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Zinc alleviates maneb-induced kidney injury in adult mice
through modulation of oxidative stress, genotoxicity,
and histopathological changes

Mediha Sefi1,2 & Mariem Chaâbane1 & Awatef Elwej1 & Safa Bejaoui2 & Rim Marrekchi3 & Kamel Jamoussi3 &

Naourez Gouiaa4 & Tahia Boudawara Sellami4 & M’hamed El Cafsi2 & Najiba Zeghal1 & Nejla Soudani1,2

Received: 25 June 2019 /Accepted: 25 November 2019
# Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Zinc is one of the important essential trace minerals to human health due to its antioxidant properties. The present study was conducted
to elucidate its potential protective role against maneb-induced nephrotoxicity. For this purpose, animals were randomly divided into
four groups of six each. Mice of group I (negative controls) have received daily 0.5 ml of distilled water, a solvent of maneb. Mice of
group II (MB) have received 30mg/kg bw ofmaneb daily by intraperitoneal way.Mice of group III (MB+Zn) have received the same
dose of maneb as group II, along with ZnSO4 (30 mg/kg bw) daily. Mice of group IV (Zn), considered as positive controls, have
received the same dose of ZnSO4 as group III daily. Our results revealed that ZnSO4 co-administration tomaneb-treatedmice decreased
kidney levels of malondialdehyde, hydrogen peroxide, protein carbonyls, and advanced oxidation protein products; the levels of non-
enzymatic antioxidants like vitamin C, glutathione, and metallothionein. It recovered the alteration of antioxidant enzyme activities
(catalase, superoxide dismutase, and glutathione peroxidase) and attenuated DNA fragmentation. Furthermore, this essential trace
element was also able to alleviate kidney biomarkers’ alterations by lowering plasma levels of creatinine, urea, uric acid, and lactate
dehydrogenase. In addition, the histopathological changes induced bymanebwere improved following zinc administration. Our results
indicated that zinc might be beneficial against maneb-induced renal oxidative damage in mice.
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Introduction

Essential trace minerals play a pivotal role in the normal
development and the protection of human body and health

(Prashanth et al. 2015). Most of them mediate crucial bio-
chemical reactions by acting as enzyme cofactors or cata-
lysts. In particular, zinc (Zn) is a micronutrient, as well as an
essential trace mineral obtained from the diet. It is essential
for a wide range of biological activities except when used at
high doses (Salgueiro et al. 2000). In trace amounts, this
mineral is important in cellular function because it is an
integra l component of many prote ins , including
metalloenzymes, structural proteins, and transcriptional
factors (Zhou et al. 2007). Many studies have revealed that
Zn has antioxidant properties and acts by several different
mechanisms. Indeed, Zn binds to thiol groups of biomole-
cules, allowing their stabilization against oxidation (Bettger
1993). Moreover, it antagonizes transition metal-catalyzed
reactions by competing with redox active metals, such as
iron and copper, for binding to cell membranes as well as to
some proteins (Powell 2000). Zn is also a co-factor of cop-
per zinc superoxide dismutase (Cu/Zn-SOD), which trans-
forms superoxide anion radicals (O2

