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Abstract
Dye removal fromwastewater is of prominence due to its hostile effects on human health and the environment. The complex structure
of the dye molecule is responsible for its difficulty in removal. Adsorption is found to be a promising technique to eliminate dye
wastes due to its high removal capacity at low concentration. Among different adsorbents used, hydroxyapatite is a biocompatible
adsorbent that is relatively efficient in both anionic and cationic dye removal. Recently, modification of hydroxyapatite by doping
with other materials to increase its removal efficiency has gained much attention. This review summarizes compilation of recent
literature on the removal of anionic and cationic dye by different hydroxyapatite nanocomposites, comparison of adsorption capacities
of different hydroxyapatite nanocomposites, the possible adsorption mechanism of removal of dyes, the general isotherm, and kinetic
and thermodynamic studies explaining the type of adsorption and the characteristics, advantages, and limitations of adsorbents.
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Introduction

Rapid industrialization has resulted in a detrimental effect on
the environment and human health. Inevitable use of
chemicals which cannot be eliminated due to growth in the
economy makes it essential to ensure its safe use and disposal.
One such waste is dye which is commonly used in cosmetics,
food, paper, pharmaceutical, plastic, textile, and tannery in-
dustries (Nguyen and Pho 2014). Dye molecules are hazard-
ous to human health along with aquatic and floral environ-
ments (Manatunga et al. 2018). Dye molecule contains a com-
plex chemical structure of chromogen-chromosphere which
makes it difficult to biodegrade (Shertate and Thorat 2014).
Of the dye produced, 80% is used by textile industries making

them the largest consumers of dyes. India is the second-largest
dye exporter after China (Bakre et al., 2005). As per the annual
report of the Ministry of Textiles, 28.89 lakh kg of dye is
produced in India which values around 27.02 crores
(Ministry of Textile Govt of India 2018). Therefore, the treat-
ment of wastewater containing dyestuff is very essential be-
fore discharge.

Various techniques are evolved for the treatment of dye
wastes such as coagulation-flocculation (Dotto et al. 2019),
biodegradation (Bharti et al. 2019), electrochemical oxidation
(Shetti et al. 2019), ion exchange (Yan et al. 2019), Fenton
oxidation (Sözen et al. 2019), reverse osmosis (Cinperi et al.
2019), ozonation (Venkatesh and Venkatesh 2019),
electrocoagulation (Donneys-Victoria et al. 2019), and ad-
sorption (Naushad, 2019). Researchers are under social pres-
sure to produce eco-friendly and economic technique with
relatively good efficiency. Adsorption is an efficient technique
for dye removal which binds the particles on the surface of
adsorbent by physical or chemical forces. India is one of the
top 10 countries with documents on adsorption of dye as per
Scopus as depicted in Fig. 1. Various metal oxides and waste
products are used as adsorbents. Activated carbon is one of the
widely used adsorbents (Jedynak et al., 2019). However, it is
uneconomic; hence, we have focused our review on hydroxy-
apatite adsorbents.
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Dyes

Due to high water solubility, it is difficult to remove dyes from
wastewater by conventional methods (Yusuf 2019).
Degradation of certain dye produces few products which are
hazardous than the dye itself. Dye molecule adheres to the
surface of the fiber by hydrogen bonding, van der Waals
forces, or electrostatic interactions (dos Santos et al., 2007).

Due to the improper coloring process, the excess dyestuffs
mix with water and are released as effluent. When these dye-
stuffs are let-off to the environment, they may cause serious
hazards as shown in Fig. 2.

Toxicity analysis of various dyes is investigated in many
studies which concluded dyes to be highly genotoxic and car-
cinogenic (Ahmed et al., 2015; Fernandes et al., 2018). The
dye may enter through skin pores, inhalation, or ingestion

Fig. 1 Number of articles
published by various countries on
“adsorption of dye”

Fig. 2 Fate of dye in the environment
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which causes diseases like dermatitis, kidney disorders, or
even bladder cancer during long-term exposure (Akarslan
and Demiralay 2015).

