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Abstract
Mercury is a trace element that is potentially dangerous due its high toxicity and tendency to bioaccumulate in organisms.
Currently, high mercury concentrations are seen in the environment especially due climate changes. Studies regarding mercury
bioavailability in the southwestern Atlantic Ocean using tuna and tuna-like species are rare. The aim of the present study was to
use tuna and tuna-like species (Thunnus atlanticus, Thunnus albacares, Katsuwonus pelamis, Euthynnus alletteratus,
Coryphaena hippurus and Sarda sarda) as indicators of the availability of total mercury (THg) in oceanic food webs of the
southwestern Atlantic Ocean. THg concentrations varied significantly among species for both muscle and liver (Kruskal–Wallis
test; H5,130 = 52.7; p < 0.05; H5,130 = 50.1; p < 0.05, respectively). The lowest concentrations were found in C. hippurus
(0.008 mg kg−1 wet weight in the muscle and 0.003 mg kg−1 wet weight in the liver), and the highest concentrations were
reported in the muscle of T. atlanticus (1.3 mg kg−1 wet weight) and in the liver of S. sarda (2.5 mg kg−1 wet weight). The
continued monitoring of tuna and tuna-like species is necessary to assist in their conservation since tuna can be sentinels of
mercury pollution.
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Introduction

Mercury is a global contaminant potentially dangerous in the
marine environment due to its high toxicity and tendency to
bioaccumulate in organisms (Storelli et al. 2001).
Methylmercury is the most toxic form (ATSDR 1999) and
suffers from biomagnification throughout food webs (Booth
and Zeller 2005; Gray 2002). In this sense, organisms that
occupy high trophic levels, such as tuna, may exhibit high
mercury concentrations (Burger et al. 2001; Peterson et al.

1973). Anthropogenic mercury input is a concern around
many regions of the world since methylation rates are predict-
ed to increase due global warming and acidification in sea
waters (Booth and Zeller 2005; Downs et al. 1998;
Krabbenhoft and Sunderland 2013). Approximately 2% of
mercury flux in the ecosystem undergoes the methylation pro-
cess per year (Fitzgerald and Mason 1997). Current studies of
data collected from water column profiles showed that anthro-
pogenic emissions in the oceans increase mercury concentra-
tions by 2.6× (since the 1500s) in waters shallower than
1000 m (Lamborg et al. 2014). In the Pacific Ocean, a study
in Thunnus albacares has shown that mercury concentrations
were higher in 2008 than in previous periods (1971 and 1998)
(Drevnick et al. 2015).

Despite this increase in anthropogenic mercury input, there
are few studies in the southwestern Atlantic regarding mercu-
ry bioaccumulation in tuna and tuna-like species (e.g., Ferreira
et al. 2012; Medeiros et al. 2008). In the northern hemisphere,
there are some studies (e.g., Storelli et al. 2002; Yamashita
et al. 2005), but few focused on the same species as those
evaluated in the present study (e.g., Burger et al. 2011;
Kojadinovic et al. 2006). Tuna and tuna-like species are fast-
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swimming opportunistic top predators (FAO 1994, 1997), and
their diet is diverse (Collette and Nauen 1983). Due to the fact
that the diet is the major route of trace element accumulation
in marine organisms (Morel et al. 1998; Silva et al. 2011;
Wang 2002), these fish may exhibit increased concentrations
of mercury in their tissues (Voegborlo et al. 2006). Since they
are highly migratory species (Collette and Nauen 1983;
Zagaglia et al. 2004), tuna and tuna-like species can be senti-
nels of mercury global pollution and other pollutants, provid-
ing information on the contamination status of offshore waters
and open seas (Endo et al. 2016; Ueno et al. 2003).

