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Abstract
Soil methane generation mainly driven by soil prokaryotic microbes can be coupled with the degradation of petroleum hydro-
carbons (PHCs); however, the relationship between prokaryotic community structure and methane production activity in soil
with the potential risk of PHC contamination is seldom reported. In this study, 3 soil samples (CS-1 to CS-3) in the area nearby an
exploratory gas well and 5 soil samples (DC-1 to DC-5) in a drill cutting dump area were obtained from the Fuling shale gas field
(Chongqing City, China). Then, the prokaryotic community structure was examined by Illumina Miseq sequencing, and the
linkage between soil methane production rate (MPR) and prokaryotic community composition was analyzed. The results
indicated that 2 samples (DC-4 and DC-5) collected from the drill cutting dump area had significantly higher MPR than the
other samples, and a significant and positive relationship (r = 0.44, P < 0.05) was found between soil MPR and soil organic
matter (OM) content. The prokaryotic community composition in the sample (DC-5) with the highest MPR was different from
those in the other samples, and soil OM andMPRwere the major factors significantly correlated with the prokaryotic community
structure in this soil. The samples (DC-4 and DC-5) with higher MPR had a higher relative abundance of Archaea and different
archaeal community structures from the other samples, and the MPR was the sole factor significantly correlated with the archaeal
genus composition in this soil. Therefore, both the prokaryotic and archaeal community structures are essential in the determi-
nation of soil MPR, and the bacterial genus of Saccharibacteria and the archaeal genus of Methanolobus might be the key
contributors for methane generation in this soil from the shale gas field.
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Introduction

Soils nearby the oil and gas fields have a high risk of petro-
leum hydrocarbons (PHCs) pollution, as high PHCs content
can be usually detected in these soils (Liu et al. 2015; Sun
et al. 2015; Wang et al. 2015). PHCs are a mixture of varied
organic compounds, including alkanes, BTEX (benzene, tol-
uene, ethylbenzene, and xylene), and polycyclic aromatic

hydrocarbons (PAHs), which are toxic for ecosystem and hu-
man health due to their carcinogenicity, mutagenicity, and
teratogenicity (Salanitro et al. 1997; Ritchie et al. 2001;
Huang et al. 2016). Soil is considered as a major reservoir
for PHCs, and PHCs in the soil can enter food chains, posing
indirect threats to human health (Van-der-Oost et al. 2003;
Xue and Warshawsky 2005; Gao et al. 2019). As such, soils
in the region nearby the oil and gas fields, as aged soils with
PHC pollution, should be very ideal objects for the study
about the transformation of PHCs in soil.

At present, the investigation about the interaction between
PHCs and soil microbes has been a hotspot. As soil microbes
are not only themajor consumers for soil PHCs but also can be
used as sensitive indicators for the assessment of soil PHC
contamination (Haritash and Kaushik 2009; Khan et al.
2013). In recent years, many investigators had pay attention
to the responses of microbial community structure to PHC
contamination in the soils within several important oilfields
in China (Liao et al. 2015; Liu et al. 2015; Sun et al. 2015; Gao
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et al. 2016; Zhou et al. 2017; Gao et al. 2019). For example, in
the soil collected from Dagang Oilfield (North China), it was
reported that PHC pollution resulted in the increase of the
gene copies of AlkB (alkane monooxygenase gene), while
the decrease of the Nah (naphthalene dioxygenase gene) gene
copies (Liu et al. 2015). Zhou et al. (2017) reported that, in the
soil within the region of the Jianghan oilfield (Central China),
the community structure of different microbes showed varied
sensitivities to PHC contamination, with the order of bacteria
> fungi > Archaea. Moreover, some bacterial genera, such as
Alkanindiges, Arthrobacter, Idiomarina, Lysobacter,
Mas s i l i a , Mi c romono s p o r a , Mycob a c t e r i um ,
Oxalobacteraceae, and Pseudomonaswere found to be poten-
tial PHC degraders in soil (Han et al. 2014; Li et al. 2015; Sun
et al. 2015; Chen et al. 2016). Meanwhile, some fungal gen-
era, such as Trichoderma, Fusarium, and Pestalotiopsis also,
were often detected in soils contaminated by PHCs (Llado
et al. 2013; Cebron et al. 2015; Kristanti and Hadibarata
2015; Andreolli et al. 2016; Zhou et al. 2017). Those studies
identified some key microbes with the ability to degrade
PHCs and confirmed the selection effect of PHCs on soil
microbiota in the area of oilfields, which could be essential
for the bioremediation and risk assessment of PHC contami-
nation for local soils.

