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Abstract
The undesirable effects of silver nanoparticles (AgNPs) on soil environment have caused much concern. The previous studies,
however, focused on sandy soil, with little known on others. In present study, the effects of polyvinylpyrrolidone-coated AgNPs
(0, 1, 10, and 100 mg kg− 1 soil) on enzyme activities (urease and dehydrogenase), ammonia-oxidizing bacteria (AOB) and
archaea (AOA), bacterial and archaeal communities, and microbial function profile in a yellow-brown loam soil were investi-
gated. The significant dose-response inhibitions of AgNPs on enzyme activities were observed, with dehydrogenase more
susceptible to AgNPs. Both of bacterial and archaeal amoA genes were reduced by AgNPs above 10 mg kg− 1, with AOB more
susceptible to AgNPs than AOA. AgNPs at 100mg kg− 1 caused reductions on the dominantNitrosospira andNitrosomonas, and
even disappearance onNitrosovibrio, while increase onNitrososphaera significantly. AgNPs also changed bacterial and archaeal
community structure. Exposure to AgNPs at 100 mg kg− 1 caused significant increases by 186.79% and 44.89% for Bacteroidetes
and Proteobacteria, while decreases by 47.82%, 44.09%, 43.67%, and 80.44% for Actinobacteria, Chloroflexi, Planctomycetes,
and Verrucomicrobia, respectively. Moreover, three dominant archaeal phyla (Thaumarchaeota, Euryarchaeota, and
Parvarchaeota) were also reduced in the presence of AgNPs, especially Thaumarchaeota with the significant reduction of
13.71%. PICRUSt prediction revealed that AgNPs indeed had the potential to change soil microbial community’s functional
contributions. It must be cautious on the interference of AgNPs to soil ecological functions in the future.

Keywords Silver nanoparticles . Enzyme activities . Ammonia-oxidizing bacteria and archaea . Bacterial and archaeal
community . Functional profile

Introduction

Silver nanoparticles (AgNPs) as antibacterial agent are being
widely used in diverse fields (e.g., medical products
(Tolaymat et al. 2010), textiles (Button et al. 2016), and house-
hold appliances (Baranwal et al. 2018)). However, AgNPs
could enter into environment during their life span (Benn

and Westerhoff 2008; Auvinen et al. 2016) and further cause
questions on environmental health and sanitation (Farid et al.
2018). The great concern is safety of soil ecosystem which is
regarded as a main sink for nanoparticles. Surface runoff,
agricultural application of sewage sludge, and effluent irriga-
tion are main release sources of AgNPs into soil environment.
It was reported that 145μg L− 1 of AgNPs was detected during
initial runoff due to release of outdoor paints (Kaegi et al.
2010), and the predicted incremental increases of AgNPs in
sludge-amended soil were 110 ng kg− 1· per year (Sun et al.
2014). Therefore, it is urgent to evaluate the ecological effects
of AgNPs on soil ecosystem.

The shifts in microbial community could well indicate the
response of soil ecosystem to invasion of exotic pollutants,
further mirroring soil health (Holden et al. 2014). AgNPs in
soils will inevitably interact with microbes which are respon-
sible for biogeochemical cycle (e.g., carbon, nitrogen, phos-
phorus, and sulfur cycle) and waste degradation. Morones
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et al. (2005) introduced that AgNPs toxicity to Gram-negative
bacteria (S. typhus, E. coli, P. aeruginosa, and V. cholera) was
size dependent. Guo et al. (2016) reported that inhibition ex-
tent of AgNPs on Phanerochaete chrysosporium could be
changed by sulfide. AgNPs properties (e.g., size, shape, and
coating) (Arnaout and Gunsch 2012), concentrations (Sheng
and Liu 2017), and dosing regimens (Zeng et al. 2019) could
determine the interactions between AgNPs and organisms.
AgNPs exhibit toxicity to organisms via (1) attaching to cell
membranes, resulting in the changes of membrane permeabil-
ity, redox cycling in the cytosol, accumulation of intracellular
radicals, and dissipation of the proton motive force for ATP
synthesis, (2) entering bacterial cell directly to further cause
damage by interfering with DNA and protein synthesis (Lok
et al. 2006; Morones et al. 2005; Nel et al. 2006; Reidy et al.
2013). Compared to pure culture, the behaviors of AgNPs in
complex environment need to be more caution.