−) to the less harmful
species: oxygen (O2) and hydrogen peroxide (H2O2), as
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reported by Mariani et al. (2008). This mineral has been
proven to upregulate the nuclear factor erythroid 2-related
factor 2 (Nrf2), a transcription factor regulating the expres-
sion of genes encoding the antioxidant molecules superox-
ide dismutase (SOD), glutathione S-transferase (GST),
heme oxygenase 1 (HO-1), and glutathione (GSH)
(Cortese et al. 2008; Smith and Loo 2012; Jarosz et al.
2017). Besides, Zn has been demonstrated to increase the
expression of the antioxidant enzyme catalase (Tate Jr et al.
1997). In addition, this trace element can retard oxidative
processes through induc ing the biosynthes i s of
metallothioneins, cysteine-rich proteins which can bind
pro-oxidant metals, such as cadmium, and provide thiol
groups to scavenge reactive oxygen species (ROS)
(Dondero et al. 2005). Interestingly, previous experimental
studies on animal models have confirmed Zn efficiency in
protecting against oxidative injury, associated with ROS-
generating xenobiotics exposure, to a variety of tissues
and organs, including the kidneys, and this effect was
related to the antioxidant capacity of this mineral. For
instance, Ghabaee et al. (2017) have reported that Zn ad-
ministration to rats during gestation and lactation protects
against arsenic-induced oxidative stress in kidney tissue.
Likewise, Babaknejad et al. (2016) have demonstrated that
Zn treatment reverses the toxic renal alterations induced by
cadmium in rats. Zn showed also an ameliorating effect
against oxidative stress induced by the pesticide fipronil in
the renal tissue of rats (Swelam et al. 2017). In this context,
it is well documented that pesticides, in general, have nu-
merous negative effects including dermatological, respira-
tory, gastrointestinal, neurological, carcinogenic, reproduc-
tive, and endocrine changes (Mnif et al. 2011; Sanborn et al.
2007; Thakur et al. 2014). Among pesticides, maneb, a
manganese-containing dithiocarbamate fungicide, is exten-
sively employed in agriculture to treat a variety of crop
pathologies, because of its low acute toxicity and short en-
vironmental persistence. At large amounts, maneb produces
adverse effects in non-target organisms, including human
beings, like headache, nausea, weight loss, confusion, re-
spiratory paralysis, and even death (Edwards et al. 1991). It
has been demonstrated that maneb acts on the thyroid gland
(Mallem et al. 2007) as well as on the central and peripheral
nervous systems (Domico et al. 2006) and possesses
genotoxic effects (Bertini et al. 2000). Moreover, maneb
exerts an antithyroid effect due to ethylene thiourea
(ETU), its main metabolite, which also causes liver toxicity.
Recently, we have demonstrated the beneficial role of van-
illin against maneb-induced oxidative stress, DNA damage,
and liver histological changes in mice (Sefi et al. 2019).
According to Jaballi et al. (2017), maneb used at graded
doses (1/8, 1/6, 1/4, and 1/2) of LD50 led to oxidative stress
generation, provoking renal cell damages due to lowered
defense systems’ capacities.

To our knowledge, no investigations have reported the po-
tential ability of Zn to alleviate maneb toxicity in the kidney.
Therefore, the aim of the present work was focused, for the
first time, on the renoprotective role of Zn against maneb-
induced kidney damages in adult mice.

Materials and methods

Animals

Seven-week-old male adult mice of Swiss strain, with an initial
body weight of 30 ± 1 g, were obtained from the Central
Pharmacy (SIPHAT, Tunisia). They were kept in a controlled
temperature (22 ± 2 °C), humidity (40%), and photoperiod
(12 h light-dark cycle). Mice were acclimated for 2 weeks prior
to testing. They had free access to a commercial standard pellet
diet (SNA, Sfax, Tunisia) and tap water. The content of Zn in the
standard diet corresponded to 65mg/kg of pellet according to the
manufacturer of Animal Nutrition Society (SNA, Sfax, Tunisia).
All the experimental procedureswere performed according to the
International Guidelines for Animal Care (Council of European
Communities 1986). The test protocol was approved by the
Ethical Committee of Sciences Faculty of Sfax, with 1204 as
an ethics approval number.

Experimental design

After acclimatization, animals were randomly divided into four
groups of six each. Mice of group I, considered as negative
controls, have received daily by intraperitoneal way 0.5 ml of
distilled water, a solvent of maneb. Mice of group II (MB) have
received 30 mg/kg bw of maneb daily by intraperitoneal way.
Mice of group III (MB + Zn) have received the same dose of
maneb as group II, along with ZnSO4 (30 mg/kg bw) daily.
Mice of group IV (Zn), considered as positive controls, have
received the same dose of ZnSO4 as group III daily. Maneb dose
and themanner of administration, used in the current study, were
chosen on the basis of the previous findings of Yadav et al.
(2012). Concerning zinc, we have used the dose 30 mg/kg bw,
according to Ding et al. (2016).

After the treatment period of 10 days, mice were fasted
overnight and then sacrificed by cervical decapitation to avoid
stress condition. Blood samples were collected from the trunk
into heparinized tubes and centrifuged at 2200×g for 10 min.
Plasma samples were drawn and stored at − 80 °C until anal-
ysis. Kidney tissues were dissected out, cleaned from adipose
tissue, and weighed. Some samples were rinsed, homogenized
in ice-cold phosphate buffer (0.1 M; pH 7.4), and centrifuged.
The resulting supernatants were collected and kept at − 80 °C
until biochemical analysis. Other samples were either fixed in
10% buffered formalin solution and embedded in paraffin for
histological examination or taken for DNA assay.
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Biochemical analysis

Protein quantification

Total protein content in kidney homogenates was estimated
according to the Lowry et al. (1951) method, and bovine se-
rum albumin was used as a standard.