Dyes are classified as ionic dye and non-ionic dyes. Dyes
that form positively charged ions in the aqueous solution are
cationic dyes, and those which form negatively charged ions
are anionic dyes. Acid dyes, reactive dyes, and direct dyes are
few anionic dyes. Rhodamine Bmethylene blue andmalachite
green are few cationic dyes. Vat dyes and disperse dyes are
non-ionic dyes (Naushad 2018). Production of dye can be
from natural or synthetic sources. Figure 3 demonstrates the
classification of dyes with their production source. Natural
dyes are eco-friendly and are used principally in food sectors
limiting their use in other sectors because of their high cost
(Vankar 2000).

The removal of dyes by various adsorbents is given in
Table 1.

Hydroxyapatite

Hydroxyapatite (HAP) consists of calcium and phosphate
mineral confirming their association with the apatite family
(Fig. 4). HAP can receive a significant number of anionic
and cationic substituents. HAP can either be monoclinic or
hexagonal (Piccirillo and Castro, 2017). It is used widely in
medicine as its composition replicates that of human bone
with a Ca/P molar ratio of 1.67 (Szcześ et al., 2017). HAP is
white to off-white and a soft powder-like substance which has
numerous applications such as fuel-cell materials, fluorescent
lamps, adsorption of pollutants, and catalysis (Fihri et al.

2017). The physicochemical properties like stability, porosity,
low water solubility, high sorption capacity, and modifiable
surface groups enable strong interaction between HAP and
pollutant molecules (A. K. Mishra 2016).

Synthesis of HAP

The techniques commonly used for the preparation of HAP
include (i) dry method, (ii) wet method, (iii) high-temperature
method, and (iv) green synthesis as mentioned in Table 2.

In the dry method, precisely weighed precursors are
homogenously mixed without the addition of solvent, follow-
ed by sintering to produce the porous product. The require-
ment of high temperature is a major drawback of this method
(Chaikina et al. 2019). In a study conducted by the researches
(Pramanik et al. 2007), the precursors were mixed for 16 h
with the binder in a mill. The resulting slurry was dried for 3 h
at 80 °C to form a powder which was cold pressed in a steel
dye to produce pellets. This was heated in a furnace at 500–
1250 °C followed by cooling to avoid internal cracks. The
product obtained was crushed again, compacted, and heated
in a furnace for further characterization.

Wet methods involve chemical precipitation, hydrolysis,
sol-gel, hydrothermal, and emulsion methods. In these pro-
cesses, less agglomerated products are formed by simple pro-
cedures. Chemical precipitation is one of the widely used
methods for the synthesis of HAP. In a method described by
Wolff et al. (2018), calcium salt solution (pH 10) was stirred
and heated with a dispersant to prevent agglomeration. On
attaining a constant temperature, the phosphate salt solution
was added dropwise and stirred for 1.5 h. After aging for 12 h,

Fig. 3 Classification of dye based
on sources with examples
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the product was filtered and washed many times with water
and ethanol followed by calcination. This method produced
HAP rapidly in a short time with poor crystallinity. The emul-
sionmethod involves the usage of precursors, specific solvent,
and a surfactant at a controlled pH and temperature to obtain
HAP. This method has been employed for obtaining high-
purity HAP by adding CTAB, cyclohexane, and n-octyl alco-
hol to calcium and phosphate precursors under vigorous stir-
ring and calcination for 4 h (Huang et al. 2019).

High-temperature processes involve the combustion of pre-
cursors at a high temperature for a specified period of time.
The final products are powdered by milling to get homoge-
neous HAP particles (Canillas et al. 2017).

Green synthesis methods make use of waste materials as a
substitution for calcium and phosphate precursors for the syn-
thesis of HAP (Fihri et al. 2017). Limiting the use of toxic
chemicals by using naturally available waste resources for the
synthesis can be a solution to the arising problem of water
pollution. Waste resources can be biowastes like eggshells,
fishbone, and bovine bone; calcination of organic matters like
a seashell, coral, starfish, and algae; and biomolecules from
plants (Sadat-shojai et al. 2013). In a study conducted by
researchers (Sathiskumar et al. 2019), fish scales were treated
with dilute HCl to remove proteins followed by NaOH and
heating to eliminate proteins. The white precipitate obtained is
filtered and washed with distilled water. After drying in a hot
air oven, the product is crushed and given NaOH treatment at
100 °C for 2 h with continuous stirring. The final product is
obtained after drying at 100 °C after thorough washing to
remove alkalinity from HAP.