It could be seen from Table 1 that AgNPs had negative
effects on microbial biomass, enzyme activities, functional
microbes, and even microbial community, which resulted
from AgNPs themselves and released silver ions (He et al.
2016; Peyrot et al. 2014; Shin et al. 2012). AOB and AOA
with amoA gene could convert ammonia to nitrite in the first
step of nitrification, which had high sensitivity to AgNPs
(Beddow et al. 2017). Archaea, an important prokaryote,
which is different from bacteria and eukaryotes, often com-
poses of extremophiles or exists in the extreme conditions
(Woese and Fox 1977). They also play important roles in
nutrient cycle as well as bacteria, such as AOA (Thion et al.
2016) and methanogens (Marti et al. 2015). Research on ar-
chaeal community exposed to AgNPs is still lag behind com-
pared to bacterial community. McGee et al. (2018) reported
that AgNPs reduced archaeal amoA gene copy numbers, while
the other archaea were not assessed.

Soil properties and compositions (i.e., pH, organic matter
content, soil texture, and ionic strength) could affect the fate
and bioavailability of nanoparticles, further changing biolog-
ical toxicity of nanoparticles (Tiede et al. 2009; Cornelis et al.
2014; Garcia-Gomez et al. 2018). Simonin and Richaume
(2015) pointed out that soil type should be taken into account
when evaluating ecotoxicity of AgNPs. A study by
Rahmatpour et al. (2017) demonstrated that soils with lower
clay content and ionic strength could cause greater inhibitions
of AgNPs onmicrobial and enzyme activities. While extended
to other soil types, the above-reported information still needs
to be unraveled due to the diverse compositions in different
soil type.

This study was conducted in a yellow-brown loam soil
ecosystemwhich was common inNanjing of China. The over-
all goals of present study were to (1) explore the impacts of
AgNPs on soil enzyme activities of dehydrogenase and urease
(dehydrogenase was an indicator of microbial activity, and
urease was chosen as a biological indicator of nitrogen cycle

(Li et al. 2018)); (2) clarify the changes of bacterial and ar-
chaeal community structure besides AOB and AOA in soils
exposed to AgNPs; and (3) reveal the functional profile vari-
ations of soil microbial community.

Materials and methods

Characterization of AgNPs

PVP-AgNPs solution was provided by Shanghai Huzheng
Nano Technology Co., Ltd. PVP-AgNPs were considered
to be lower biological toxicity versus AgNPs with gum
Arabic or citrate (Arnaout and Gunsch 2012). A transmis-
sion electron microscope (TEM) was used to characterize
the morphology of AgNPs. AgNPs with diameter 10–
40 nm had fine dispersion and uniform (Fig. S1). The more
detailed descriptions on AgNPs have been described in the
study of Huang et al. (2018).

Test soil

The surface soils (0–10 cm depth) were collected from natural
field at Nanjing Agricultural University (Nanjing (32.03 N,
118.83E), Jiangsu Province, China) in April 2015. In order
to reflect the whole properties of soil well, soils were collected
from 5 different positions and fully mixed, and then removed
bulk materials (i.e., stones, plant roots, and litter), followed by
over 4 mm sieve. The prepared test soils were stored at 4 °C
for further analytical purpose. The properties of soil were
yellow-brown loam, 7.13 of pH value, 12.5 g organic matter
kg− 1 soil, 0.91 g N kg− 1 soil, and 313.4 g water kg− 1 soil of
maximum water holding capacity.