Kidney lipid peroxidation

The kidney content inmalondialdehyde (MDA), index of lipid
peroxidation, was spectrophotometrically determined at
532 nm by Draper and Hadley (1990) method, and the values
were expressed as nmoles MDA/mg of protein.

Hydrogen peroxide measurement

Measurement of hydrogen peroxide (H2O2) in the kidney was
carried out by the ferrous ion oxidation xylenol orange meth-
od (Ou andWolff 1996). Values were expressed as nmoles/mg
of protein.

Protein carbonyl content

Kidney protein carbonyls (PCO) content was determined ac-
cording to the method of Reznick and Packer (1994). The
carbonyl content was determined based on the molar extinc-
tion coefficient of DNPH ( = 2.2 × 104 cm−1 M−1) and
expressed as nmoles/mg of protein.

Kidney advanced oxidation protein product

Kidney advanced oxidation protein product (AOPP) levels
were assayed according to the method described by Kayali
et al. (2006). For each sample, AOPP concentration was cal-
culated using the extinction coefficient 261 cm−1 mM−1 and
the results were expressed as nmoles/mg of protein.

Kidney non-enzymatic antioxidant (GSH and vitamin C) levels

Reduced glutathione (GSH) levels in the kidney tissue were
analyzed at 412 nm by Ellman (1959) method modified by
Jollow et al. (1974), and the values were expressed as nmoles/
mg of protein.

Kidney ascorbic acid (vitamin C) content was determined
by dinitrophenyl hydrazine method, according to Jacques-
Silva et al. (2001). The data were presented as nmoles/mg of
protein.

Metallothionein content in kidney

Kidney metallothionein (MT) content was estimated based on
the method described by Viarengo et al. (1997) and modified

by Petrovic et al. (2001). Absorbance was measured at
412 nm. The data were expressed as μmoles of GSH/mg of
protein.

Kidney enzymatic antioxidant activities

Catalase (CAT) activity in the renal tissue was determined at
240 nm following the Aebi (1984) method, and the values
were expressed as μmoles H2O2 consumed/min/mg of
protein.

Superoxide dismutase (SOD) activity was analyzed at
560 nm according to Beauchamp and Fridovich method
(1971), and the values were expressed as U/mg of protein.

Glutathione peroxidase (GPx) activity was assayed by fol-
lowing the method described by Flohe and Gunzler (1984).
Enzyme activity was expressed as nmoles of GSH oxidized/
min/mg of protein.

Assays of creatinine, urea, and uric acid levels in plasma

Creatinine, urea, and uric acid plasma levels were quantified
spectrophotometrically using commercial diagnostic kits (Ref
20151, 20143, 20091), purchased from Biomaghreb.

Determination of lactate dehydrogenase activities in plasma
and kidney

Plasma and kidney activities of lactate dehydrogenase (LDH)
were estimated using a commercially available reagent kit
purchased from Biomaghreb (Ref: 20012) and they were
expressed as units/L and units/g of tissue, respectively.

Qualitative DNA fragmentation assay by agarose gel
electrophoresis

Genomic DNA was isolated from the kidney tissue using a
commercial kit and electrophoresed on a 1% agarose gel
stained with ethidium bromide (Pure Link Genomic DNA
Invitrogen ref. K 182001). The gel was then observed under
ultraviolet lamp and photographed.

Histological studies

Some portions of the kidney were placed in 10% of buffered
formalin solution for 48 h. The specimens were washed and
dehydrated through an ascending series of ethanol. Then they
were embedded in paraffin. Blocks were made, sectioned at a
thickness of 5 μm, and stained with hematoxylin and eosin.
The obtained slides were examined under light microscopy
(Suvarna et al. 2013) and fitted with a Canon Power Shot
camera (A640) to record digitally the required images for
histological studies. The severity of histopathological changes
(glomeruli fragmentation, Bowman’s space enlargement,
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hypercellularity and increased nuclear size of glomeruli, leu-
kocytes infiltration, and bleeding area) was scored using the
blind study methodology, based on the following scale: 0: no
injury, 1: injury to 25% of the field, 2: injury to 50% of the
field, 3: injury to 75% of the field, 4: diffuse injury.

Statistical analysis

The data of the present work were analyzed using the statisti-
cal package program Stat view 5 Software for Windows (SAS
Institute, Berkley, CA). Statistical analysis was carried out by
one-way analysis of variance (ANOVA) followed by Fisher’s
protected least significant difference (PLSD) test as a post hoc
test for multiple comparison tests. When comparison between
two groups was required, the student unpaired t test was also
used. All values were presented as means ± S.D. A p value of
0.05 was considered as the point of minimal statistical
significance.