Methane, as the simplest alkane with a molecular struc-
ture of tetrahedron, is the main constituent of natural gas.
Despite its strong greenhouse effect, methane has been
considered as a clean energy source with high efficiency
(Cornelissen et al. 2012; Kwietniewska and Tys 2014;
Morel et al. 2019). Thus, the digestion of organic wastes
or pollutants under methanogenic conditions is regarded as
an ideal way, as this process can produce biogas mainly
containing methane and carbon dioxide (Vergara-
Fernandez et al. 2008). Furthermore, it has been confirmed
that some PHCs, such as PAHs, long-chain alkane, and
BTEX, can be degraded under methanogenic conditions
(Ficker et al. 1999; Chang et al. 2006), and it had been
reported that crude oil contamination could enhance soil
methane emission (Dunfield et al. 1993; Le Mer and
Roger 2001; Yang et al. 2018). The biological methane
production in soil is a complex process driven by diverse
prokaryotic microbes (bacteria and Archaea), whereas little
information is available about the relationship between
methane production activity and diversity of prokaryotic
community in the soils with high risk of PHC pollution,
which should be significant for the resource-based treat-
ment of soil with PHC pollution.

In this study, soil samples were collected from the Fuling
shale gas field, Chongqing City, China, which is the second-
largest shale gas field in the world, and the relationship among
soil properties, methane production rate (MPR), and diversity
of prokaryotic community was investigated. The aim was to
reveal the relationship between the MPR and the diversity of

the prokaryotic community and identify the key microbes af-
fectingMPR in this soil with a potential risk of PHC pollution,
thus providing some useful microbial information for the
resource-based treatment of PHC-polluted soil under methan-
ogenic conditions.

Materials and methods

Site description and soil sampling

The Fuling shale gas field with gas storage of nearly 2.1 tril-
lion cubic meters is the second-largest shale gas field in the
world, located in Fuling District, Chongqing, China.
Belonging to a subtropical monsoon moist climate, this region
has a mean annual temperature of 18.1 °C and precipitation of
1072 mm, and the soils are classified as Cambisols (Chinese
taxonomy) or Inceptisols (USDA taxonomy). In this study, 8
soil samples (triplicates for each sample) were obtained from
this shale gas field in September 2018, and the geographic
distribution for those sampling sites is presented in Fig. 1.
Among those samples, 3 samples (CS-1, CS-2, and CS-3)
and 5 samples (DC-1, DC-2, DC-3, DC-4, and DC-5) were
obtained from the area nearby an exploratory shale gas well
(CS) and a drill cutting dump (DC), respectively. At each
sampling site, triplicate soil samples were collected, and each
sample was obtained from a mixture of 8 soil cores (5 cm in
diameter; 20 cm in depth) randomly selected within an area of
100 m2. Then, the soil samples were kept in an icebox and
taken back to the lab within 24 h. After passing through a 2-
mm sieve, all soil samples were stored at 4 °C and − 20 °C for
the following basic properties measurement and DNA extrac-
tion, respectively.

Measurement of soil basic properties and methane
production rate

Soil pH was determined with soil to water ratio of 2:5. Soil
organic matter (OM) and available phosphorus (AP) were
determined according to the methods of Lu (1999). After ex-
tracted from 5 g of fresh soil with 2 M L−1 KCl, ammonium
and nitrate were measured by a continuous flow analyzer
(SAN++, Skalar, Holland). The contents of two representative
PHCs (pyrene and benzopyrene) in those soil samples were
measured according to the method of Cao et al. (2009), and
the detailed procedure is available in the supplementary ma-
terials (Text S1).