Experimental design

The experiment was performed in 250 mL sterilized plastic jar
with flat bottom (Fisher, Pittsburgh, USA) (Fig. S2). The ex-
perimental design was detailed in the study of Huang et al.
(2018). Briefly, each of jar as a test unit contained 60 g dry soil
with 40% of the field capacity. After pre-cultured at 25 °C for
4 days, AgNPs solution was added into soils with micropi-
pette while stirring soils slightly with spoon to obtain final
silver concentrations of 1, 10, and 100 mg kg− 1, respectively.
Meanwhile, control groups only received deionized water.
Exactly 1 mg kg− 1 AgNPs was as environmentally relevant
concentration according to the study of Gottschalk et al.
(2009), and high AgNPs concentrations of 10 and
100 mg kg− 1 were chosen because of increasing consumption
of AgNPs, and based on our preliminary experiment that
AgNPs at 100 mg kg− 1 could evidently inhibit soil enzyme
activities. After addition of AgNPs, the moisture content of
soils was adjusted to 60% of field capacity. All test units were
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sealed with breathable parafilm (PM 996, Parafilm M®, US)
and then incubated at 25 °C in a dark environment for 1, 4, 9,
16, 23, 30, and 37 days according to sampling interval, re-
spectively. In addition, the test units without AgNPs on day 0
were used to investigate the initial enzyme activities and mi-
crobial community. Each treatment in the different sampling
time was independent test unit and prepared in triplicate, thus
totaling 87 test units constructed in the experiment. The anal-
ysis of total Ag concentration in soils was conducted using an
inductively coupled plasmamass spectrometer (ICP-MS) after
acid digestion according to US EPA 3050B method. The mea-
sured Ag concentrations corresponding to the nominal con-
centrations were 1.131 ± 0.213, 10.582 ± 0.657, and 97.235 ±
3.097 mg kg− 1, respectively.

Analysis of enzyme activities

Soil enzyme activities were measured using colorimetric
methods on days 1, 4, 9, 16, 23, 30, and 37, respectively.
The dehydrogenase activities were analyzed in accordance
with the method of Gong (1997), and urease activities of
Kandeler and Gerber (1988). Briefly, soils (dehydrogenase
for 2.5 g, and urease for 1.0 g) were collected into a glass tube
with stopper and suspended in buffered substrate solutions.
For buffer solutions and substrates, Tris buffer (0.05 M,
pH 7.6) and TTC (1%) were used for dehydrogenase, borate
buffer (0.05 M, pH 10.0) and urea (5%) for urease. Soil sam-
ples were thoroughly mixed on a vortex shaker before placed
in a constant temperature incubator at 37 °C for 24 h in the
dark environment.

Real-time fluorescence quantitative analysis
and 454-pyrosequencing

The soil DNA was extracted and purified using PowerSoil
DNA Isolation Kit (Mo Bio Laboratories, Carlsbad, USA).
The bacterial and archaeal amoA genes were quantified using
real-time fluorescence quantitative analysis (Huang et al.
2018). AOB, AOA, bacterial, and archaeal communities were
conducted using 454-pyrosequencing by Personal
Biotechnology Co., Ltd. (Shanghai, China) as described in
text S1 of Supporting Information (SI). Pyrosequencing reads
were available in the NCBI Sequence Read Archive (SRA)
database under the accession number SRP218979.

To identify the functional profile shifts in soil microbes
exposed to AgNPs, KEEG functional annotations were
achieved via PICRUSt (phylogenetic investigation of commu-
nities by reconstruction of unobserved states) prediction.
PICRUSt predicted metagenomes using established evolu-
tionary model from 16S rRNA data and reference genome
database. The differences of 16S rRNA gene copy number
among different species were also considered, and raw data
of species abundance were corrected to make the predictive

results more accurate and reliable. The technique with more
cost-effective was often used to provide functional insights
when there was only 16S data available in samples (Langille
et al. 2013).

Statistical analysis

The enzyme activities were presented as means ± standard de-
viations. The statistical differences in soil enzyme activities
were analyzed through one-way ANOVA at 95% of signifi-
cance level (p < 0.05). Pearson correlation analysis was used
to characterize AgNPs concentration-dependent effect on soil
enzyme activities. The value of semi-inhibitory concentration
(IC50) is often considered as an estimate of toxicant effects on
specific organism. In present study, IC50 value presented 50%
of inhibitions on enzyme activities and was calculated as the
previous study (Huang et al. 2018).