Regarding the conservation status of tuna and tuna-like
species, Near Threatened is the status for Thunnus albacares
(IUCN 2011) due to population decline, especially in the
Atlantic Ocean (Fonteneau and Soubrier 1996; ICCAT
1994). The other species in the present study are classified
as Least Concerned (IUCN 2011). It is important to highlight
that tropical coastal species have a smaller number of stock
assessments available, which can overestimate the number of
individuals (Juan-Jordá et al. 2011). The geographical distri-
bution of some species is restricted, such as Euthynnus
alleteratus and Sarda sarda, which are limited almost exclu-
sively to the Atlantic Ocean, and Thunnus atlanticus is found
only in the western Atlantic Ocean (Collette and Nauen 1983).
Therefore, mercury pollution can be another threat to tuna and
tuna-like species (Ueno et al. 2003) since a mercury increase
in oceans has been shown (Drevnick et al. 2015).

The objectives of the present study were as follows: (1)
evaluate mercury bioavailability in the southwestern Atlantic
Ocean using tuna and tuna-like species as sentinels; (2) com-
pare the total mercury concentrations among the muscle and
liver of tuna and tuna-like species from the southwestern
Atlantic Ocean; and (3) investigate possible relationships be-
tween biological data and the total mercury concentrations in
the muscle and liver of tuna and tuna-like species from the
southwestern Atlantic Ocean.

Materials and methods

Sampling

Six tuna and tuna-like species (N = 130) were acquired from
the commercial fleet that operates in the southwestern Atlantic
Ocean in Brazil between February 2009 and January 2010,
covering all seasons. The species were Thunnus atlanticus
(blackfin tuna, n = 28); Thunnus albacares (yellowfin tuna,
n = 20); Katsuwonus pelamis (skipjack tuna, n = 29);
Euthynnus alletteratus (little tunny, n = 8); Coryphaena
hippurus (dolphinfish, n = 22), and Sarda sarda (Atlantic bo-
nito, n = 22). The specimens were caught with longlining,
seine nets, drift nets and fishing rods in locations with depths
ranging from 17 to 2000 m and distances from the shore of 1

to 190 km. The species identification was according to
Menezes and Figueiredo (2000), and each specimen was
weighed, measured, and dissected. The samples collected for
all analyses were the dorsal muscle and liver of all species. An
aliquot of each tissue was stored in polyethylene bags and
frozen at − 20 °C until analysis.

Total mercury (THg) determination

The total mercury (THg) determination followed the proce-
dure of Malm (1989) and Bastos et al. (1998). To aliquots of
approximately 0.4 g (wet weight) of each tissue, 1 mL of
hydrogen peroxide and 5 mL of a sulfuric:nitric acid mixture
(1:1) were added. The solution was heated to 60 °C for 2 h in a
water bath until its total solubilization. Posteriorly, 5 mL of
5%potassium permanganate solution was added and heated to
60 °C for more than 15 min. After sitting overnight, 1 mL of
hydroxylamine hydrochloride was added to the extract, and
THg concentrations were determined by cold vapor/atomic
absorption (FIMS-400, Perkin-Elmer) with sodium borohy-
dride as a reducing agent. The accuracy and precision of the
analytical methods were determined by using the standard
reference materials DORM-3 and DOLT-4 (National
Research Council, Canada), and the results were in good
agreement with certified values (mean values ± SD: DOLT-
4 = 2.72 ± 0.12 and DORM-3 = 0.354 ± 0.01) The detection
limit of the equipment was 0.088 μg L−1, and the detection
limit of the method was 3.79 μg kg−1 for liver and
3.67 μg kg−1 for the muscle. The quality control was also
performed through analysis of procedural blanks and replicate
samples (coefficient of variation < 20%).

Statistical analysis

Statistical analyses were performed through the program
STATISTICA 7.0 for Windows (StatSoft, Inc. 1984–2004,
USA). Data normality was tested using the Kolmogorov–
Smirnov test (p < 0.05). The non-parametric Kruskal–Wallis test
was applied, followed by the Unequal N HSD post hoc test to
verify differences in the total mercury concentrations (THg)
among tuna and tuna-like species. The Wilcoxon test was used
to compare the THg muscular and hepatic concentrations of all
species. Spearman’s correlation test was applied to investigate the
correlation between THg muscular and hepatic concentrations
and biological parameters (total length and weight).