Hydroxyapatite has calcium ions with a positive charge and
phosphate ions with a negative charge. Therefore, it can re-
move pollutants by electrostatic interactions (Chahkandi
2017). However, it is difficult to obtain HAP in the required
form due to its hardness and brittleness. Hence, modification
of HAP by doping it with other compounds can solve this
problem (Sreedhar et al. 2007). Research on the pollutants
removal by adsorption has revealed that surface modification
can advance adsorbent effectiveness (Darvishalipour et al.
2019). In a study conducted by researchers (Mohammad
et al. 2017), adsorption capacity of chitosan doped HAP was
found to be greater than that of HAPwhich indicated hydroxy-
apatite nanocomposite to be a better choice for the contami-
nant removal.

Hydroxyapatite nanocomposites

Enhancing the properties of HAP by doping it with other
material is practiced recently by which adsorbent performance
is increased. Synthesis of doped HAP can easily be obtained
by mixing metal salts with calcium and phosphate salts during
HAP production (Manatunga et al. 2018) or adding dopingT

ab
le
1

(c
on
tin

ue
d)

A
ds
or
be
nt

D
ye

A
ds
or
pt
io
n
pa
ra
m
et
er
s

Is
ot
he
rm

K
in
et
ic
m
od
el

A
ds
or
be
nt

ca
pa
ci
ty

(m
g/
g)

C
on
cl
us
io
ns

R
ef
er
en
ce

C
on
ta
ct

tim
e

(m
in
)

D
os
e

(g
)

pH
In
iti
al

co
nc
en
tr
at
io
n

(m
g/
L
)

Te
m
p

(°
C
)

M
ag
ne
tic

ac
tiv

at
ed

ca
rb
on
/d
io
ps
id
e

na
no
co
m
po
si
te

R
ea
ct
iv
e

gr
ee
n

K
E
-4
B
D

Ps
eu
do

se
co
nd

or
de
r

Ja
fa
ri
H
ar
an
di
,

G
ha
na
va
ti

N
as
ab
,

an
d
Te
im

ou
ri

(2
01
9)

A
ct
iv
at
ed

ca
rb
on

In
di
go ca
rm

in
e

90
1

2
60

40
L
an
gm

ui
r

Ps
eu
do

se
co
nd

or
de
r

29
8.
34

A
ds
or
be
nt

w
ith

hi
gh

su
rf
ac
e

ar
ea

w
as

hi
gh
ly

ef
fi
ci
en
ti
n

dy
e
re
m
ov
al
.

H
ar
ra
ch
e
et
al
.

(2
01
9)

C
om

m
er
ci
al
ac
tiv

at
ed

ca
rb
on

M
et
hy
le
ne

bl
ue

60
0.
1

5
5

40
L
an
gm

ui
r

Ps
eu
do

se
co
nd

or
de
r

98
H
ig
h-
pe
rc
en
ta
ge

re
m
ov
al
of

dy
e.

D
jil
an
ie
t
al
.

(2
01
5)

C
om

m
er
ci
al
ac
tiv

at
ed

ca
rb
on

R
ho
da
m
in
e

B
18
0

2
–

15
42

L
an
gm

ui
r

Ps
eu
do

se
co
nd

or
de
r

87
Sp

on
ta
ne
ou
s
ad
so
rp
tio

n
is
ob
se
rv
ed
.