Results

Response of soil enzyme activities to AgNPs

Before dosing AgNPs, the tested dehydrogenase activity was
85.13 mg (g·d)− 1, and urease activity was 512.79 mgN (g·d)−
1. Soil enzyme activities, especially dehydrogenase activities,
were found to be affected by AgNPs (Fig. 1). The dehydroge-
nase activity at 1 mg kg− 1 AgNPs showed the significant
increase on day 1 and then reduction from 4th day onwards
(p < 0.05), while variations in urease activities were not ob-
served at the same AgNPs level. When AgNPs concentration
reached ≥ 10 mg kg− 1, two enzyme activities showed the sig-
nificant decrease (p < 0.05). The dehydrogenase activity on
day 1 was reduced by 92% at 100 mg kg− 1 of AgNPs, and
barely detectable after 37 days. Correspondingly, the urease
activity decreased by 75% and 87% on day 1 and 37,
respectively.

Moreover, two enzyme activities in all AgNPs treatment
groups kept relatively stable and did not recover to the level of
control group at the end of experiment, indicating that inhibi-
tions of AgNPs on enzyme activities were persistent. Pearson
analysis showed the significantly negative correlation be-
tween enzyme activities and AgNPs concentrations (urease,
r = − 0.928, p < 0.05; dehydrogenase r = −0.737, p < 0.05).
These results revealed that the influences of AgNPs on en-
zyme activities were dose-dependent, with the higher correla-
tion between urease activities and AgNPs levels. It could be
seen from Table 2 that variations in IC50 were also obvious.
The IC50 of dehydrogenase and urease decreased from
12.134 to 5.446 mg kg− 1 and 32.644 to 14.976 mg kg− 1 with
time, respectively, which meant that exposure time could ev-
idently affect AgNPs ecotoxicity. The lower IC50 of
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dehydrogenase indicated that the dehydrogenase was more
sensitive to AgNPs than urease in the study.

Response of ammonia-oxidizing microorganisms
to AgNPs

AOB on day 37was more abundant thanAOA, approximately
4 to 5 times (Fig.2). Bacterial and archaeal amoA genes at
1 mg kg− 1 AgNPs were higher than those in control group,
indicating that 1 mg kg− 1 AgNPs did not affect ammonia-
oxidizing microorganism, even with slight stimulations.
While AgNPs were above 10 mg kg− 1, the inhibitions were
observed. Compared to control group, exposure to
100 mg kg− 1 AgNPs caused decreases of 39% and 21% for
bacterial and archaeal amoA genes, respectively.

AgNPs at 100 mg kg−1 lowered the richness and diversity
both of AOB and AOA communities assessed by Chao1,
ACE, and Shannon indexes (Tables S1 and S2). UPGMA
analysis showed high similarity of AOB community between
control group on days 0 and 37, while AOA between control
group and AgNPs treatment group on day 37 (Fig. S3). These
results indicated that AOB had higher sensitivities to AgNPs
than AOA. PCA analysis showed the significant separation of
AOB community with the principal components 1 and 2
explaining 97.42% and 2.58% for total variations, and AOA
community with 99.87% and 0.13%, respectively (Fig. S4).

Before soils were treated with AgNPs, the most dominant
AOB was Nitrosospira, followed by Nitrosomonas and
Nitrosovibrio (Fig. 3 (a)). Exposure to AgNPs for 37 days
changed AOB distribution. AgNPs caused reductions of
Nitrosospira from 5.44% to 4.08% and Nitrosomonas from
1.73% to 1.65%, even the disappearance of Nitrosovibrio.
However, AOA exposed to AgNPs showed the different var-
iations from AOB. Nitrososphaera was the only indentified
genus, and their relative abundance in the presence of AgNPs
was 8 times higher than that in control group on day 37. These
results demonstrated that AgNPs did change nitrogen cycle
pathway in yellow-brown loam soil.

