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Abstract
Particulate matter is the key to increasing urban air pollution, and research into pollution exposure assessment is an important part
of environmental health. In order to classify PM10 air pollution and to investigate the population exposure to the distribution of
PM10, daily and monthly PM10 concentrations of 379 air pollution monitoring stations were obtained for a period from 01/01/
2017 to 31/12/2017. Firstly, PM10 concentrations were classified using the head/tail break clustering algorithm to identify
locations with elevated PM10 levels. Subsequently, population exposure levels were calculated using population-weighted
PM10 concentrations. Finally, the power-law distribution was used to test the distribution of PM10 polluted areas. Our results
indicate that the head/tail break algorithm, with an appropriate segmentation threshold, can effectively identify areas with high
PM10 concentrations. The distribution of the population according to exposure level shows that the majority of people is living in
polluted areas. The distribution of heavily PM10 polluted areas in Germany follows the power-law distribution well, but their
boundaries differ from the boundaries of administrative cities; some even cross several administrative cities. These classification
results can guide policymakers in dividing the country into several areas for pollution control.
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Introduction

Particulate matter (PM) air pollution can be significantly detri-
mental to human health (Boldo et al. 2006). The World Health
Organization reported that about 0.8 million people are dying
each year due to air pollution (WHO 2002). Samet (2000) have
found that the relative mortality rate, caused by cardiovascular

and respiratory diseases, increases by 0.68 percent per each 10
μg/cm3 increase in the PM10 level. As PM air pollution events
occur frequently, this topic has aroused high social attention and
academic interest. Furthermore, PM is currently considered to be
the best indicator for health effects by ambient air pollution
(Burnett et al. 2014; WHO 2014). Therefore, knowledge of the
present state and the spatio-temporal distribution of PM and
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evaluation of the adverse health effects, caused by PM10 pollu-
tion, are important for understanding this air pollution problem
and protecting human health and establishing pollution control
policies.

So far, it has been shown that frequent exceedances of the limit
for PM10 concentrations have been observed widely across
Western Europe from the end of the last century to the beginning
of this century, particularly in Switzerland, Belgium, Germany,
Italy, Norway, and the Czech Republic (Harrison et al. 2008).
According to reports, the assumption that exposure is uniform
within each region may have resulted in errors in the estimation
of exposure, especially for pollutants with important local sources
(Hoek et al. 2002). Oneway to solve this problem is to use spatial
interpolation to address the data collected from pollutant detection
stations in the study area and to obtain a continuous plane of
pollutant concentrations. The Geographic Information System
(GIS) has achieved broad application as an interdisciplinary tool,
especially in Environmental Science. Johansson et al. (2007) an-
alyzed how differences in emissions, background concentrations,
and meteorology affect the temporal and spatial distribution of
PM10 based on measurements and dispersion modelling in
Stockholm, Sweden, and found that up to 90% of the locally
emitted PM10 may be due to road abrasion. Sampson et al.
(2013) successfully predicted PM2.5 concentrations at a fine spa-
tial scale across the USA using regionalized universal kriging.
Long et al. (2018) estimated sub district-level daily PM2.5 con-
centrations by means of the block cokriging approach.

The population exposure study mainly includes two
methods, the sampling method and the mathematical model
method. The sampling method can be accurate to the individ-
ual exposure in different micro-environments, but the method
has limited sampling points and large local environmental
differences, resulting in a narrower range of applications.
The mathematical model method is an exposure assessment
method that combines pollution concentration distribution
data and population distribution data and finally obtains a
model with strong applicability. Jerrett et al. (2005) reviewed
six classes of intraurban exposure models, including (i)
proximity-based assessments, (ii) statistical interpolation,
(iii) land use regression models, (iv) line dispersion models,
(v) integrated emission-meteorological models, and (vi) hy-
brid models. Anenberg (2010) estimated the global burden
of mortality due to O3 and PM2.5 from anthropogenic emis-
sions using global atmospheric chemical transport model sim-
ulations of preindustrial and present-day (2000) concentra-
tions to derive exposure estimates. Eeftens (2012) used land
use regression (LUR) models for modeling small-scale spatial
variation in air pollution concentrations and estimating indi-
vidual exposure for participants of cohort studies. The more
intraurban concentration studies and health studies are de-
scribed in detail elsewhere (Jerrett et al. 2005).