Je
dy
na
k,
W
id
eł
,

an
d
R
ęd
zi
a

(2
01
9)

A
ci
d
ye
llo

w
17

18
0

2
–

30
42

L
an
gm

ui
r

Ps
eu
do

se
co
nd

or
de
r

71

11839Environ Sci Pollut Res (2021) 28:11835–11849



material after synthesis of HAP under controlled conditions
(Hamzah and Salleh 2014). Figure 5 gives us a year-over-year
increase in the number of publications in the area of HAP
nanocomposites as per Scopus. Doping of HAP with magne-
sium (Khalil 2012), chitosan (Sadeghizadeh et al. 2019), ba-
gasse biomass (Yan et al. 2019), zinc (El-Maghrabi et al.
2019), silver (Gottardo et al. 2019), and palladium (J.
Mishra et al. 2019) for the adsorption of various pollutants is
explored by various researchers.

Adsorption depends on many parameters like adsorbent
dosage, contact time, agitation speed, initial concentration of
adsorbate, and temperature. Recent research on HAP nano-
composite on dye removal is the focus of this review article.
Adsorption of various dyes by metal/metal-oxide-based HAP
nanocomposite, magnetic HAP nanocomposite, biochar-HAP
nanocomposite, polymer-HAP nanocomposite, graphene-
HAP is briefly discussed in the following sections.

Metal/metal-oxide-based HAP nanocomposite

The adsorption capacity of HAP increases when it is doped
with metal or metal oxide. For example, doping HAP with
titanium increased the adsorption of anionic reactive red dye
by being positively charged at zeta potential, when compared
with bare HAP which was negatively charged at zeta potential
repulsing the dye molecules as shown by Asjadi, Salahi, and
Mobasherpour (2016). Metal oxides in adsorbent increase the
availability of hydroxyl groups which form hydrogen bonds
with nitrogen atoms in dye molecules which increase the ad-
sorption capacity. Oxygen species inmetal oxides and positive
charge in cationic dyes result in dipole ion interaction thereby
increasing its adsorption capacity (Phasuk et al. 2018).
Modification in properties of adsorbent which are prominent
in enhancing adsorption capacity depends on the type of metal
oxide doped (Manatunga et al. 2018).

Magnetic HAP nanocomposite

Magnetic hydroxyapatite (MHAP) is synthesized most com-
monly by a chemical precipitation method where the iron
precursor is mixed with white precipitate formed by calcium
and phosphate salt solution at high alkalinity (Sahoo et al.
2019). MHAP has a prominent advantage of easy removal
by the application of external magnetic fields (Y. Wang et al.
2017). It is reported that electrostatic interactions and hydro-
gen bonding are the reasons for the increased adsorption ca-
pacity (Zhang et al. 2016).

Biochar-HAP nanocomposite

In general, HAP nanoparticles aggregate in aqueous solution
thus reducing their dispersibility and adsorption capacity. To
overcome these, few modifications can be done on the surface
of HAP by doping them with biochar. Biochar produced from
pyrolysis of reed straw biomass was blended with HAP which
increased the adsorption of cationic dye (Y. Li et al. 2018).

Polymer/biopolymer-HAP nanocomposite

Hydrophobicity of polymer has restricted its use as a mem-
brane for pollutant removal as it leads to membrane fouling
(Lee et al. 2019). Modification of surface by doping it with
nanoparticles containing hydrophilic groups can overcome
this major drawback. Polymers are synthesized most com-
monly by the graft polymerization method where hydrogels
are formed. When these polymers are soaked in calcium and
phosphate salt solutions under controlled conditions, HAP/
Polymer composite is produced (Hosseinzadeh and Ramin
2018). These composite membranes are efficient in the re-
moval of dyes like Congo red (J. H. Li et al. 2019) and acid
blue 113 (Varaprasad et al. 2018). The adsorption capacity
depends on the quantity of HAP used in the preparation of
the composite membrane (Varaprasad et al. 2018).

Graphene-hydroxyapatite nanocomposite

Carbon-rich materials possess a high surface area ensuing its
high adsorption. Graphene has already been extensively used
and is proven to be an excellent adsorbent. Doping HAP with
graphene will further increase the adsorption capacity. HAP/
graphene composite was successfully used as an adsorbent for
the removal of methylene blue (M. A. Hassan et al. 2018).
Similarly, Congo red and trypan blue dyes were removed by
another HAP/graphene (Prabhu et al. 2018). These researchers
have concluded that the adsorption efficiency of the HAP/
graphene composite is higher than the individual components.
Table 3 depicts the adsorption of different dyes by various
HAP nanocomposites with their experimental conditions.