Response of microbial community structure to AgNPs

As shown in Table S3 and S4, bacterial Chao1, ACE, and
Shannon indexes exposed to AgNPs reduced, indicating that
AgNPs exposure could lead to a low richness and diversity of
bacterial community. However, archaeal richness and diversi-
ty under AgNPs exposure increased. In addition, a comparison
between days 0 and 37 on control group suggested that dura-
ble culture could also lead to an obvious reduction in micro-
bial richness and diversity.

As show in Fig. S5, the high similarity among bacterial
community was still found between control group on days 0
and 37, while archaeal community between control group and
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Table 2 IC50 values for
dehydrogenase and urease
activities exposed to AgNPs
(mg kg− 1)

Enzyme activities IC50

1 day 16 day 37 day

Dehydrogenase 12.134 (9.788–15.042) 6.009 (4.060–8.894) 5.446 (3.627–8.177)

Urease 32.644 (26.798–39.756) 20.184 (16.349–24.917) 14.976 (12.224–18.348)
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AgNPs treatment group on day 37. PCA analysis via principal
components 1 and 2 explained 92.32% and 7.68% for bacte-
rial community variations, and 95.42% and 4.58% for archae-
al community variations, respectively (Fig. S6). The differ-
ence and similarity in microbial communities were also pre-
sented using Venn diagram with common and unique OTUs

(Fig. S7). The number of commonOTUs accounted for 3.69%
and 10.24% of the total observed OTUs of bacteria and ar-
chaea, respectively. It suggested that both of bacteria and ar-
chaea had tolerance to AgNPs. The common bacteria OTUs at
phylum level belonged to Proteobacteria (29.68%),
Actinobacteria (23.44%), Bacteroidetes (8.20%), and
Chloroflexi (7.85%), while the common archaea OTUsmostly
belonged to Thaumarchaeota (79.78%).

In addition, the microbial community compositions were
compared at phylum, class, and family level, respectively. As
shown in Fig. 4(a), the relative abundance of phylum
Proteobacteria (25.02%–39.09%) was the highest in samples,
followed by Actinobacteria (6.34%–14.50%), Acidobacteria
(11 .94%–13.85%), Chloro f lex i (5 .11%–9 .14%) ,
Planctomycetes (3.07%–5.45%), Bacteroidetes (4.39%–
12.59%), Nitrospirae (2.80%–2.88%), Gemmatimonadetes
(2.59%–3.64%), and Verrucomicrobia (0.53%–2.71%).
Metastats analysis revealed the significant differences in some
phyla between AgNPs and control group on day 37. The pres-
ence of AgNPs significantly decreased the relative abun-
dances of dominant phyla Actinobacteria (47.82%),
Chloroflexi (44.09%), Planctomycetes (43.67%), and
Verrucomicrobia (80.44%), while increasing the relative

(a) AOB

(b) AOA

Fig. 3 Community structure of (a) AOB and (b) AOA at genus level. Relative abundance was defined as the number of sequences affiliated with that
taxon divided by the total number of sequence per sample (%)
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abundances of phyla Bacteroidetes (186.79%) and
Proteobacteria (44.89%) (p < 0.05). Moreover, comparing
control group on days 0 and 37, the difference caused by
duration time was found only for Actinobacteria (p < 0.05).

At class level (Fig. 4b), after 37-day AgNPs exposure, the
relative abundances of Betaproteobacteria and Cytophagia in-
creased, while Acidmicrobial and Actinobacteria decreased.
Further study on family level (Fig. 4c) showed that the relative
abundance of Methylophilaceae presented the most significant
rise from 0.05% to 14.3%. The relative abundance of family
Cytophagaceae also increased obviously. However, there was
no obvious change in the relative abundance of Nitrospirae.

As shown in Fig.5 (a), three dominant archaeal phyla were
observed in soils. Compared with bacteria, the archaeal clas-
sification was more singular. The phylum Thaumarchaeota
(73.0%–84.6%) was the most dominant in three samples. All
archaea at phylum level decreased at 100 mg kg− 1 AgNPs,
especially Thaumarchaeota with the significant reduction of
13.71%, indicating that AgNPs exposure had the negative
influence on the archaeal community structure.