Results and discussion

General aspects and interspecific comparison

Summaries and representations of the biological parameters
are presented in Table 1, while the muscular and hepatic total
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mercury (THg) concentrations in tuna and tuna-like species
are shown in Table 2. The THg muscular concentrations
ranged from a minimum of 0.008 mg kg−1 (ww) in
C. hippurus to a maximum of 1.3 mg kg−1(ww) in
T. atlanticus, and the THg hepatic concentrations ranged from
a minimum of 0.003 mg kg−1 (ww) in C. hippurus to a max-
imum of 2.4 mg kg−1(ww) in S. sarda. These concentrations
found in the present study are high and in agreement with the
available literature (Table 4). The THg concentrations varied
between tuna and tuna-like species for both muscle (Kruskal–
Wallis test; H5,130 = 52.7; p < 0.00001) and liver (Kruskal–
Wallis test; H5,130 = 50.1; p < 0.00001). Among all species,
C. hippurus showed a difference from the others species for
muscle and liver (Tukey’s test for unequal N applied on ranks;
p = 0.0001), with the exception of E. alletteratus (p = 0.2562).
Additionally, differences were also found in the hepatic con-
centrations between S. sarda and T. albacares (p = 0.0140)
(Table 3).

The highest THg concentrations were found in T. atlanticus
and S. sarda. Both of these species have a piscivorous diet
(Campo et al. 2006; Collette and Nauen 1983; Fletcher et al.
2013; Headley et al. 2009; Kuklyte and Rowe 2012),

occupying high trophic levels that undergo high mercury bio-
accumulation (Storelli et al. 2005). For S. sarda, cannibalism
is also known (Zusser 1954), resulting in higher concentra-
tions. Additionally, T. atlanticus forages and feeds in the me-
sopelagic zone (Fenton et al. 2014). Being an epipelagic spe-
cies, T. atlanticus has the ability to dive up to 200 m for
feeding (Fenton et al. 2014), thus accessing prey from the
mesopelagic zone. Organisms found in this region may exhib-
it highmercury concentrations, especiallymethylmercury, due
to microbial-mediated methylation (Choy et al. 2009; Croizier
et al. 2019). In these sub-thermocline low oxygen oceanic
waters, there are higher methylmercury concentrations, en-
hancing mercury bioaccumulation in these organisms
(Mason and Fitzgerald 1990; Monteiro et al. 1996). This gra-
dient in the water column increases from the surface to the
bottom, with demersal and benthopelagic fish showing higher
Hg concentrations than pelagic species (Croizier et al. 2019).
Deep ocean waters contain approximately 74% of the global
total of mercury concentrations, compared with 24% and 2%
in the shallowwaters of the ocean and atmosphere, respective-
ly (Mason and Sheu 2002; Morel et al. 1998). The
photodemethylation by radiation also plays an important role
in bioaccumulation in pelagic fish, thus reducing the methyl-
mercury available for epipelagic species (Croizier et al. 2019).
On the other hand, the low THg concentrations in C. hippurus
are in agreement with other studies (Adams 2009; Adams

Table 1 Mean and standard
deviation (SD), median,
minimum, and maximum values
(Min-Max) of the biological pa-
rameters of six tuna and tuna-like
species in the present study