Results

Relative kidney weight

During 10 days of treatment, no death was observed in any
group; and there were no significant changes in body weights
of control and treated mice. Our results showed that the rela-
tive kidney weight was significantly (P < 0.001) increased by
56% in MB and by 30% in MB + Zn groups, when compared
to those of controls (Table 1).

Lipid peroxidation and hydrogen peroxide generation
in the kidney

Administration of maneb resulted in a significant increase
(P < 0.001) in MDA concentrations as well as in H2O2 levels
in kidney tissues compared to those of control group.
However, Zn administration to maneb-treated mice induced
a significant reduction in the levels of these parameters com-
pared to those of the maneb-treated group. Exposure of mice

to Zn alone did not induce any changes in MDA and H2O2

levels (Table 2).

Protein oxidative markers in the kidney

Our data revealed a significant increase (P < 0.001) in PCO
and AOPP levels of maneb-treated mice compared to those of
control group. Interestingly, co-administration of Zn with
maneb significantly reduced the levels of these parameters
(Table 2).

Non-enzymatic antioxidant status in the kidney

Maneb exposure caused a significant increase (P < 0.001) of
GSH, vitamin C, and MT levels in the kidney when compared
to those of control group. These modifications were alleviated
following Zn administration to maneb-treated mice as indicat-
ed by a significant decrease (P < 0.001) of the above parame-
ters when compared to those of MB group (Table 2).

Enzymatic antioxidant status in the kidney

In maneb-treated mice, CAT and GPx activities in the kidney
were significantly decreased (P < 0.001) when compared to
those of control group. In contrast, there was a significant
increase (P < 0.001) in SOD activity. Co-treatment with Zn
induced a total recovery in SOD and GPx activities when
compared to those of maneb-treated mice. Meanwhile, CAT
activity was moderately (P < 0.05) ameliorated. The activities
of these antioxidant enzymes in kidney of mice treated only
with Zn were near to those of negative controls (Fig. 1).

Biomarkers of renal toxicity

As shown in Table 3, the levels of plasma creatinine, urea, and
uric acid were significantly (P < 0.001) increased in maneb-
treated mice when compared to those of controls. In mice co-
treated with Zn, a recovery of these parameters was observed.

Table 1 Final body weight,
absolute and relative kidney
weights in adult mice, controls
and treated with maneb associated
or no with Zn or with Zn alone

Parameters and treatments Controls MB MB + Zn Zn

Final body weight (g) 40.83 ± 3.43 41.33 ± 2.94 41.00 ± 2.52 40.73 ± 3.65

Absolute kidney weight (mg) 0.41 ± 0.03 0.65 ± 0.02*** 0.54 ± 0.01***+++ 0.39 ± 0.03

Relative kidney weight (mg/100 g BW) 1.01 ± 0.11 1.58 ± 0.13*** 1.32 ± 0.09***++ 0.96 ± 0.12

Values are means ± SD for six mice in each group

MB; (MB + Zn) vs. controls: *** p < 0.001

(MB + Zn) vs. MB: ++ p < 0.01; +++ p < 0.001
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LDH activities in plasma and kidney

Maneb-treated mice showed a significant increase (P < 0.001)
in the activities of LDH in plasma associated with its signifi-
cant decrease (P < 0.001) in the kidney compared to those of
controls. Co-treatment with Zn improved LDH activities in
plasma and kidney (Fig. 2).

DNA fragmentation

As presented in Fig. 3, a smear ladder formation on agarose
gel electrophoresis, revealing random DNA fragmentation,
was observed in the kidney tissue of maneb-treated mice. Zn
co-treatment decreased the smear formation. DNA damage
was not detected in negative and positive control groups.

Kidney histopathological studies

Kidney of control group showed normal features of renal tu-
bules and intact glomeruli (Fig. 4(a)). The histopathological
hallmarks of maneb-induced renal injury were evident by glo-
meruli hypertrophy and fragmentation, Bowman’s space en-
largement, hypercellularity and increased nuclear size of the
glomeruli, marked leukocytes infiltration between the tubules,
and a large area of hemorrhage in the interstitium (Fig. 4(c1,
d1, d2)). These alterations were attenuated after Zn co-treat-
ment, indicating the reduction of the pathological changes
associated with nephrotoxicity (Fig. 4(e)). Treatment with
Zn alone showed a normal appearance of the kidney
histoarchitecture (Fig. 4(b)).