To further study the effect of AgNPs on archaeal commu-
nity, the analysis was carried out on class and order level.
Three classes in phylum Euryarchaeota were observed to be
Methanobacteria, Methanomicrobia, and Thermoplasmata
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Fig. 5 Archaeal community
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and order (c) level. Relative
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total number of sequence per
sample (%)
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(Fig. 5b). Six dominant orders were observed and compared
(Fig. 5c). Nitrososphaerales was the most abundant orders.
After 37-dayAgNPs exposure, the relative abundance of order
Nitrososphaerales decreased from 79.8% to 72.9%. Among
four dominant archaeal orders in phylum Euryarchaeota,
Methanocellales, and Methanosarcinales increased from
0 .02% and 0 .15% to 0 .22% and 0 .43%, whi l e
Methanobacteriales andMethanomicrobiales decreased from
0.43% and 0.15% to 0.08% and 0%, respectively.

Response of predictive functional profile to AgNPs

The microbial community’s predictive functional contribu-
tions were summarized into six categories based on KEEG
annotations (Fig. 6). The reads related to metabolism were
59.5%~59.9%, followed by genetic information processing
of 18.4%~19.6%, and environmental information processing
of 15.0%~15.2%. There were no obvious shifts in the func-
tional classification between control group on days 0 and 37.
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However, six metabolic pathways occurred among the differ-
ent variations after 37-day exposure to AgNPs.

It was found that the relative abundances related to cellular
processes, human diseases, and genetic information increased,
while others decreased. In metabolism categories, most of
secondary metabolism pathways exposed to AgNPs were
lower than control group on day 37, and xenobiotics biodeg-
radation and metabolism with the greatest reduction. In envi-
ronmental information processing categories, signal transduc-
tion increased, while membrane transport and signaling mol-
ecules and interaction decreased. In cellular processes catego-
ries, cell motility on day 37 showed a slight increase.

Discussion

The slight increase of dehydrogenase activity at lower AgNPs
level of 1 mg kg− 1 on day 1may be due to enhancedmicrobial
activity at lower toxic stress (Gu et al. 2014), which needs
further to be explored in yellow-brown loam soil. The inhibi-
tions of AgNPs on dehydrogenase could be explained that the
main sites of producing dehydrogenase were located in the
plasma membrane of bacteria and the mitochondrial mem-
brane of fungi (Dick 1994; Sinsabaugh 1994). AgNPs could
absorb to cell membrane and then directly destroy its perme-
ability (Lok et al. 2006; Nel et al. 2006). The previous studies
have demonstrated that smaller particles (< 10 nm) could even
enter cell directly and cause more damages, such as interfer-
ence with DNA and protein synthesis, redox process, and
function of organelle (Morones et al. 2005; Choi and Hu
2008). These mechanisms could lead to a reduction in soil
dehydrogenase activity.

The negative effects of AgNPs on soil enzyme activities,
especially on dehydrogenase activities, were accordance with
the study ofMcGee et al. (2017).McGee et al. (2017) reported
that soil dehydrogenase activity declined immediately and
was significantly lower than control group (p ≤ 0.0001) at
50 mg kg− 1 AgNPs, but urease activity declining significantly
on day 3 (p ≤ 0.0001). Samarajeewa et al. (2017) also claimed
that dehydrogenase activities had the greatest sensitivity in
sand soil treated with PVP-AgNPs, and PVP showed no ef-
fects on soil enzyme activities. IC50 values of dehydrogenase
in our study ranged from 5.446 mg kg− 1 to 12.134 mg kg− 1,
lower than those reported by other studies, such as 14-day
IC50 of 19.9 mg kg− 1 PVP-AgNPs by Samarajeewa et al.
(2017) and 7-day IC50 of 107.98 mg kg− 1 citrate-AgNPs by
Shin et al. (2012). These differences were largely attributed to
soil texture and AgNPs coating. Arnaout and Gunsch (2012)
reported that citrate-AgNPs showed higher toxicity to micro-
organisms than AgNPs with PVP or gum Arabic coating.

