between Chl-a concentration and its frequency was ob-
tained in the rainy and dry seasons (Fig. 10). In both seasons,
Chl-a values significantly varied from 6.46 to 4626.02 μg/L.
However, the difference in the frequency of Chl-a concentra-
tion between the two seasons was only exactly in the range
from 8 to 400 μg/L. Chl-a ranging from 20 to 60 μg/L was the
most frequent value in the rainy season with the highest fre-
quency of 39%. In contrast, the most frequent value of Chl-a
in the dry seasonwas around 30μg/Lwith a frequency of 33%
(Fig. 10).

The distribution maps determining the specific regions of
high Chl-a concentration in TAR are shown in Figs. 11 and 12,

Table 3 The best parameters and kernel for machine learning models

Model

Parameter RFR SVR

Max depth 30 C 1000

Bootstrap True Gamma 0.01

Number of tree 50 Kernel RBF

Max feature Auto

Min sample leaf 2

Min sample split 3

MLP GPR

Hidden layer size 50 Alpha 0.0001

Solver Adam Iteration for
optimizer

10

Activation Relu Kernel RBF and
WhiteKernel

Max iteration 500

Table 2 Pearson correlation coefficients of transformed water quality parameters and Chl-a concentration. Boldface type indicated high correlation of
Chl-a with other factors

TSS TN pH Temp TP DO Trans NO3
− PO4

3− Chl-a

TSS 1.00 0.51 0.13 0.41 0.31 − 0.22 − 0.46 0.07 0.33 0.57

TN 1.00 0.22 0.32 0.45 − 0.24 − 0.27 0.43 0.23 0.86

pH 1.00 0.29 0.11 0.35 0.36 − 0.02 − 0.05 0.34

Temp 1.00 0.29 − 0.19 − 0.29 0.04 0.23 0.38

TP 1.00 − 0.20 − 0.25 0.19 0.32 0.43

DO 1.00 0.60 − 0.26 − 0.01 − 0.18
Trans 1.00 − 0.26 − 0.22 − 0.22
NO3

− 1.00 − 0.02 0.29

PO4
3− 1.00 0.29

Chl-a 1.00

Table 4 Validation scores for log10 Chl-a prediction from water quality
parameters

GPR RFR SVR MLP MLR

R2 0.79 0.72 0.76 0.77 0.79

RMSE 3.06 3.64 3.28 3.19 3.09

MAE 2.46 2.89 2.58 2.57 2.43

EVS 0.79 0.72 0.77 0.78 0.79

RMSE and MAE values were converted into unit of μg/L

9144 Environ Sci Pollut Res (2020) 27:9135–9151



corresponding to the rainy and dry seasons. Due to high cloud
coverage, there were not enough satellite images for a contin-
uous, long-term observation. It is, therefore, a challenge to

generalize the overall variation of Chl-a in TAR. In the maps
of 10 scenes in the rainy season and 13 scenes in the dry
season observed from 2015 to 2019, the patterns of Chl-a

Fig. 9 Learning curves of
machine learning andmultivariate
linear models. The light red and
green areas indicate the standard
deviation of the learning curves.
The more narrow area determines
a better performance of themodel.
Score is coefficient of
determination of the learning
process. The red and green lines
are the mean value of the score
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distribution were not homogeneous but mixed by high and
low areas of Chl-a, due to the influences of meteorological
and hydrological parameters. In both seasons, most areas of
TAR suffered from HCBs with a high Chl-a concentration,
ranging from 20 to below 5000 μg/L. The blooms were di-
rectly observed during the field campaigns on April 23, 2016
and September 20, 2016, which are consistent with the pat-
terns in Figs. 11 and 12. Algae tends to bloom more strongly
in the south and southwest areas, which are the downstream of
TAR. It is worth noting that there are two major rivers located
in the nearby station, TA5 (Fig. 1), discharging water into the
reservoir especially after heavy rains, which implies that
HCBs usually occur in the downstream compared to the north
of the study area. In the rainy season, Chl-a concentration
tends to be higher from the early days of June to the end of
the season (i.e., October), and these values are specific to the
dry season. Conversely, higher values were observed in the
early days of the dry season (November to early February),
and Chl-a values began declining in the following months
(from March to June). It is clear that the most serious blooms
first occurred in the southern or central part of the reservoir
and gradually moved toward the southwest and northwest
areas (pair images of September 5, 2017 vs. September 20,
2017). The higher values were in the southern and southwest-
ern parts, while the lower values were in the southeast and
northeast areas of the reservoir. During the years from 2015
to 2019, the maximum bloom area occupiedmore than 50% of
the total area.