However, studying human exposure to ambient air pollu-
tion, demographic data is also calculated mainly for the total

population of the examined city, ignoring the non-uniformity
of the spatial distribution of pollutants and populations and
their inherent time-varying characteristics. Kousa et al.
(2002) presented a mathematical model for the determination
of exposure to ambient air pollution in an urban area to eval-
uate the spatial and temporal variation of the average exposure
of an urban population to ambient air pollution in different
microenvironments with reasonable accuracy. The model de-
veloped has been designed to be utilized by municipal author-
ities in urban planning. Therefore, in this paper, the total pop-
ulation of the study area was not used as the exposed popula-
tion. Rather, interpolated spatial data of the population after an
investigation was used to obtain a continuous plane of popu-
lation density. In addition, the spatial distribution of residents
is inconsistent with the spatial distribution of air pollution. If
air pollution concentrations are simply used to characterize
pollution exposures in large spaces, true levels of exposure
will not be reflected. Therefore, a population-weighted air
pollution exposure model was proposed. The pollutant con-
centration was superimposed on the population data to obtain
a population-weighted concentration. Then the population-
weighted exposure level (PWEL) was used to estimate the
potential exposure to PM10 in Germany in 2017. In this way,
different numbers of people in the grid were exposed to dif-
ferent concentrations of atmospheric pollutants.

Based on these knowledge, the objective of this study are to
classify PM10 air pollution for each month of 2017 based on
the head/tail breaks classification method; to explore the pop-
ulation exposure to the distribution of PM10 using geospatial
statistical tools systematically; to portray the present situation
of PM10 air pollution with high PM10 levels; and to test the
distribution of PM10 heavily polluted areas using the power-
law distribution. These estimates may be useful in assessing
health impacts through linkage studies and in communicating
with the public and policymakers for potential intervention.

Methods

Monitoring data

Daily PM10 concentration data was obtained from the German
Federal Environment Agency (UBA) networks (https://www.
umweltbundesamt.de/en/) and used to calculate monthly and
annual means for eachmonitoring location. Only data that met
the minimum inclusion criteria (within the detection limit)
were included. The observations included the daily PM10

concentrations at 379 monitoring sites in Germany in 2017
(Fig. 1), which were used to characterize the spatial variability
of particle concentrations.

Data analysis was performed with the Data Processing
System 9.5 (DPS) (Tang and Zhang 2013). For the spatial
autocorrelation and agglomeration analysis, the GeoDA1.4.0
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and Arc GIS 10.2 were used. Results are displayed with
ArcView 4.0.

Spatial analysis

Spatial distributions of the average atmospheric pollutant con-
centrations for 2017 were simulated using ordinary kriging.
Liao et al. (2006) showed that investigation of GIS approaches
for estimating daily mean geocoded location-specific air pol-
lutant concentrations supports the use of a spherical model to
perform lognormal ordinary kriging on a national scale.

Spatial autocorrelation

Observations made at different locations may not be indepen-
dent. For example, measurements made at nearby locations
may be closer in value than measurements made at locations
farther apart. This phenomenon is called spatial autocorrela-
tion, which can be calculated using Moran’s I (Moran 1948;
Geary 1954).

Spatial autocorrelation measures the correlation of a variable
with itself through space. Spatial autocorrelation can be positive
or negative. Positive spatial autocorrelation appears when similar
values occur near one another, while there is negative spatial
autocorrelation when dissimilar values occur near one another.

The spatial autocorrelation method for identifying the correlation
of atmospheric pollutant profiles is described in detail elsewhere
(Fang et al. 2016; Xu et al. 2016). Fang et al. (2016) covers
global spatial autocorrelation (GlobalMoran’s I (GMI)) and local
spatial autocorrelation (Local Moran’s I (LMI)) (Anselin 1995),
which are defined as follows:

GMI ¼ n
S0

∑
n

i¼1
∑
n

j¼1
W i; jZiZ j

∑
n

i¼1
Z2
i

ð1Þ

where Zi is the deviation of an attribute for feature i from its

mean (χi−X ),Wi, j is the spatial weight between features i and
j, n is equal to the total number of features, and S0 is the
aggregate of all the spatial weights:

S0 ¼ ∑
n

i¼1
∑
n

j¼1
Wi; j ð2Þ

The local Moran’s I statistic is given as

LMIi ¼ xi−X
S2i

∑
n

j¼1; j≠i
wi; j xi−x

� �
ð3Þ

Fig. 1 Locations of surface air
pollution PM10 monitoring
stations in Germany during 2017
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where xi is an attribute for feature j,‾x is the mean of the
corresponding attribute, Wi,j is the spatial weight between fea-
ture i and j, and

S2i ¼
∑
n

j¼1; j≠i
Wi; j

n−1
X

2
ð4Þ

In general, Moran’s I is similar but not equivalent to a
correlation coefficient. Its value varies between −1 and 1 and
represents negative and positive spatial autocorrelation, re-
spectively. Positive and significant Moran’s I values indicate
that nearby areas have similar spatial patterns, whereas nega-
tive values indicate the contrary. If the Moran’s I is zero, the
values are arranged randomly. GMI is used to judge the spatial
agglomeration degree of Germany’s PM10, and LMI is used to
examine the spatial distribution of the “hot spots” and “cold
spots.”