The severity of these histological alterations was evaluated
semiquantitatively in the histopathological kidney sections of
control and Zn groups, and the damage scores were found to
be zero. Kidney damage parameters (glomeruli fragmentation,
Bowman’s space enlargement, increased cellularity and nucle-
ar size of glomeruli, leukocytes infiltration, and hemorrhage)

for MB and MB + Zn groups were scored and results showed
that injury scores for MB group were significantly higher than
those for MB + Zn group (Table 4).

Discussion

There is accumulating evidence that Zn has antioxidant prop-
erties and can protect kidney against xenobiotics-induced
nephrotoxicity. In the present study, we investigated, for the
first time, whether Zn administration to maneb-exposed mice
would potentially alleviate the adverse effects of this
fungicide.

In toxicological studies, body and organ weights are the
important endpoints for evaluating xenobiotics-induced organ
toxicity (Crissman et al. 2004). The current study revealed that
maneb exposure significantly increased the relative kidney
weight without affecting the body weight of mice. This rise
might be a result of the hypercellularity and the enhanced
nuclear size of the glomeruli, as shown in histological kidney
sections of MB group (Fig. 4(d2)). Furthermore, El-Damaty
et al. (2012) have stated that kidney enlargement and its
weight increment in rats treated with pesticides could be due
to the accumulation of abnormal cells. In this context, a
previous study conducted by De Carvalho et al. (1989) re-
vealed kidney toxicity, illustrated by severe glomerular le-
sions, in patients after unprotected use of maneb. Recently,
Abolaji et al. (2017) have reported an increase in the relative
kidney weight of female rats treated with two pesticides,
chlorpyrifos and carbendazim.

The kidney morphological changes induced by maneb
could be related to the disturbances of the normal redox state
in this organ, resulting from oxidative stress installation. The
latter has been recognized as a shift in the balance between
oxidants and antioxidants in favor of the former, due to in-
creased cellular levels of ROS. In such case, our results

Table 2 Kidney biomarkers and
non-enzymatic antioxidants in
control and treated mice with
maneb, Zn or their combination

Parameters and treatments Controls MB MB + Zn Zn

MDAa 2.60 ± 0.22 5.51 ± 0.14*** 3.82 ± 0.09***+++ 2.65 ± 0.19

H2O2
a 0.038 ± 0.002 0.093 ± 0.002*** 0.050 ± 0.002***+++ 0.040 ± 0.005

PCOa 5.38 ± 0.35 16.97 ± 1.18*** 6.78 ± 0.34***+++ 5.47 ± 0.46

AOPPa 0.04 ± 0.005 0.09 ± 0.017*** 0.04 ± 0.021***+++ 0.04 ± 0.006

GSHa 5.98 ± 0.46 9.18 ± 0.36*** 7.02 ± 0.28**+++ 6.29 ± 0.45

Vit Ca 5.53 ± 0.48 7.51 ± 0.48*** 6.05 ± 0.24*+++ 5.61 ± 0.37

MTb 0.06 ± 0.005 0.12 ± 0.006*** 0.08 ± 0.004***+++ 0.06 ± 0.004

Values are means ± SD for six mice in each group

MDA malondialdehyde, PCO protein carbonyls, AOPP advanced oxidation protein products, H2O2 hydrogen
peroxide, Vit C vitamin C, GSH glutathione, MT metallothionein

MB; (MB + Zn); Zn vs. controls: *p < 0.05; ***p < 0.001. (MB + Zn) vs. MB: +++p < 0.001
a nmoles/mg of protein
bμmoles GSH/ mg of protein
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revealed that the concentration of malondialdehyde (MDA),
the end product of lipid peroxidation, increased in the kidney
of MB group. MDA has been accepted as a reliable parameter
reflecting an enhanced ROS production, leading to oxidative
injury to the body (Kim et al. 2012). Similarly, previous re-
ports of Osman et al. (2011) on rats have shown an increased
lipid peroxidation derived from bromuconazole exposure, a
triazole fungicide. The enhanced MDA level, recorded in tis-
sues of maneb-exposed animals, could be probably due to the
excessive production of ROS caused by this fungicide leading
to renal injury, as indicated in our recent study (Sefi et al.