Soil MPR was measured under a glucose-induced and an-
aerobic condition mainly according to the method of Liu et al.
(2008) with some modification. For each soil sample, tripli-
cates were set up, and the treatment without the addition of
soil was used as control. The detailed procedure was as fol-
lows: 20 g fresh soil, 14mL sterilized water, and 6mL glucose
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(0.1 M L−1) was added into a serum bottle of 100 mL; after
sealed with rubber stopper and aluminum cover, the serum
bottle was filled with pure N2 gas for 5 min to replace the
air in the bottle; the serum bottle was placed in a shaker at
250 rpm for 30 min, and then was filled with pure N2 gas for
3 min to ensure an absolutely anaerobic environment; after the
serum bottle was incubated at 30 °C for 72 h in dark, the
concentration of methane in the serum bottle was detected
by a gas chromatograph (Agilent Technologies 7890A,
USA). Finally, the MPR in each soil sample was calculated
according to the method of Zhang et al. (2011).

Soil DNA extraction and Illumina MiSeq sequencing

A Fast DNA® SPIN Kit for Soil (Q-BIOgene, Carlsbad, CA,
USA) was used to extract the total DNA from 0.5 g of frozen
soil according to the manufacturer’s protocol. The quantity
and quality of the extracted DNA were checked using a 1%
agarose gel electrophoresis and NanoDrop 2000 UV-vis spec-
trophotometer (Thermo Scientific, Wilmington, USA), re-
spectively, and then was stored at − 20 °C before use.

In this study, the primer set of 515F (GTGCCAGC
MGCCGCGGTAA) and 806R (GGACTACVSGGGTATC
TAAT) was used to amplify the V4 hypervariable region of
the prokaryotic 16S rRNA gene (Bates et al. 2011). After

addition of the Illumina adaptors A and B to the forward
and reverse primer sequences, respectively, the target gene
was amplified in a 20 μL mixture with the following ther-
mal profile: 3 min at 95 °C; 30 cycles of 30 s at 95 °C, 30 s
at 62 °C, and 45 s 72 °C; 10 min at 72 °C. The PCR
products were extracted and purified, and then were se-
quenced on an Illumina MiSeq platform (Illumina, San
Diego, USA) by Majorbio Bio-Pharm Technology Co.
Ltd. (Shanghai, China). The procedure of the raw data pro-
cessing and operational taxonomic units (OTUs) identifi-
cation was conducted according to the method described
by Zhou et al. (2017) presented in the supplementary ma-
terials (Text S2). The taxonomy of each representative
OTU was aligned by the RDP Classifier algorithm (http://
rdp.cme.msu.edu/) based on the Silva ribosomal database
(release128, http://www.arb-silva.de) using confidence
threshold of 70% (Amato et al. 2013). The diversity indi-
ces of Sobs (species observed), Chao, Shannon, and
Simpson were calculated by Mothur software (version v.
1.41.1, http://www.mothur.org/wiki/Schloss_SOP#Alpha_
diversity) under a similarity cutoff of 97% (Schloss et al.
2011). The sequencing data in this study has been submit-
ted into the Sequence Read Archive in the NCBI (National
Center for Biotechnology Information, www.ncbi.nlm.nih.
gov) with the accession number PRJNA591071.

CS-1
CS-2

CS-3
DC-1

DC-2
DC-3
DC-4DC-5

Fig. 1 The geographic information and location of the sampling sites in Fuling shale gas field
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Data analysis

The quantitative difference about the properties or soil MPR
between soil samples was examined by a Student-Newman-
Keuls test in the one-way analysis of variance (ANOVA)
using SPSS 24 (SPSS, Chicago, USA), and P < 0.05 was
regarded as a significant difference. The correlation between
MPR and prokaryotic diversity indices was analyzed using
SPSS 24. In R software (http://www.r-project.org), the
cluster analysis based on the microbial phyla was done with
the method of “Jaccard distance” using the Vegan package,
and the composition of the microbial genus in the samples was
visualized by the heat map with the Pheatmap package. The
redundancy analysis (RDA) profiles were generated based on
the matrices of prokaryotic or archaeal composition and envi-
ronmental variables using the CANOCO (version 5.0), and
the detailed analysis steps were described in the supplementa-
rymaterials (Text S3). Using OTU-based Bray-Curtis distance
matrices, the correlation between prokaryotic community
structures and environmental variables was evaluated by a
Mantel test with 999 permutations in R software (http://
www.r-project.org).