Weight (kg) Total length (cm)
Species N Mean ± SD Min-Max Mean ± SD Min-Max

Thunnus atlanticus 28 3.5 ± 5.4 0.8–27.8 52 ± 16 37–115

Thunnus albacares 20 6.6 ± 10.2 1.3–47.6 72 ± 28 45–176

Katsuwonus pelamis 29 2.9 ± 2.8 0.6–16 51 ± 11 32–82

Euthynnus alletteratus 8 1.4 ± 0.1 0.3–2.8 44 ± 12 27–60

Coryiphaena hippurus 22 1.9 ± 1.6 0.3–6.3 64 ± 21 31–108

Sarda sarda 22 1.3 ± 0.5 0.8–2.3 48 ± 7 41–59

Table 2 Mean and standard deviation (SD), median, minimum and
maximum values (Min-Max) of the total mercury concentrations (THg)
in the muscle (M) and liver (L) of six tuna and tuna-like species,
expressed in mg kg−1 wet weight

Species N Tissue Mean ± SD Median Min-max

Thunnus atlanticus 28 M 0.28 ± 0.34 0.16 0.04–1.30

L 0.33 ± 0.43 0.17 0.06–1.86

Thunnus albacares 20 M 0.12 ± 0.07 0.11 0.03–0.28

L 0.13 ± 0.08 0.10 0.01–0.27

Katsuwonus pelamis 29 M 0.20 ± 0.08 0.18 0.04–0.39

L 0.17 ± 0.08 0.16 0.05–0.39

Euthynnus alletteratus 8 M 0.22 ± 0.13 0.19 0.02–0.38

L 0.11 ± 0.07 0.11 0.01–0.20

Coryiphaena hippurus 22 M 0.04 ± 0.02 0.03 0.008–0.01

L 0.04 ± 0.04 0.03 0.003–0.17

Sarda sarda 22 M 0.26 ± 0.21 0.13 0.07–0.79

L 0.46 ± 0.55 0.20 0.09–2.45

Table 3 Results of the Tukey Test for unequal N applied on ranks for
multiple comparisons of the total mercury concentrations in the muscle
(upper right) and liver (lower left) of tuna and tuna-like species from the
Atlantic Ocean

Tatl Talb Kpel Ealle Chip Ssar

Tatl 0.316 0.957 0.999 0.0001 0.996

Talb 0.345 0.060 0.583 0.0001 0.118

Kpel 0.988 0.730 0.999 0.0001 0.999

Ealle 0.434 0.989 0.678 0.0001 1.000

Chip 0.0001 0.0001 0.0001 0.256 0.0001

Ssar 0.785 0.014 0.393 0.089 0.0001

Thunnus atlanticus (Tatl), Thunnus albacares (Talb), Katsuwonus
pelamis (Kpel), Euthynnus alletteratus (Ealle), Coryphaena hippurus
(Chip) and Sarda sarda (Ssar)
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2004; Cai et al. 2006; Kuklyte and Rowe 2012). C. hippurus
has a rapid growth rate (Adams 2009) and short life expectan-
cy (less than 2 years) (Oxenford 1999), which results in a
shorter time to bioaccumulate mercury compared with long-
lived species (Oxenford and Hunte 1999). The low trophic
level occupied by C. hippurus,measured through the nitrogen
stable isotope ratio (δ15N) (Cai et al. 2007), compared to other
species (e.g.,Makaira nigricans and E. alletteratus) may also
be related to these low concentrations.

The intermediate concentrations found in T. albacares,
K. pelamis, and E. alleteratus are probably due to their habits.
These species do not tolerate low oxygen concentrations and
low temperatures, spending most of their time in shallow wa-
ters above the thermocline (Collette and Nauen 1983; ICCAT
2010) and assessing prey with lower THg concentrations
(Choy et al. 2009). As mentioned above, lower THg concen-
trations can be found in shallow waters. Additionally,
T. albacares and K. pelamis feed on smaller prey compared
to other tuna and tuna-like species (e.g., Adams 2004; Vaske-
Júnior and Castello 1998). These preys include crustaceans
and cephalopods, especially squids (Adams 2004; Santos
and Haimovici 2002). In fact, Atlantic squid species show
low THg concentrations (< 0.04 mg kg−1) (Bisi et al. 2012;
Hall et al. 1978). E. alletteratus also presented intermediate
THg concentrations, which can be associated with sampling
consisting of small individuals (TL: from 27 to 60 cm)
(Table 1). This size restriction enables them to catch smaller
prey, such as sardines and anchovies (García and Posada
2013), which tend to show low THg concentrations
(Voegborlo et al. 2006; Storelli et al. 2005).