Fig. 4 Structure of hydroxyapatite
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Dye removal by HAP nanocomposite

Dye removal by HAP nanocomposite is recently practiced.
Adsorption takes place when adsorbate enters adsorbent
through diffusion due to affinity between them. Adsorbate
enters deep into adsorbent as time proceeds occupying all
the available vacant sites (Trivedi and Mandavgane 2018).

Anionic dye removal

HAP/chitosan nanocomposite was used to remove the anionic
reactive blue 19 dye in which adsorption capacity was higher
at low pH as anionic dyes are negatively charged (Nguyen and
Pho 2014). As pH increases, the adsorbent surface becomes
negatively charged which decreases adsorption. Similar re-
sults were observed in a study where an acid yellow dye was
adsorbed by four different HAP nanocomposites (Manatunga
et al. 2018). Congo red dye was removed by HAP/chitosan
composite wherein an increase in adsorption capacity was due
to hydrogen bonding between amino groups of Congo red and
hydroxyl ion of the adsorbent (Hou et al. 2012).

Three anionic dyes (methyl red, methyl orange and, and
methyl yellow) were adsorbed on HAP/palladium/iron com-
posite which revealed that the adsorption was affected due to
change in the structure of adsorbent due to calcination and
addition of palladium degraded dye by oxidation (Safavi and
Momeni 2012). Removal of methyl orange by HAP micro
composite film showed an increase in adsorption with the
increase in adsorbent dosage (Azzaoui et al. 2019).

HAP/CeO2 composite was used to remove Erichrome
black T. It was evident that with the decrease in pH adsorption
increased as deprotonation of phosphate ions repulse adsor-
bent at high pH. An increase in adsorption was observed with
an increase in the concentration of the dye and surface area

(Chaudhary et al. 2016). Similar results were shown in the
study on the removal of lead and acid yellow dye by HAP/
chitosan and HAP/carboxymethyl cellulose (Manatunga et al.
2016).

Reactive red 141 was adsorbed on HAP and HAP/titanium
to check which adsorbent was best suitable for adsorption
(Asjadi et al., 2016). The effect of initial concentration and
the adsorbent dosage was similar to the above studies. The
addition of titanium modified the structure of bare HAP mak-
ing it favorable for adsorption at higher pH. Hydrogen bond-
ing between HAP and nitrogen in dye was prominently re-
sponsible for adsorption. Doped HAP had higher adsorption
capacity than bare HAP due to higher surface area.

Cationic dye removal

Two basic dyes brilliant green and crystal violet were
adsorbed on kaolinite (Sarma et al., 2019). The electrostatic
attraction was the main adsorption mechanism. Crystal violet
had higher adsorption efficiency than brilliant green due to the
larger dimension and greater number of binding sites.
Methylene blue was adsorbed on MHAP (Y. Wang et al.
2017). Adsorption was mainly due to electrostatic interactions
and the functional groups –OH and –COOH of carbon
nanotubes.

Adsorption of brilliant green on HAP chitosan composite
showed optimum adsorption at pH 7 and other factors such as
dosage, the concentration of dye, and contact time which were
directly proportional to adsorption (Ragab et al., 2019).
Rhodamine B was adsorbed on HAP/alginate composite in a
study conducted by Oladipo and Gazi (2016) where both
batch and continuous studies were conducted. In a continuous
study, the depth of adsorbent and flow rate of dye affected the
adsorpt ion. Malachi te green was adsorbed on a

Fig. 5 Trend of publication over
research on “hydroxyapatite
nanocomposite” as per Scopus
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polysaccharide-based graphene HAP nanocomposite where
electrostatic interactions were predominant in adsorption pro-
cess (Hosseinzadeh and Ramin 2018).