Since the Moran’s I statistic follows a random distribution
or a nearly normal distribution, the significance test can be
converted into a Z value representing the normal distribution
statistic. At the 5% significance level, if the Z value is greater
than 1.96 or less than −1.96, there is a spatially significant
positive or negative correlation between the observations,
while if the Z value is between −1.96 and 1.96, the spatial
correlation is not significant. The correlation is extremely sig-
nificant when Z is greater than 2.58. The standard statistic Z is
calculated by following formula:

Z ¼ I−E Ið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR Ið Þp ð5Þ

where E (I) and VAR (I) are expectation and variance of
Moran’s I, respectively, and E (I) = (−1)/(n–1). When Z is
positive and significant, it indicates a positive spatial correla-
tion and the observed values are aggregated. On the contrary,
when Z is negative and significant, indicating a negative cor-
relation, the observations tend to be discretely distributed. Z =
0 means that the observations are randomly distributed.

Two-dimension graphics cluster

The graph theory clustering method, also known as the largest
(small) support tree clustering algorithm, was first proposed
by Zahn (1971). The traditional graph-theoretical clustering
methods process the local area’s joint characteristics of sample
data as the main information. Thesemethods then lead tomost
joint data in clusters not being settled. Initializing each grid
cell as a class makes a large body of processing data. Based on
spatial relation, a two-dimension graphics cluster could solve
this problem. The method not only considers the relation be-
tween grid cells and their neighborhood regions but also
makes classes depending on the uniform gray level of grid
cells. The PM10 spatial distribution analysis based on the

two-dimensional graph theory clustering method combines
the spatial analysis of ArcGIS with the tree algorithm of graph
theory. The specific methods are as follows: first, the spatial
coordinates of the monitoring points are extracted and the
spatial autocorrelation analysis is performed. Then, in the
DPS software, the minimum spanning tree is divided into n
subtrees by using the two-dimensional graph theory minimum
tree method, that is, the research area is divided into n regions.
A network diagram of the relationship between the partition
units is generated by means of the DPS (Data Processing
System). Finally, the directly connected places indicate that
the adjacency of each unit space and the comprehensive con-
ditional similarity of each aspect are relatively high. When the
PM10 pollution is controlled, a common control method can
be adopted.

Evaluation of the effect of PM10 on human health
based on GIS

The rule of the head/tail division and power-law distribution

The head/tail breaks classification can be helpful for finding
the ht-index of the data, which in turn is helpful for finding the
inherent structure of the data. The ht-index based on this kind
of classification approach is a special indicator to describe the
complexity of the data, and it is an indicator of the underlying
hierarchy of the data (Liu 2014). Liu (2014) has used night-
time lighting data and ht-index classification methods to ex-
tract the naturally defined urban boundaries constitute that we
call natural cities. The method has been described in detail in
Jiang and Yin (2014) and Liu (2014). Briefly, the rules for
head/tail splitting determine the class or hierarchy of data
using a heavy-tailed distribution, which can then be referred
to as a scaling, hierarchy, or zoom level. The head of the
heavy-tailed distribution contains a small number of large
values, while the tail of the heavy-tailed distribution contains
the majority of small values. For example, if a given data
value is heavy-tailed, the average value of the data value can
be divided into all the values to include the head portion of the
data value equal to or greater than the average value.
Otherwise, the data value should be included in the tail, and
then the steps should be repeated until the data values in the
head are no longer heavy-tailed. The main focus of the head
and tail classification is low-frequency events. These events
are more important than high-frequency events because low-
frequency events have a larger impact than high-frequency
events.

In summary, the head/tail classification ability captures the
inherent level of data better than the natural rest classification.
The head/tail classification is suitable for discovering the un-
derlying hierarchy and the level of detail inherent in the data.
The generalization of the data is now based more efficiently
on the captured hierarchy.