Results

Soil properties and MPR

The results of soil properties are listed in Table 1. In this
region, the soil was alkaline with a narrow pH range of
8.09~8.34. Except DC-3, the samples (DC-1, DC-2, DC-4,
and DC-5) from the drill cutting dump (DC) had significantly
higher OM content than those samples (CS-1, CS-2, and CS-
3) from the exploratory shale gas well (CS), and the OM
contents in the DC-4 and DC-5 were significantly higher than
all the other samples. The DC-4 and DC-5 had lower NH4

+

content, which was significantly lower than that in the CS-1,
while no significant difference was detected in the soil NO3

−

content among these soil samples. As for soil available phos-
phorus (AP), except DC-5, the other DC samples had signif-
icantly higher AP content than those CS samples. The result of
soil MPR in these samples from the shale gas field is shown in
Fig. 2. The significantly higher MPR values were detected in
the DC-5 and DC-4, and the DC-1 and DC-2 showed signif-
icantly lower MPR values than the other samples.

The soil prokaryotic diversity indices

In these soil samples, a total of 344,805 available sequences
were obtained from the Illumina Miseq Sequencing, and the
diversity indices of prokaryotic microbes in them are present-
ed in Table 2. The coverage of each soil sample was above
0.965, indicating that the result of Illumina Miseq Sequencing

was successful and credible. Compared with the other sam-
ples, the DC-5 with the highest MPR had the lower values of
Sobs and Chao, while it had a higher value of Simpson.

The prokaryotic community composition in the soil
from the shale gas field

The cluster analysis and relative abundance of the prokaryotic
phylum in these soil samples are shown in Fig. 3a. A total of
10 known bacterial phyla was detected in each soil sample,
which occupied more than 90% of the total sequences obtain-
ed from the Illumina Miseq Sequencing. The cluster analysis
indicated that those soil samples could be grouped into three
clusters. In detail, four samples (DC-3, CS-2, DC-4, and CS-
3) and three samples (DC-1, CS-1, and DC-2) were divided
into two different clusters, whereas DC-5 formed an isolated
cluster far away from the former two clusters, indicating that
the DC-5 with the highest MPR had a unique phylum compo-
sition. Compared with the other samples, DC-5 had lower
relative abundances of Acidobacteria, Actinobacteria,
Chloroflexi, Cyanobacteria, and Planctomycetes, while had a
higher relative abundance of Saccharibacteria (Fig. 3a). The
heat map constructed from the dominant prokaryotic genera
(top 50) in these soil samples is shown in Fig. 3b. Among
these dominant microbial genera, there were 47 known bacte-
rial genera distributed in 11 bacterial phyla, while there was
only 1 archaeal genus (Crenarchaeotic). Similar to the result
of cluster analysis based on the phylum level, the prokaryotic
genus composition in DC-5 also was different from the other
samples, and a higher relative abundance of norank
Saccharibacteria was detected in the soil samples (DC-4
and DC-5) with higher MPR.

A low ratio (< 2%) of archaeal sequences to total sequences
was detected in each soil sample from this shale gas field, and
the soil samples (DC-4 and DC-5) with higher MPR had
higher ratios of archaeal sequences to total sequences than
the other samples (Fig. 4a). The relative abundance of archaeal
phylum in each soil sample is shown in Fig. 4b. Four archaeal
phyla of Bathyarchaeota, Euryarchaeota, Thaumarchaeota,
and Woesearchaeota were detected in the soil from the shale
gas region, and the soil samples (DC-4 and DC-5) with higher
MPR had distinct archaeal phylum composition, which almost
was solely occupied by Thaumarchaeota andWoesearchaeota,
respectively (Fig. 4b).