For inhibitions of AgNPs on soil urease activities, AgNPs
might inhibit the microbial activity related to urease (Unine
et al. 2012). It has been widely known that urease is more

vulnerable to Ag+, but Ag+ concentration from AgNPs in soils
was less than the predicted effect concentration (Shin et al.
2012). Urease was found to be less susceptible to PVP-
AgNPs than dehydrogenase in our study. However, Shin et al.
(2012) reported urease with the highest sensitivity to citrate-
AgNPs in sand. A 37-day IC50 of 14.976 mg kg− 1 PVP-
AgNPs in our study was also comparable to 7-day IC50 of
14.20 mg kg− 1 citrate-AgNPs in the study of Shin et al.
(2012). Rahmatpour et al. (2017) reported that PVP-AgNPs
below 1 mg kg− 1 could inhibit urease activities in the typical
Torriorthents and Haplocalcids soil, while PVP-AgNPs at
1 mg kg− 1 in present study did not affect urease activities.
These results indicated that PVP-AgNPs in yellow-brown loam
soil had the lower toxicity to urease. Meanwhile, the response
of enzyme activities to AgNPs was dose-dependent, which was
in accordance with the study of Rahmatpour et al. (2017).

Both of AOB andAOA play the important roles in ammonia
oxidation process. The dominant AOB in present study was
mainly due to be incubated at 25 °C. AOB generally had a wide
range of temperature adaption (4–37 °C), while AOAwas more
active under warmer conditions (37 °C) (Wu et al. 2013). The
presence of AgNPs above 10 mg kg− 1 decreased amoA gene
copy numbers of AOB andAOA, indicating that AgNPs indeed
interfered with nitrogen cycling. AOB in present study had
higher sensitivity to AgNPs than AOA, which was accordance
with the study of Beddow et al. (2017), while McGee et al.
(2017) reported a contrary result. The different response of
AOB and AOA to PVP-AgNPs might be due to the different
predicted structures of archaeal and bacterial enzyme ammonia
monooxygenase (Walker et al. 2010).

The high percentage of unclassified in ammonia-oxidizing
microorganism community structure might be due to low por-
tion of ammonia oxidizing microbes in overall microbial com-
munity and low specificity of primers used in the experiment.
Nitrosospira and Nitrosomonas were dominant in the pres-
ence of AgNPs, which was consistent with the study of
Zhang et al. (2014). The disappearance of Nitrosovibrio re-
vealed that Nitrosovibrio was the most susceptible to AgNPs
among AOB community. Nitrososphaera was reported to re-
trieve in all soils except acidic soil (Pester et al. 2012); this
could explain the presence of Nitrososphaera in yellow-
brown loam soil with 7.13 of pH value.

The reduction of microbial alpha diversity in control group
with time might be due to prolonged poverty of nutrient input.
Based on analysis of beta diversity, AgNPs indeed brought
about variations in microbial communities. AgNPs exposure
changed the bacterial community structure. AgNPs caused
significant reduction on phylum Verrucomicrobia while in-
crease on phylum Proteobacteria in present study, and these
results were accordance with the study ofMcGee et al. (2017).
Dunfield et al. (2007) reported that phylum Verrucomicrobia
had the function of oxidizing methane under anaerobic condi-
tions and reducing the escape of methane in soil ecosystem,
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which was important for controlling greenhouse effect. It
meant that soils contaminated with AgNPs have the potential
to increase greenhouse gas emissions, whichmust be cautious.
The high resistance of Proteobacteria to AgNPs in present
study might be due to their defense mechanisms to toxic pol-
lutants. Some bacteria belonged to Proteobacteria possessed
various metal-resistance integrons and secreted extracellular
polymers (Nemergut et al. 2004; Nilgiriwala et al. 2008).