2019) conducted in the liver. Likewise, in the present study,
the generation of H2O2 was increased following treatment
with maneb, reflecting a possible mitochondrial dysfunction
induced by this fungicide. Elevated ROS production and mi-
tochondrial dysfunction seemed to be key factors in maneb-
induced toxicity, with potential secondary renal consequences.
Previous studies of Todt et al. (2016) have shown that Mn/Zn
ethylene-bis-dithiocarbamate fungicide resulted in mitochon-
drial dysfunction and excessive ROS production. Moreover,
Jaballi et al. (2017) have demonstrated that maneb, adminis-
tered to adult mice at four graded doses (1/8, 1/6, 1/4, and 1/2
of LD50), caused a significant increase in the kidney levels of
MDA and H2O2. In the present work, the used dose of maneb
(30 mg/kg bw), representing 1/50 of the fungicide LD50, was
lower than those tested by Jaballi et al. (2017).

In addition to cell membrane lipids, proteins may also be
altered by ROS production, especially at their labile thiol
groups. Protein oxidation can be triggered directly by ROS
or indirectly through the reactions with oxidative stress
secondary-products (Dalle-Donne et al. 2003). In the present
work, we have studied two biomarkers of oxidative protein
damage, PCO and AOPP. Elevated levels of the above param-
eters, after maneb exposure, indicated the occurrence of pro-
tein oxidative modifications in the kidney of experimental
mice. Co-administration of Zn to maneb-treated mice amelio-
rated MDA, H2O2, PCO, and AOPP levels, reflecting the
antiperoxidative and free radical-scavenging properties of
Zn, as has been shown previously by Goel et al. (2005). It
has also been reported that this element interacts with cell
membranes in order to stabilize them against various damag-
ing effects, including those due to oxidative injuries (O’Dell
2000). Another mechanism that may also contribute to the
antioxidant role of Zn is its ability to compete with transition
metals like Fe and Cu, for the binding sites on the cell mem-
brane. These two metals catalyze the production of lipid per-
oxides, and thereby replacement of these metals by Zn in the
cell membrane could inhibit lipid peroxidation and oxidative
stress condition (Barman and Srinivasan 2017). Consistent
with these results, Bashandy et al. (2018) have recently report-
ed in rats that zinc oxide nanoparticles exhibit renoprotective
effects against thioacetamide, a potent hepatotoxic compound,
by reducing lipid peroxidation.

Increased lipid peroxidation and oxidative stress can affect
the activities of protective non-enzymatic antioxidants (Yonar
and Sakin 2011). In particular, GSH and its metabolizing en-
zymes provide the major defense against ROS-induced cellu-
lar damage (Ozden and Alpertunga 2010). Cellular stress re-
sponse is often known to involve changes in the content of
thiols, which are firstly consumed during their reaction with
the deleterious compounds, and then replaced through enzy-
matic reduction of disulfides, or by de novo biosynthesis. Two
enzymes, namely glutamate-cysteine ligase (GCL, rate limit-
ing) and glutathione synthase, are concertedly implicated in
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GSH synthesis, which is both constitutive and regulated.
According to Dickinson and Forman (2002), exposure to
ROS-generating compounds can elevate GSH content by in-
creasing its biosynthesis rate, as reported in our experiment
after maneb exposure. Concerning ascorbic acid, the main
water-soluble antioxidant vitamin able to scavenge free radi-
cals (Molyneux et al. 2002), its increase after maneb exposure
resulted probably from the re-activation of enzymatic and
non-enzymatic mechanisms of vitamin C synthesis. Our re-
sults were in accordance with those of Spodniewska and
Zasadowski (2008), who have found an increase of GSH

and ascorbic acid contents in the liver of rats treated for 7 days
with pyrantel tartrate, an anthelmintic regimen. Moreover, a
significant increase of metallothionein (MT) content was
found in maneb-treated mice. In fact, the main characteristic
of MT is its richness in cysteine residues (Dondero et al.
2005), which are responsible for the metal sequestration ca-
pacity of the protein. Thiol groups can also serve as scaven-
gers of highly toxic compounds such as free radicals and re-
active metabolites of xenobiotics. In our study, the stressful
condition caused by the toxic effect of maneb can be
prevented by an elevation of intracellular thiol groups like
MT. It is proposed that one of the self-protecting mechanisms
of the kidney against toxic compounds is the increase of the
MT level and consequently the elevation of naturally occur-
ring ROS scavengers in the cell. The significant improvement
of renal non-enzymatic antioxidant (GSH, vitamin C, and
MT) contents by Zn treatment supported its potential protec-
tive role against maneb-mediated renal injury.