Adsorption mechanism

It is well known that electrostatic interactions, hydrogen bond-
ing, and ion exchange effects are the main possible mecha-
nisms in the adsorption process. Hydrogen atom in HAP
bonds to electronegative atom of dye to form strong hydrogen
bond resulting in breaking of the complex structure of dye
(Hou et al. 2012). Electrostatic interactions are principally
triggered due to attraction and repulsion of counter and co-
ions of HAP composites and dye molecules (Sarma et al.,
2019). The description of the interactions of different func-
tional groups in the process is surface complexation.
Functional groups responsible for adsorption can be analyzed
by FTIR of adsorbent before and after adsorption (Y. Wang
et al. 2017). Phosphate ions in HAP composite are predomi-
nant in the ion exchange effect. Exchange of certain signifi-
cant pollutant ion from the dye with this phosphate ion results
in the removal of a considerable amount of contaminant from
dye reducing its toxicity (You et al. 2019). Figure 6 depicts
pictorial representations of mechanisms.

Adsorption isotherms, kinetics,
and thermodynamic studies

The adsorption process is demonstrated by graphs showing
the variation of adsorbed material with pressure at a constant
temperature which is known as adsorption isotherm.
Isotherms like Langmuir, Freundlich, and Temkin give the
nature of adsorption. Monolayer or multilayer adsorption is
depicted by isotherms. Adsorption kinetics are represented by
pseudo first-order and second-order models. Determination of
exothermic, endothermic, and spontaneous reaction is accom-
plished by adsorption thermodynamics.

Adsorption isotherms

Commonly used isotherms in the dye removal process are
briefly discussed in this section. Langmuir, Freundlich, and
Temkin are commonly used isotherms due to their simplicity
and variable parameters. Langmuir and Freundlich isotherm
equation can be altered into linear form and can be assessed
effortlessly by graphical procedures (Oyekanmi et al. 2019).

Langmuir isotherm:

1

Qe
¼ 1

Qo
þ 1

Qo*b*Ce

� �
ð1Þ

Freundlich isotherm:

log Qeð Þ ¼ logK f þ 1

n
logCe ð2Þ

Temkin isotherm:

Qe ¼ RT

bt
*ln ATð Þ þ RT

bt
*ln Ceð Þ ð3Þ

where Qe is the amount of dye adsorbed per gram of the
adsorbent at equilibrium (mg/g), Qo is the maximum mono-
layer coverage capacity (mg/g), b is the Langmuir isotherm
constant (l/mg), Ce is the equilibrium concentration of adsor-
bate (mg/L) , Kf is the Freundlich isotherm constant (mg/g), R
is universal gas constant (8.314 J/mol/K), T is the temperature
at 298 K, AT is the Temkin isotherm equilibrium binding con-
stant (l/g), and bT is the Temkin isotherm constant

Langmuir isotherm depends on the rate of adsorption and
desorptionwhich is assumed to be equal at equilibrium (Patiha
et al. 2016).

Freundlich isotherm is used for heterogeneous surfaces. It
describes multilayer adsorption, unlike Langmuir which dem-
onstrates monolayer adsorption. It is based on the assumption
in which vacant sites for adsorption are adsorbed first depend-
ing on their binding capacity till adsorption energy is de-
creased exponentially (Foo and Hameed 2010).

Temkin isotherm is based on assuming that there is a linear
decrease in heat of adsorption with sorption coverage
(Sampranpiboon 2014). This isotherm reveals that adsorption
is exothermic or endothermic. Various isotherms used by dif-
ferent HAP nanocomposites are cited in Table 3.

Adsorption kinetics

The adsorption kinetics demonstrates the proportion of uptake
dye molecules by the adsorbent (Lin 2015). Generally, used
equations are pseudo first-order and pseudo second-order
equations which describe physisorption and chemisorption
respectively (Patiño-Ruiz et al. 2019).