Acidobacteriawas linked to organic carbon transformation
(Ward et al. 2009). Acidobacteria in soil often accounted for
20% of bacterial community (Naether et al. 2012). McGee
et al. (2017) reported that Acidobacteria on day 30 decreased
from 14% to 6.5% at 50 mg kg− 1 of AgNPs. Grün and
Emmerling (2018) reported that Acidobacteria at
0.01 mg kg− 1 of polyacrylate–AgNPs in loamy soil signifi-
cantly increased under short exposure and diminished after
1 year, while no variations were found at 0.1–1 mg kg− 1

AgNPs. However, no significant variations in Acidobacteria
were observed in our study. It was reported that Acidobacteria
had the potential to excrete extracellular slime and
siderophores and possessed genes encoding a range of ion
channels, resistance-nodulation-cell division transporters,
and drug transporters (Ward et al. 2009).

One explanation for reduction on Chloroflexi was lack of a
lipid outer membrane and specialized secretion systems
(Sutcliffe 2011). Meanwhile, Actinobacteria on day 37 de-
creased significantly (from 12.15% to 6.34%) in the presence
of AgNPs, while McGee et al. (2017) reported no effects of
AgNPs on Actinobacteria. Most of phylum Actinobacteria
were heterotrophic and aerobic, which played an important role
in organic matter degradation (Chater et al. 2010). It could be
concluded that AgNPs had an inhibition on carbon cycle in soil
environment, even causing a more profound impact on the
earth’s environment. Kalyuhznaya et al. (2009) reported that
Methylophilaceae linked methanol oxidation to denitrification.
The relative abundance of family Methylophilaceae belonged
to phylum Proteobacteria increased at 100 mg kg− 1 AgNPs,
which would interfere with the carbon and nitrogen cycle.
Family Cytophagaceae also increased obviously, and
McBride et al. (2014) reported that most members of this family
digested macromolecules such as polysaccharides or proteins.

For archaeal community, some shifts were also observed
after AgNPs exposure. According to the variations of Chao1,
ACE, and Shannon indexes, archaeal community showed
high tolerance to AgNPs compared to bacterial community
in the current study. The AgNPs decreased the most abundant
order Nitrososphaerales, which was an AOA from soil and
played an essential role in nitrogen cycle on earth (Tourna
et al. 2011). Zhang et al. (2012) reported that AOA had more
important roles in ammonia oxidation than AOB in the strong-
ly acidic soils. These meant that nitrogen cycle in soil could be
interfered after AgNPs exposure. In addition, AgNPs also had
negative effects onMethanomicrobia andMethanobacteria in

the study. Both ofMethanomicrobia andMethanobacteria are
the important Methanogens which is the only known micro-
organism producing methane with small molecule carbohy-
drates and hydrogen (Zhao et al. 2018). Hence, AgNPs expo-
sure might have an impact on carbon cycling.

PICRUSt prediction provided needed insights that AgNPs
had a potential to change soil microbial community’s func-
tional contributions, which need further evidence.
Carbohydrate metabolism and amino acid metabolism could
be reduced by nanoparticles, such as AgNPs and graphene
oxides (Li et al. 2019). Liu et al. (2019) reported that PVP-
AgNPs at 50 mg L− 1 could significantly inhibit 31% of amino
acid transport and metabolism pathways. The inhibitions of
AgNPs on amino acid metabolism besides the decline of AOB
and AOA abundance revealed AgNPs at 100 mg kg− 1 indeed
affected the nitrogen cycle. The increase on cell motility in the
presence of AgNPs was also accordance with the study of Li
et al. (2019).

Conclusions

The present study investigated the effects of AgNPs (1–
100 mg kg− 1) on enzyme activities, bacterial community, ar-
chaeal community, and microbial function profile in a yellow-
brown loam soil. It was found that the inhibitions of AgNPs
had a clear dose-response between enzyme activities and
AgNPs levels. Meanwhile, AgNPs exposure time also had
negative effects on enzyme activities. Soil dehydrogenase ac-
tivities were observed to be more susceptible to AgNPs than
urease activities. The variations in microbial richness and di-
versity exposed to AgNPs demonstrated that bacteria and ar-
chaea had different response to AgNPs. The community struc-
tures of bacteria and archaea were also evidently influenced
by AgNPs, with some functional microorganisms especially
sensitive to AgNPs. PICRUSt prediction further provided in-
sights into effects of AgNPs on microbial function. Therefore,
the effects of AgNPs on soil health need to be cautious.
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