In addition, other antioxidant enzymes, like superoxide
dismutase (SOD), catalase (CAT), and glutathione peroxidase
(GPx), must be considered in cellular stress condition. Such
enzymes act in two steps as follows. First, SOD catalyzes the

Table 3 Creatinine, urea and uric
acid levels in plasma of mice,
controls or treated with maneb
associated or no with Zn or with
Zn alone

Parameters and treatments Controls MB MB + Zn Zn

Creatinine (μmol/l) 55.50 ± 1.87 83.83 ± 3.18*** 63.83 ± 2.63***+++ 53.50 ± 3.39

Urea (mmol/l) 8.75 ± 0.66 20.98 ± 2.33*** 13.11 ± 1.33***+++ 8.76 ± 0.43

BUNa (μmol/l) 4.08 ± 0.31 9.80 ± 1.09*** 6.12 ± 0.62***+++ 4.09 ± 0.20

Uric acid (μmol/l) 221.83 ± 14.90 464.00 ± 7.48*** 346.83 ± 5.98***+++ 221.50 ± 13.90

Values are means ± SD for six mice in each group

BUN blood urea nitrogen
a BUN was calculated using the formula:

BUN (μmoles/l) = [urea (μmoles/l)] / 2.14

MB; (MB + Zn) vs. controls: ***p < 0.001

(MB + Zn) vs. MB: +++ p < 0.001
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conversion of superoxide radicals into oxygen and hydrogen
peroxide, which is next converted by CAT and GPx to water
and oxygen (Sies 1993). In the current study, exposure to
maneb decreased the activities of both CAT and GPx, and
paradoxally induced a significant increase of SOD activity.
Our results were in accordance with the recent study of
Jaballi et al. (2017), who have reported that mice exposure
to graded maneb doses (1/8, 1/6, 1/4, and 1/2 of LD50)

significantly decreases CAT and GPx activities and increases
SOD in their renal tissue. In our study, Zn counteracted oxi-
dative damages by modulating these enzymes’ activities, sug-
gesting that this bioelement could act as a potent ROS scav-
enger, making cells apt to preserve their integrity and function.
These effects could be related to the direct and indirect anti-
oxidant properties of Zn (Powell 2000). Indeed, this trace
element is a structural component of the SOD enzyme

a b

c c1

d d1

d2 e

200× 200×

200×

200×

400×

400×

400×

200×

Fig. 4 Kidney tissue histological
aspects of adult mice; control (a),
treated with zinc alone (b), maneb
(c, c1, d, d1, d2), and zinc along
with maneb (e). Optic
microscopy; H&E; magnification
a, b, c, d, e: (× 200) and c1, d1, d2:
(× 400). Arrows indicate:

Glomerular fragmentation;

Bowman’s space enlargement and
hypertrophy; Glomerulus
exhibiting a hypercellularity and
an increased nuclear size;
Hemorrhage; Infiltration
of leukocytes
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involved in neutralizing free radicals’ attacks through
converting the superoxide anion radical (O2

−) to hydrogen
peroxide (H2O2) (Ling et al. 2016), which is in turn removed
by CAT and GPx enzymes (Raat et al. 2009). Also, Zn is able
to bind directly to sulfhydryl groups, allowing their protection
from oxidation (Powell 2000). Thus, we provide evidence
revealing that Zn could mitigate oxidative stress damages ow-
ing to its free radical scavenging potential. Our results were in
line with those of Swelam et al. (2017) who have reported that
Zn supplementation mitigates fipronil-induced oxidative dam-
age by an improvement of GPx, CAT, and SOD activities in
the liver and kidney of rats.

Furthermore, kidney impairment was assessed by measur-
ing plasma creatinine, urea, and uric acid concentrations. The
current increment in these biochemical parameters proved re-
nal dysfunction in maneb-treated mice. Creatinine and urea
are waste products deriving from protein metabolism and they
require to be excreted through the kidney. Consequently, an
obvious elevation of these compounds, as noticed in our study,
was indicative of kidney functional damage, as reported ear-
lier by Gowda et al. (2010). These findings concours with a
similar report in a recent study of Jaballi et al. (2017). Renal
injury was also confirmed in the present work by LDH activ-
ity, which decreased in kidney and increased in plasma, speak-
ing in favor of membrane damage. Co-administration of Zn to
maneb-intoxicated mice afforded a significant protection
against the fungicide-induced nephrotoxicity, due to its anti-
oxidant properties.