With a R2 of 0.72, the linear model explains with great
certainty the general variation of Chl-a in TAR in both the

dry and rainy seasons. Nonetheless, a small area was recorded
with a very high Chl-a concentration (over 5000 μg/L) in the
narrow corner of the reservoir. These values may arise from
very high turbidity and/or strong effects of bottom reflectance
in shallow waters, leading to the anomalous values of the
surface water reflectance in bands 3 and 6 of Sentinel-2
imagery.

Discussion

Similarity to other studies

The optimal position of the band determined for Chl-a estima-
tion algorithm in this study is consistent with the finding of
other research papers. Spectral bands beyond 650 nm are ap-
propriate for the development of Chl-a retrieval models for
inland waters, particularly in case 2 waters where Chl-a con-
centration is above 10 μg/L (Richardson and LeDrew 2006;
Le et al. 2009; Mishra et al. 2017). Especially, in case of large
variation of Chl-a concentrations, Zimba and Gitelson (2006)
proved that the wavelengths of 650 nm, 710 nm, and 740 nm
were the optimal choice. The specific wavelength varies with
water constituents and their optical properties (Le et al. 2009).
These findings demonstrate that the red-near-infrared wave-
lengths are the appropriate regions for the development of
Chl-a retrieval algorithms in TAR.

To our knowledge, this is the third study using remote
sensing for Chl-a concentration in the lakes/reservoirs in
Vietnam and the first in the southern area. Our model (R2 of

Fig. 11 Spatiotemporal distribution of HCBs in the Tri An Reservoir in rainy season
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0.72) outperformed the model applied in Ba Be lake with an
R2 of 0.68. It is worth noting that TAR exhibited a large var-
iation in Chl-a (mean value from 15.48 to 1310 μg/L), com-
pared to a very small range from 1.58 to 6μg/L in Ba Be water
case (Ha et al. 2017b). The other study used Landsat 8/OLI
two bands ratio algorithm for Chl-a concentration mapping in
West Lake in Hanoi with a range from 42 to 258 μg/L (Ha
et al. 2017a). However, this study used the exponential func-
tion for Chl-a retrieval with an archived R2 from 0.64 to 0.82,
which may result in uncertainties compared to linear regres-
sion method applied in our paper (Grendaitė et al. 2018; Ha
et al. 2013; Lins et al. 2017; Pham et al. 2019; Quang et al.
2017).

Machine learning with other case studies

The results of this study also support the practicality of using
machine learning models for the retrieval of bio-optical pa-
rameters. Compared to other research papers, additional re-
sults were found in the case study in TAR. For log-
transformed data, a high correlation coefficient with Chl-a
was detected for TN (0.86) and TSS (0.57), which contrasts

with various observed datasets (Li et al. 2018; Lou et al.
2016). In addition, the GPR model outperformed other com-
peting models and provided a novel solution to the task of
Chl-a prediction in the freshwater environment. Compared
to the application of random forest (Li et al. 2018), extreme
learning (Lou et al. 2016), ANN and support vector machine
(Park et al. 2015; Xie et al. 2012), and M5P model tree and
despite a lower value of R2 (Yi et al. 2018b), GPR still shows
very good RMSE and MAE values in the case study of TAR.
A similar outstanding performance of the GPR model was
also identified for biophysical parameter retrieval, particularly
for the oceanic Chl-a estimation (Blix and Eltoft 2018a; Blix
and Eltoft 2018b; Verrelst et al. 2012). More interestingly, the
multivariable linear model proved itself as a profitable predic-
tor for Chl-a variation when a cause-effect relationship exists
between the inputs (water quality parameters) and the output
(Chl-a concentration). This performance is worthy of atten-
tion, mainly because of the simplicity and low consumption
of the computer power of the model, compared to other ma-
chine learning approaches.

In comparison with the linear model for Chl-a retrieval
from the remotely sensing data, the machine learning

Fig. 12 Spatiotemporal distribution of HCBs in the Tri An Reservoir in dry season
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approach using water quality may not be an optimal method
for monitoring the HCBs in TAR in spite of a higher R2 and
lower RMSE compared to the band ratio regression models.
This issue emanates from the limitations of the machine learn-
ing model in practice, which requires substantial amounts of
input data, has complex inherent algorithms with various pa-
rameters, and poses the challenge of precisely interpreting the
results from the applied models. In addition, the unavailability
of water quality data may further complicate model validation
and prediction for the early warnings of HCBs. As a result, our
proposed linear model may be construed as an optimal selec-
tion for the further monitoring of HCBs in inland waters of
Vietnam.