Comparison among tissues

There were significant differences between the THg muscular
and hepatic concentrations for S. sarda, K. pelamis and
E. alletteratus (Wilcoxon test, p < 0.05). For S. sarda, the
hepatic concentrations (0.46 ± 0.55 mg kg−1 ww) were higher
than the muscular concentrations (0.26 ± 0.21 mg kg−1 ww),
while for K. pelamis and E. alletteratus, the muscular THg
concentrations (0.20 ± 0.08 mg kg−1 ww and 0.22 ±
0.13 mg kg−1 ww, respectively) were higher than the liver
THg concentrations (0.017 ± 0.08 mg kg−1 ww and 0.11 ±
0.07 mg kg−1 ww, respectively). For the other species, there
was not a significant difference between the muscular and
hepatic THg concentrations (Wilcoxon test, p > 0.05). In gen-
eral, the total mercury concentrations are expected to be
higher in liver than muscle due trace element storage and
de tox i f i ca t ion ca r r i ed ou t in the l ive r th rough
methallothioneins (Avenant-Oldewage and Marx 2000;
Ordiano-Flores et al. 2012). However, some studies have al-
ready reported higher concentrations in muscle than in liver
for different fish species (e.g., Goldstein et al. 1996; Licata
et al. 2005). This result can be related to the formation of

covalent interactions of methylmercury with proteins in the
muscle (Carty and Malone 1979) and how methylmercury is
processed and stored in the liver, which is associated with
morphologic variation in the livers of many species (Hajeb
et al. 2010).

Biological parameters

Positive correlation was shown between muscular THg con-
centrations and biological parameters (total length and weight)
for all species (Spearman correlation, p < 0.05) (Fig. 1). These
correlations suggest mercury bioaccumulation according to
tuna and tuna-like species growth and they have been reported
in other studies (e.g., Kojadinovic et al. 2006; Kuklyte and
Rowe 2012). Mercury bioaccumulation in fish tends to in-
crease with age, especially when older fish assess larger and
more contaminated prey (Kuklyte and Rowe 2012; Trudel and
Rasmussen 2006). These positive correlations are probably
due the fast intake rate of methylmercury and its long half-
life, resulting in a low elimination rate of methylmercury,
which tends to increase its concentration (Trudel and
Rasmussen 1997). Hepatic THg concentrations and biological
parameters were positively correlated for all species
(Spearman correlation, p < 0.05), with the exception of
K. pelamis and E. alleteratus (Spearman Correlation,
p > 0.05) (Fig. 2). This lack of correlation is because of the
small size of the individuals. In juveniles, the metabolic cost
and growth rate are higher than for adults (Trudel and
Rasmussen 2006), leading to the biodilution of mercury con-
centrations in tissues of the fish (Sharma et al. 2008).

Environmental approach

From a global perspective, the concentrations found in the
present study are comparable with other regions around the
world and can be related to the highmercury availability in the
Atlantic Ocean (especially in deep waters) (Mason and
Sullivan 1999; Mason and Fitzgerald 1991, 1993; Mason
and Sheu 2002; Mason and Sullivan 1999). Anthropogenic
enrichment is also higher in Atlantic waters, varying from less
than 1% in the Pacific and Indian Oceans to approximately
60% in northern Atlantic deep waters (Sunderland and Mason
2007). Kraepiel et al. (2003) assumed that the mercury con-
centration in tuna is proportional to the mercury concentra-
tions in the ocean reservoir (mixed layer, thermocline or deep
ocean waters). In this sense, tuna and tuna-like species may
exhibit enhanced accumulation, especially due to anthropo-
genic sources of mercury (Drevnick et al. 2015). For
C. hippurus, no changes in the THg concentrations have been
seen since 2002 (Table 4), having the lowest concentrations
among tuna and tuna-like species, probably due to its biolog-
ical aspects, as mentioned above. However, for other species,
such as T. albacares, there was a different pattern. In the same
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studied area, the THg concentrations found in T. albacares in
2008 were lower than those found in the present study, show-
ing enhanced bioaccumulation in this species (Table 4). For
the other species analyzed, there was no previous study in the
same region to compare THg concentrations.