Relationship between soil properties and prokaryotic
community structure

The RDA profiles constructed from soil properties and the
dominant prokaryotic OTUs (top 50) or archaeal genera in
these soil samples are shown in Fig. 5. Based on the dominant
OTUs composition, although a long distance was shown be-
tween the two samples (DC-4 and DC-5) with higher MPR,
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they were separated from the other samples, indicating their
distinct prokaryotic community structure (Fig. 5a).
Additionally, the result of the mental test with 999 permuta-
tions indicated that soil MPR (R2 = 0.98, P < 0.01) and OM
content (R2 = 0.69, P < 0.05) were significantly correlated
with the soil prokaryotic community structure (Fig. 5a and
Table S3). The RDA profile based on the archaeal genus
showed that, except DC-3, the soil samples from the DC field
could be separated from those from the CS field (Fig. 5b). The
sample with the highest MPR (DC-5) was isolated from the
other samples, and the archaeal genus of Methanolobus was
the most closely related to soil MPR (Fig. 5b). Furthermore,
the soil MPR (R2 = 0.95, P < 0.05) was the only variable sig-
nificantly correlated with soil archaeal genus composition
(Fig. 5b and Table S3).

Discussion

In this study, the soil samples (DC-4 and DC-5) from the DC
region had higher OMcontents and higherMPR than the other
samples, and a significantly positive correlation (r = 0.44,
P < 0.05) was found between soil OM content and MPR

(Table S1). Soil OM can supply the basic substrates for mi-
crobes to synthesize methane and has been considered as a
crucial factor determining methane generation rate in both
wetland and upland soils (Marschner et al. 2003; Bayer et al.
2012; Morin et al. 2014; Peng et al. 2015; Ye et al. 2016).
Moreover, high OM contents were usually detected in soils
with PHC pollution, and then OM content could be an impor-
tant indicator for soil PHC contamination in oil and gas fields
(Trofimov and Rozanova 2003; Ogboghodo et al. 2004; Zhou
et al. 2017). In this study, compared with other samples,
higher contents of two representative PHCs (pyrene and ben-
zopyrene) were detected in DC-4 and DC-5 (Table S2).
Therefore, the higher OM contents in DC-4 and DC-5 might
be due to the PHC pollution, and the higher MPR in them
confirmed that the increase in soil OM caused by PHC con-
tamination could significantly enhance soil methane produc-
tion (Yang et al. 2018).

In this study, the sample (DC-5) with the highest MPR had
the lowest Sobs, Chao, and Shannon indices (Table 2). The
negative correlation between soil PHCs content and bacterial
diversity in the soils within several oilfields had been reported,
which revealed the toxicity and selection of PHCs on soil
microbes (Perez-Leblic et al. 2012; Elarbaoui et al. 2015;

Table 1 Basic properties of the
soil samples in the shale gas field Samples pH OM (g kg−1) NH4

+ (mg kg−1) NO3
− (mg kg−1) AP (mg kg−1)

CS-1 8.340 ± 0.121a 0.143 ± 0.001e 1.194 ± 0.099a 0.433 ± 0.230a 0.070 ± 0.001e

CS-2 8.123 ± 0.021b 0.142 ± 0.002e 1.056 ± 0.017ab 0.305 ± 0.018a 0.120 ± 0.010d

CS-3 8.310 ± 0.020a 0.119 ± 0.004f 1.091 ± 0.143ab 0.239 ± 0.005a 0.099 ± 0.006d

DC-1 8.153 ± 0.038b 0.231 ± 0.003c 0.949 ± 0.148ab 0.278 ± 0.017a 0.168 ± 0.013bc

DC-2 8.327 ± 0.012a 0.169 ± 0.006d 0.974 ± 0.088ab 0.422 ± 0.106a 0.239 ± 0.019a

DC-3 8.183 ± 0.025b 0.127 ± 0.006f 1.013 ± 0.040ab 0.294 ± 0.021a 0.148 ± 0.011c

DC-4 8.090 ± 0.010b 0.339 ± 0.002a 0.917 ± 0.110b 0.253 ± 0.013a 0.184 ± 0.020b

DC-5 8.090 ± 0.010b 0.314 ± 0.017b 0.827 ± 0.102b 0.418 ± 0.285a 0.119 ± 0.005d

OM, organic matter; AP, available phosphorus. Values are mean (n = 3), and values within the same column
followed by the different letters indicate significant differences (P < 0.05)
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Fig. 2 The MPR in the soil samples from the shale gas field. Error bars
indicate standard deviations (n = 3). The different letters above the
columns indicate significant differences (P < 0.05)