Mechanisms of HCBs in TAR

The blooms of harmful cyanobacteria in inland waters are
influenced by multiple factors, including, but not limited to,
light, temperature, turbidity, precipitation, wind speed, water
residence time, and nutrient composition (Mu et al. 2019;
Paerl 2017). In Lake Vancouver (Canada), phosphate was
found to be the key factor regulating HCBs and toxins

concentrations (Lee et al. 2015), whereas high nutrients, low
water clarity, and warmer surface temperatures were identified
as the three most influential environmental factors correlated
with cyanobacterial composition in the US lakes and
reservoirs (Beaver et al. 2018). High water temperatures have
been known to trigger the development of cyanobacterial
bloom in temperate zones (Imai et al. 2008; Kosten et al.
2012), while the occurrence of HCBs in tropical areas has
been reported to be regulated by many factors (Bui et al.
2017; Pham et al., 2017).

In TAR, Chl-a concentrationwas strongly correlatedwith TN,
TSS, and, to a less extent, TP; however, it was negatively corre-
lated with transparency. It is difficult to draw strong conclusions
on blooming. However, an overall trend is evident since the rainy
months and the early dry months (fromMay to November) tend
to correspond to the highest bloom frequencies. The discharge of
nitrogen-rich water, as dominated by the intensification of
agriculture and land runoff in the rainy season from the TAR
catchment area, is very likely to create a favorable condition for
the development of HCBs. It is suggested that cyanobacteria
blooms in TAR are attributed to the conditions of high nutrient
concentration and low transparency in the rainy season.

Fig. 13 Correlation between Chl-a concentration and climatic parameters
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The relationships between the monthly mean Chl-a con-
centration and climatic parameters measured at the Tri An
station are shown in Fig. 13. In general, heavy rain will lead
to a temporary increase of nutrients, which is beneficial for
algae blooms (Mu et al. 2019). The results show that monthly
precipitation exhibited statistically significant positive corre-
lation with average monthly Chl-a concentration (R2 = 0.54,
p < 0.01). This suggests that monthly precipitation has a
strong effect on blooms in the short term in the TAR. This is
consistent with observations ofMu et al. (2019) in the Dianchi
Lake, China. Followed by the rainfall, the monthly mean solar
irradiance is also considered as a contributor to HCBs in TAR
(R2 = 0.36, p < 0.01). In contrast, wind speed and air temper-
ature have less impacts on HCBs with R2 of 0.16, and 0.13,
respectively (Fig. 13).

Conclusions

To our best knowledge, this study is the first attempt to calcu-
late Chl-a concentration in TAR using the data extracted from
both Sentinel-2A/B data and water quality collected from field
campaigns. We constructed the models using both ap-
proaches, involving traditional band ratio regression with the
simulated Sentinel-2A/B data and the state-of-the-art machine
learning with water quality data to estimate and map Chl-a in a
eutrophic tropical reservoir. The combination of NIR and
green band ratio with an R2 of 0.72 μg/L and an RMSE of
5.95 μg/L was identified as the optimal model for quantifying
Chl-a in such tropical inland waters. By comparison, both
methods have satisfactory performance for Chl-a retrieval
(R2 > 0.7). Specifically, GPR yields better results with the
highest R2 of 0.79 and the lowest RMSE of 3.06 μg/L, com-
pared to the other machine learning models.

The results illustrate the benefit of using machine learning
models when it is hard to obtain cloud free satellite images,
particularly in tropical regions. Both band ratio regression and
machine learningmodel can support each other and be applied
to water quality and environment management studies. Future
studies are advised to repeat our sampling strategy to validate
the model and link remote sensing reflectance data to machine
learning algorithms.

Next, studies investigating the factors influencing the oc-
currence of HCBs using monthly water quality data had been
carried out to elucidate the spatiotemporal variation. High TN
and TSS in the rainy season were considered the driving fac-
tors of HCBs with Chl-a concentration greater than 20 μg/L in
most areas of TAR. Regarding climatic parameters, Chl-a con-
centration was high due to a large amount of precipitation
entering the study area, followed by solar irradiance while
air temperature and wind speed made small contribution to
HCBs.

The early prediction of HCBs is necessary to support a
healthy practice of water usage in the community. The prom-
ising results of this study offer various approaches to the task
of monitoring HCBs using satellite-based modeling or ma-
chine learning with water quality data. However, longitudinal
cyanobacterial data collection is recommended for an accurate
prediction of HCBs in TAR.
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