Regarding DNA damage of kidney tissue triggered by
maneb exposure, our study demonstrated a higher intensity
of DNA laddering on agarose gel electrophoresis as compared
to the controls, which might be attributed to oxidative stress
induced by this fungicide. Our previous study confirmed the
genotoxic effect of maneb in the liver (2019). According to
Bertini et al. (2000), ethylene thiourea the main metabolite of
maneb, has been proven to have genotoxic effects in Wistar
rats. In the present study, Zn co-administration led to a re-
duced DNA fragmentation induced by maneb. Thereby, Zn
could protect DNA and other important molecules from oxi-
dation, improving consequently kidney function. In fact, it
exhibited DNA protection, attenuated lipid peroxidation, and
decreased free radicals production indicating its strong

antioxidant power. Our results were in accordance with other
studies (Varghese et al. 2009), showing that Zn reduces the
oxidative DNA damage in the kidney of rats exposed to indo-
methacin, a non-steroidal anti-inflammatory drug.

Overall, the biochemical and molecular changes, observed
in the current work following maneb exposure, were con-
firmed by kidney histopathological findings. The structures
of glomeruli as well as renal tubules were affected after maneb
treatment. In fact, kidney of mice exposed to maneb showed
glomerular hypertrophy and fragmentation (Fig. 4(c1)); and an
enlargement of glomeruli Bowman’s space (Fig. 4(c1 and d2)).
Such changes in glomerular structure have been observed by
Chaâbane et al. (2017) as a result of penconazole fungicide
treatment in rats. Moreover, kidney sections of maneb-treated
mice showed also some abnormalities in the renal glomerular
structure characterized by an hypercellularity and an increased
nuclear size (Fig. 4(d2)). These changes might occur as an
outcome of direct glomerular cytotoxicity and oxidative stress
at the glomerular level caused by maneb. The renal glomeruli
are particularly sensitive to toxicity because they have a high
oxygen consumption, a vulnerable enzymatic system, and a
complicated transport mechanism that may be used for toxins
transport and may be damaged by such toxins during their
excretion (Chevalier 2016). Similar histopathological obser-
vations have been reported in kidney of rats treated with per-
methrin, a pyrethroid insecticide (Nessiem et al. 2003).Maneb
administration also induced a marked leukocyte infiltration
between the tubules and a large area of hemorrhage in the
interstitium (Fig. 4(d1)). Scoring of kidney histological chang-
es revealed that leukocytes infiltration was the most prominent
pathological feature associated with maneb exposure.
Interestingly, the reduction of histopathological changes and
the low injury scores in the kidney of mice co-treated with
both maneb and Zn suggested the ameliorative effect of this
essential mineral.

On the basis of this work, maneb administered to adult
mice at a dose of 30 mg/kg bw caused a disruption of the
redox status, increased MDA and protein oxidation products’
levels, induced DNA fragmentation and histopathological
changes in the kidney tissue. Maneb was considered as a
pro-oxidant agent. It disturbed the oxidant-antioxidant bal-
ance and induced a depletion of renal antioxidant activities.

Table 4 Kidney injury scores in
mice treated with maneb
associated or no with Zn

Parameters and treatments MB MB + Zn

Glomeruli fragmentation 1.66 ± 0.51 0.66 ± 0.51+++

Bowman’s space enlargement 2.66 ± 0.51 0.33 ± 0.51+++

Increased cellularity and nuclear size of glomeruli 2.83 ± 0.40 0.50 ± 0.54+++

Leukocytes infiltration 3.83 ± 0.40 0.16 ± 0.41+++

Hemorrhage 3.33 ± 0.51 0.33 ± 0.51+++

Values are means ± SD for six mice in each group

(MB + Zn) vs. MB: +++ p < 0.001
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The co-administration of Zn to maneb-treated mice attenuated
the toxicity of this fungicide in mice, as objectified by the
biochemical and histological improvements. The mecha-
nisms, which contributed to its effectiveness, involved ROS
quenching, attenuation of lipid and protein oxidation, preven-
tion of DNA damage, and improvement of the antioxidant
status. Thus, Zn appeared to be a promising agent against
maneb-induced renal dysfunction.

Conclusion

In summary, we have shown that exposure of mice to maneb
resulted in an increased renal cytotoxicity mainly through in-
ducing lipid peroxidation and ROS production. Zn adminis-
tration alleviated the toxicity rate in the renal tissue of maneb-
exposed mice. Understanding the mechanism of the protective
role of Zn at the cellular level may provide a rationale for its
use in antioxidant therapeutic strategies against nephrotoxicity
in human beings exposed to different fungicides.
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