Environ Sci Pollut Res (2020) 27:6637–66486640



Also, a heavy-tailed distribution is a common distribution
pattern in dynamic and unbalanced nature (Mohajeri 2013). In
this case, the data is heavily right skewed, with a minority of
large values in the head and a majority of small values in the
tail, and is commonly characterized by a power-law, a lognor-
mal, or an exponential function (Jiang 2013). Therefore, to
determine if a variable obeys a power-law distribution, it can
be judged by plotting the data as a scatter plot on a double
logarithmic scale. If the random variable fitting result is a
linear function, then the cumulative probability obeys the
power-law distribution. For more detail on power-law distri-
bution, see the published literature by Anderson (2005).

Estimation of the population exposure to PM10

Population is an important indicator for measuring the PWEL
(Hao et al. 2012). The population data, obtained from the
Federal Statistical Office of Germany, was initially analyzed
(Bundesamt 2016). However, the spatial distribution of resi-
dents in space is inconsistent with the spatial distribution of
atmospheric pollution (Ivy et al. 2008). So, if air pollution
concentrations are simply used to characterize pollution expo-
sure in a large space, the true level of exposure to residents
will not be captured. Therefore, the population-weighted ex-
posure level model is used (Sun et al. 2013). Given grid (1.0
km•1.0 km), i, the population weighted exposure equation is
as follows:

PWEL ¼ ∑ Pi � Cið Þ=∑Pi ð6Þ
where Pi is the population in the grid cell, i, and Ci is its
average PM10 concentration in the grid cell.

In our study, we used 50 μg/m3 as pollution concentration,
which is the PM10 limit value corresponding to the mean
daily PM10 concentration. With this value, we calculated the
number of exposure days exceeding the standard during the
research period (which can indicate the exposure intensity in
different parts of the area).

Spatial distribution of PM10 pollution exposure

Population PM10 exposure intensity equals the duration of
population exposure per unit area exposed to severe PM10

pollution. The formula for PM10 exposure intensity is as fol-
lows:

NT
ij ¼ ∑t2

t¼t11 Cijt≥STD
� � ð7Þ

EI ij ¼ NT
ij
Pij

Aij
ð8Þ

where Aij is the area of the (i,j)th grid cell (1.0 km•1.0 km), Pij
is the population of the (i,j)th grid cell, and Nij

T is the accu-
mulated pollution days of the (i,j)th grid cell. EIij is the

pollution exposure intensity of the (i,j)th grid cell at time T,
in day·person/km2. STD = 50 μg/m3 for the EU standard. As
shown in the formula above, the intensity of pollution expo-
sure is directly related to the accumulated days of pollution
and population density.

Results and discussion

Pollution area development and changes in Germany

Firstly, in order to reasonably divide the area of high pollution
and the area of severely polluted areas reflecting rich urban
information, this section used the average of the first and last
divisions of PM10 pollution concentration in 2017 to extract
the high pollution area of the PM10 air pollution concentration.
The extraction results were compared and analyzed. As shown
in Fig. 2, the results of the concentration distribution area were
extracted using the first layer to the third layer of the average
concentration of PM10. According to the comparison and anal-
ysis, when the extraction value was 17.20 μg/m3, the extrac-
tion range was too wide, and many cities were connected.
When the extraction value was 18.47 μg/m3, the extraction
effect captured the details of individual cities. However, when
the extraction value was 19.38 μg/m3, the extraction effect
was poor, and more details were ignored. Therefore, the aver-
age value of 18.47 μg/m3 was selected as the PM10 pollution
area division value. In order to better compare the extracted
values, this paper also analyzed the values based on the WHO
standard (20 μg/m3 for PM10).

As shown in Fig. 2, higher PM10 concentrations occurred
in the states of Bavaria, North Rhine-Westphalia, Saxony-
Anhalt, and Berlin. In these areas, PM10 concentrations
exceeded the value of 18.47 μg/m3.

Secondly, 18.47μg/m3 was used as the PM10 pollution area
division value to extract the PM10 pollution area range of all
Germany for each month in 2017 (Fig. 3). Among them, the
pollution range from January to March was relatively wide,
and the pollution distribution range was relatively small in the
other months. In June, the PM10 concentration was below the
value throughout all of Germany. In 2017, PM10 pollution was
mainly concentrated in North Rhine-Westphalia,
Brandenburg, and Berlin; in these areas, the pollution was
the most widely distributed and lasted permanently.

Spatial autocorrelation of PM10 concentration

To better reflect the spatio-temporal changes of the PM10 con-
centrations in Germany, the Global Moran’s I was employed
to identify the spatial autocorrelation of the PM10 concentra-
tions. Further, the analysis of spatial autocorrelation could
help to determine whether sparse ground monitoring sites
can meet the requirements.