Table 2 Diversity indices of prokaryotic microbes in soil samples in the
shale gas field

Samples Coverage Sobs Chao Shannon Simpson

CS-1 0.986 3803 4465.939 6.916 0.003

CS-2 0.981 3615 4403.889 6.645 0.005

CS-3 0.965 2820 3683.711 6.544 0.007

DC-1 0.976 3384 4143.523 6.798 0.003

DC-2 0.987 3401 4097.667 6.543 0.004

DC-3 0.973 3285 4153.081 6.359 0.015

DC-4 0.983 3613 4512.797 6.702 0.004

DC-5 0.990 2110 2791.055 5.394 0.021

The diversity indices all were calculated with 97% similarity cutoff
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Abbasian et al. 2016; Zhou et al. 2017). No investigation had
reported the relation between microbial diversity and MPR in
those soils with PHC pollution, while Gebert and Perner
(2015) found that the soil (collected from a municipal solid
waste landfill region) with the highest OM and methane con-
centration also had the lowest bacterial diversity, which was
consistent with the result in this study. Additionally, the result
of this study showed that soil samples (DC-4 and DC-5) with
higher MPR had higher portions of the archaeal sequence
(Fig. 4a). In soil, those microbes directly participate in meth-
ane generation all belong to Archaea, which are not sensitive
to both organic and inorganic pollutants due to their special
structure and components in the cell wall (Valentine 2007; He

et al. 2012). For example, it is ammonia-oxidizing Archaea
but not ammonia-oxidizing bacteria can be responsible for the
ammonia-oxidization process in some unfavorable environ-
ments, such as high temperature, low pH, low oxygen, and
high salinity (Erguder et al. 2009; Hatzenpichler et al. 2008;
Schauss et al. 2009). The major component is peptidoglycan
in the bacterial cell wall, but it is pseudo-peptidoglycan or
glycoprotein in Archaea; moreover, ester-linked lipids and
ether-linked lipids are the major components in the cell mem-
brane of bacteria and Archaea, respectively (Derosa et al.
1986; Kandler and Konig 1998). These differences in the cell
structure might result in the low permeability for both nutri-
ents and toxic pollutants in the archaeal cell, and thus ensure a
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prokaryotic phylum and cluster
analysis based on phylum
composition in these soil samples
(a), and heat map constructed
from top 50 genera in these soil
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decent environment for its energy metabolism and growth
under the harsh environments (He et al. 2012; Valentine
2007). Consequently, in this study, the higher OM contents
in these samples (DC-4 and DC-5) with higher MPR and
higher contents of pyrene and benzopyrene (Fig. 2 and
Table S2) might indicate their high risk of PHC contamina-
tion, which resulted in the decrease in prokaryotic diversity
but the increase in the archaeal relative abundance in this soil.

In this study, those two samples (DC-4 and DC-5) with
higher soil OM content and MPR all had a higher relative
abundance of Saccharibacteria than the other samples
(Fig. 3). This kind of bacteria has been widely detected in soil,
activated sludge, sediment, and other habitats (Bond et al.
1995; Borneman and Triplett 1997; Hugenholtz et al. 2001;
Pace 2009), which can utilize various monosaccharides, ami-
no acids, and proteins, and can ferment glucose and other
sugars to produce lactate, playing an important role in miner-
alization of organic compounds (Ariesyady et al. 2007;
Nielsen et al. 2009; Nielsen et al. 2010; Albertsen et al.
2013). More importantly, although it is unsure whether this
bacterial genus can utilize complex PHCs, its ability to de-
grade some simple PHCs in soil, such as toluene and benzene,