Besides anthropogenic enhancement, global changes can
also affect the biogeochemical cycle of mercury. Elevated

temperatures, for example, could affect atmospheric oxidation
rates and patterns of mercury deposition globally
(Krabbenhoft and Sunderland 2013). From this perspective,
according to predictions done for two centuries, considering
ocean warming rates of 0.4 to 1.0 °C per century, the increase
in methylmercury concentrations showed averages of 1.7 and
4.4% per century, respectively (Booth and Zeller 2005). A

Fig. 1 Correlation between total mercury concentrations in the muscle
(expressed in mg.Kg−1, wet weight) and biological parameters (total
length (TL) and weight) for tuna and tuna-like species. (A) Thunnus

atlanticus, (B) Thunnus albacares, (C) Katsuwonus pelamis, (D)
Euthynnus alletteratus, (E) Coryphaena hippurus, and (F) Sarda sarda

Environ Sci Pollut Res (2020) 27:6813–6823 6817



recent study with T. albacares in the Pacific Ocean showed
that mercury concentrations were higher in 2008 than in pre-
vious periods (1971 and 1998) (Drevnick et al. 2015). This
increase is in agreement with a significant rise in the mercury
concentrations in Pacific waters (Sunderland et al. 2009) at
depths until 1000 m from 2002 to 2006. It stands out that
the largest increase (estimated at 3% per year between 1995
and 2006) was found to occur in intermediate waters (150–

1000m) (Sunderland et al. 2009), which is where T. albacares
is found in the water column (Collette and Nauen 1983;
Drevnick et al. 2015). Since in the present study
T. albacares showed increased mercury bioaccumulation,
these concentrations can be of concern.

Recent models have shown that if the current mercury de-
position rates are maintained, in the intermediate waters of the
northern Pacific, double the in mercury concentration by 2050

Fig. 1 continued.
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would be expected (Sunderland et al. 2009). However, the
mercury emissions from anthropogenic sources are predicted
to increase at a rate faster than for the previous few centuries
(Lamborg et al. 2014).

These increased mercury concentrations should also be ex-
pected in other ocean waters since most mercury released into

the atmosphere is in the gaseous elemental chemical form,
allowing it to be widely dispersed around the globe (even
between hemispheres), and it presents a long atmospheric life-
time (6 to 12 months) (Fitzgerald and Clarckson 1991;
Krabbenhoft and Sunderland 2013; Lamborg et al. 2014).
Since atmospheric deposition determines mercury

Fig. 2 Correlation between total mercury concentrations in the liver
(expressed in mg Kg−1, wet weight) and biological parameters (total
length (TL) and weight) for tuna and tuna-like species. (A) Thunnus

atlanticus, (B) Thunnus albacares, (C) Katsuwonus pelamis, (D)
Euthynnus alletteratus, (E) Coryphaena hippurus, and (F) Sarda sarda
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accumulation in water, sediments, and organisms (Fitzgerald
and Clarckson 1991), increased mercury concentrations in
tuna and tuna-like species should be expected.