Pseudo first-order:

log Qe−Qtð Þ ¼ log Qeð Þ− k
2:303

� �
*t ð4Þ

Pseudo second-order:

t
Qt

¼ 1

k1*Q2
e

þ 1

Qe

� �
*t ð5Þ

where k and k1 are pseudo first-order and second-order rate
constants. Various dye adsorption on HAP nanocomposite
shows different kinetic model as mentioned in Table 3.
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Thermodynamics study

Thermodynamics relates adsorption isotherms in equilibrium
and reveals the spontaneity of the process (Myers 2002).
There are three main parameters considered such as (i)
Gibb’s free energy, indicating spontaneity of reaction, (ii) en-
thalpy, indicating exothermic and endothermic nature of the
reaction, and entropy which is calculated by using equations
given below.

ΔG ¼ −RTlnKd ð6Þ

lnKd ¼ ΔS
R

−
ΔH
RT

ð7Þ
ΔG ¼ ΔH−TΔS ð8Þ

where Kd is the distribution coefficient.
HAP/zein composite was used to adsorb Congo red in

Nasab et al., 2018). Thermodynamic parameters were calcu-
lated by Vant Hoff’s equation indicating reaction being spon-
taneous and endothermic. Similar results were obtained in a
study where methyl orange is adsorbed on HAP composite
(Azzaoui et al. 2019), methylene blue was adsorbed on HAP

composite (Y. Wang et al. 2017), and malachite green adsorp-
tion on HAP composite (Hosseinzadeh and Ramin 2018).

Methylene blue adsorption by HAP/alginate composite re-
vealed that the adsorption process was spontaneous and exo-
thermic, and ΔS being positive indicated nonaffinity of adsor-
bate extending the reaction process (Aslanov et al., 2017).
Methylene blue adsorption by HAP/ polyacrylamide compos-
ite showed that the reaction is exothermic. Spontaneity re-
duced with an increase in the temperature, and ΔS being neg-
ative indicated a reduction in affinity of adsorbent and adsor-
bate at the interface (Mansri et al., 2019).

Regeneration of HAP nanocomposites

The overall waste management system is crucial in every as-
pect. Reduction in the amount of waste can be accomplished
by three R’s “Reduce, Reuse, Recycle.” The adsorbent can be
reused after desorption. Generally, a solvent is used against
saturated adsorbent which causes it to release the adsorbed
pollutant. In the case of MHAP, it is easy to remove adsorbent
from the solution by using a neodymium magnet even though
there is a slight reduction in adsorption capacity for each cycle

Fig. 6 Pictorial representation of a) electrostatic attraction, b) electrostatic repulsion, c) hydrogen bond, and d) ion exchange effects between dye
molecules and HAP composites
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after adsorption (Zhang et al. 2016). Practical application is
directly dependent on good reusability.

HAP/biochar composite saturated with methylene blue dye
was desorbed using weak acid as a solvent. A remarkable
reduction in adsorption was found in the first cycle due to
the solubility of HAP in weak HCl used as solvent (Y. Li
et al. 2018). HAP/chitosan composite saturated with methy-
lene blue and sunset yellow was desorbed by washing several
times with deionized water followed by water-ethanol mixture
at pH 12. No adsorbent loss or reduction in adsorption capac-
ity of desorbed samples was found up to five cycles signifying
stability of composite at a wide pH range (Chatterjee et al.
2018).

Conclusion and future scope

This review is summarized to give a brief idea about both
anionic and cationic dye removal by various HAP nanocom-
posites and study their adsorption mechanism. Electrostatic
interactions, hydrogen bonding, and ion exchange effects are
the three main dye removal mechanisms that are concisely
discussed. The review discloses that the greater adsorption
capacity is a result of either modified or composite adsorbent
with a high surface area. Besides, the constraints such as pH,
initial dye concentration, temperature, and adsorbent dose are
vital factors which illustrate substantial effects on dyes ad-
sorption. Frequently used isotherms, kinetic models, and ther-
modynamic equations that describe the adsorption process
with its type and nature are conversed in this review. Future
studies can be done on the simultaneous removal of different
constituents from dye effluents rather than focusing only on
color removal. Being eco-friendly, synthesizing different ad-
sorbents via green route is the area of interest that can be
investigated. Cost analysis is an important factor that can be
done in further studies.
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