has been confirmed (Luo et al. 2009; Xie et al. 2011). Thus,
we hypothesized that Saccharibacteria might play a critical
role in the degradation of OM or PHCs in this gas field soil,
then supplying organic substrates for methanogens. In addi-
tion, the RDA profile constructed from the dominant OTUs
indicated that samples (DC-4 and DC-5) with higherMPR had
different prokaryotic community structures from the other
samples, and soil OM (R2 = 0.69, P < 0.05) and MPR (R2 =
0.98, P < 0.01) were the key factors influencing the soil pro-
karyotic community structure (Fig. 5a and Table S3). The soil
OM content is not only an indicator for assessment of soil
PHC contamination but also the important carbon and energy
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sources for soil microbes, which has long been considered as
one of the most important factors affecting soil microbial com-
munity structure (Perez-Leblic et al. 2012; Abbasian et al.
2016; Zhou et al. 2017; Gao et al. 2019). It has been previ-
ously reported that there was a significant correlation between
the community structure of methanogens and soil MPR (Reim
et al. 2017; Chen et al. 2018; Zhang et al. 2018), but the
relationship between MPR and total prokaryotic community
structure is still uncertain. For example, Wagner et al. (2017)
reported that the prokaryotic community structure might con-
trol the MPR in Arctic Alaska soils, but no correlation was
found between soil methane emission and prokaryotic com-
munity structure in the forest soil in Brazil (Cuer et al. 2018).
Being consistent with the result of Wagner et al. (2017), our
current result also found a significant correlation between the
prokaryotic community structure and MPR in this soil from
the shale gas field. In our opinion, besides a very small portion
of Archaea in prokaryotic microbes directly participating in
the methane biological synthesis, most of the prokaryotic mi-
crobes also might indirectly take part in the process of meth-
ane synthesis by supplying low molecular substrates degraded
from complex organic compounds. Therefore, soil MPR
ought to be tightly correlated to the prokaryotic community
structure.

In this study, the RDA profile based on the archaeal
genus revealed that the archaeal genus composition in
DC-5 with the highest MPR was different from the other
samples, and only MPR was significantly correlated with
soil archaeal community structure (Fig. 5b and Table S3).
Soil archaeal community should be important in determin-
ing the soil capacity of methane generation because the
methanogens currently identified all belong to Archaea
(Serrano-Silva et al. 2014). Ma and Lu (2010) also found
archaeal community structure was an essential factor af-
fecting methane emission in a rice paddy in Hangzhou
City, China. Meanwhile, the samples (DC-4 and DC-5)
with higher MPR and higher relative abundance of the
archaeal phylum of Thaumarchaeota and Woesearchaeota,
respectively (Fig. 4b). Presently, no methanogen has been
found in these two archaeal phyla, and then, it is unsure
whether these two archaeal phyla can directly participate in
the process of soil methane synthesis. However, the result
of RDA analysis indicated that DC-4 and DC-5 had a
higher abundance of Methanolobus, which was the most
closely correlated to soil MPR (Fig. 5b). Methanolobus is
known as a methylotrophic methanogen that can only uti-
lize methyl compounds to generate methane, which is the
dominant methanogen in some oil or coal polluted habitats
(Zhang et al. 2017; Bao et al. 2019; Okoro and Amund
2018) . The r e fo r e , ou r r e su l t r econ f i rmed tha t
Methanolobus should be the critical methanogen directly
responsible for methane production in those environments
with the potential risk of PHC contamination.

Conclusions

In conclusion, in the soil from the shale gas field, OM content
was significantly positively correlated with soil MPR. The
sample with the highest MPR had the lowest prokaryotic di-
versity, and the samples with higherMPR had a higher ratio of
archaeal sequences to the total prokaryotic sequences.
Additionally, soil OM was a crucial parameter affecting soil
prokaryotic community structure, and MPR was significantly
correlated with both prokaryotic and archaeal community
structure. The bacterial genus of Saccharibacteria and the
archaeal genus of Methanolobus were the key microbes in
determining soil MPR in the soil from the shale gas field.
These results can be available for a deeper understanding of
the mechanism of soil methane biological production in soil
with the potential risk of PHC pollution and provide some
useful microbial information for the resource-based treatment
of the PHC-polluted soil.
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