Conclusion

The present study provides additional information regarding
total mercury concentrations in the muscle and liver of six

tuna and tuna-like species captured in the southwestern
Atlantic. Although there are studies regarding mercury in tu-
na, usually, they use the true tuna, such as bluefin tuna and
yellowfin tuna (e.g., Endo et al. 2016; Storelli et al. 2005).
Therefore, other species such as those analyzed in the present
study exhibit little information, especially in the southern
hemisphere. Tuna and tuna-like species in the present study
showed high total mercury concentrations in their tissues, with
the lowest concentrations found inC. hippurus and the highest

Fig. 2 continued.
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found in T. atlanticus and S. sarda. Differences in their diet,
feeding ecology and habitat preferences were important fac-
tors associated with these differences. Size and weight were
important biological parameters in mercury bioaccumulation,
which increased with growth. In this sense, these elevated
mercury concentrations found are of concern since may rep-
resent serious damage inmany organisms. Since anthropogen-
ic mercury is continuous and estimated to increase in ocean
waters, tuna and tuna-like species are useful sentinels of mer-
cury bioavailability in ocean waters.
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Table 4 Mercury levels (mean ±
standard deviation, mg kg−1 wet
weight) in muscle of tuna and
tuna-like species from all over the
world

Species N Origin Mean ± SD References

Coryphaena hippurus 57 Gulf of Mexico 0.07 ± 0.09 Cai et al. (2007)

48 Western Indian Ocean 0.01 Kojadinovic et al. (2007)

385 United States 0.10 Adams (2009)

44 Western Indian Ocean 0.01 ± 0.05 Kojadinovic et al. (2006)

27 Gulf of Mexico 0.21 Kuklyte and Rowe (2012)

12 United States 0.17 ± 0.20 Burger and Gochfeld (2011)

20 Southwestern Atlantic Ocean 0.05 ± 0.01 Selanes et al. 2002

22 Southwestern Atlantic Ocean 0.03 ± 0.02 This study

Thunnus atlanticus 48 Gulf of Mexico 0.66 ± 0.31 Cai et al. (2007)

37 United States 1.07 ± 0.54 Adams (2004)

11 Gulf of Mexico 0.39 Kuklyte and Rowe (2012)

22 Gulf of Mexico 0.73 ± 0.22 Senn et al. (2010

28 Southwestern Atlantic Ocean 0.28 ± 0.34 This study

Thunnus albacares 56 United States 0.25 ± 0.12 Adams (2004)

103 Gulf of Mexico 0.18 ± 0.15 Cai et al. (2007)

18 Gulf of Mexico 0.19 ± 0.15 Senn et al. (2010)

45 Western Indian ocean 0.65 ± 0.52 Kojadinovic et al. (2007)

39 Western Indian ocean 0.13 ± 0.09 Kojadinovic et al. (2006)

56 United States 0.20 ± 0.17 Burger and Gochfeld (2011)

45 Gulf of Mexico 0.36 Kuklyte and Rowe (2012)

99 Indian and Pacific Ocean 0.37 ± 0.2 Endo et al. (2016)

14 Southeastern Atlantic Ocean 0.73 ± 0.22 Bosch et al. (2016)

56 Southwestern Atlantic Ocean 0.18 ± 0.11 Ferreira et al. (2012)

8 Southwestern Atlantic Ocean 0.08 ± 0.05 Medeiros et al. (2008)

20 Southwestern Atlantic Ocean 0.12 ± 0.07 This study

Katsuwonus pelamis 2 Japan 0.47 ± 0.24 Yamashita et al. (2005)

38 Western Indian Ocean 0.51 ± 0.28 Kojadinovic et al. (2007)

39 Indian Ocean 0.19 ± 0.66 Kojadinovic et al. (2006)

29 Southwestern Atlantic Ocean 0.19 ± 0.08 This study

Euthynnus alletteratus 114 United States 0.94 ± 0.60 Adams (2004)

9 Gulf of Mexico 1.08 ± 0.72 Cai et al. (2007)

9 Gulf of Mexico 0.69 Kuklyte and Rowe (2012)

8 Southwestern Atlantic Ocean 0.21 ± 0.13 This study
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