Environ Sci Pollut Res (2020) 27:6637–6648 6641



Moran’s I scatter plots of the PM10 concentrations in
Germany using GeoDA are presented in Table 1. Results
showed that, for PM10, Moran’s I exceeded 0 for monthly
values in 2017 and ranged from 0.228 to 0.443, suggesting
there was a significant positive spatial autocorrelation of
PM10 concentrations in Germany. The average Z(I) of 12
months was 9.65, which exceeded 2.58, suggesting that
there was a significant positive spatial autocorrelation of
the PM10 concentrations in the cities of Germany (high-
high or low-low agglomeration).

In the analysis of the spatial autocorrelation model
based on ArcGIS10.2, the confidence level bin (Gi_Bin)
was used to identify statistically significant hot spots and
cold spots. A confidence interval of +3 to −3 elements
reflected a confidence level of 99% statistical signifi-
cance; a confidence interval of +2 to −2 elements
reflected a confidence level of 95% statistical signifi-
cance; a confidence interval of −1 to +1 elements
reflected a confidence level of 90% statistical signifi-
cance; and a confidence interval of 0 clustering was not
distinctly significant. As shown in Fig. 4, analysis of an-
nual and monthly agglomerations indicated that hot spots
o c cu r r e d ma i n l y i n No r t h Rh i n e -Wes t pha l i a ,
Brandenburg, and Berlin. Therefore, these areas should
be considered when formulating air pollution control mea-
sures. Cold spots occurred mostly in the south of Bremen
Niedersachsen and Thüringen and in the south-west of
Baden-Wuerttemberg. No significant spots were found in
Schleswig-Holstein, Mecklenburg-Vorpommern, Sachsen,
and Bavaria.

Two-dimension graphics cluster in elevated pollution
districts

In five states of Germany, Bavaria, North Rhine-Westphalia,
Saxony-Anhalt, Brandenburg, and Berlin, the PM10 levels
were relatively much higher than other states in 2017.
Henceforth, this paper analyzed these five states based on
the theory of two-dimension graphics cluster.

In Fig. 5, the significance of these connections indicates
the spatial adjacency and intrinsic similarity between the
various points (monitoring sites). Spatial adjacency repre-
sents geographic location information, while intrinsic sim-
ilarity expresses the degree of similarity of pollution con-
centrations. With this, a relatively large-scale comprehen-
sive consolidation project can be formed upon the determi-
nation of PM10 pollution levels and management plans.
Meanwhile, using the GIS spatial analysis method, the
mathematical clustering analysis method, and the graph
theory tree algorithm combined with the regional division
analysis technology, four functional pollution areas in
Germany were obtained. First, the cities of Burg,
Bitterfeld, Bernburg, and Magdeburg constituted the
Saxony-Anhalt pollution region; second, the cities of
Berlin, Potsdam, Hasenholz, Eberswalde, Bernau, and
Blankenfelde constituted the Berlin-Brandenburg pollution
region; third, the cities of Essen, Hürth, Düsseldorf,
Dortmund, and Solingen Konradas constituted the North
Rhine-Westphalia pollution region; and lastly, the cities
of Augsburg, Regensburg, Munich and Sulzbach-
Rosenberg constituted the Bavaria pollution region.

Fig. 2 Distribution of PM10

concentrations based on different
extraction values
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Spatialization of demographic data

According to demographic data and district-county-level
boundary data, statistics on population density at the

county level in Germany show that the population density
of most districts and counties in the country are relatively
small; only a few counties have high population density. In
terms of spatial distribution, the Moran’s I index can be

Fig. 3 The PM10 contaminated area range for each month of 2017 in Germany, based on the value of 18.47 μg/m3

Table 1 Spatial autocorrelation index of PM10 concentrations in Germany in 2017

Monthly Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Moran’s I-PM10 0.347 0.443 0.228 0.345 0.342 0.286 0.298 0.244 0.369 0.248 0.282 0.296

P 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Z 10.456 13.478 7.181 10.637 10.652 8.747 9.386 7.630 11.545 7.864 8.843 9.325
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Fig. 4 Spatial agglomeration of annual and monthly PM10 concentrations in the monitoring sites in Germany, in 2017
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used to analyze the spatial correlation of population distri-
bution across the county.

Moran’s I scatter plots of the population density in
Germany using GeoDA are presented following Fig. 6.
Results showed that, for population density, Moran’s I was
0.555, suggesting that the area with high population density
has a certain aggregation effect.

Variation of the total PWEL and MEAN concentration

Combining the PM10 concentrations and population
spatialization results, the daily total population exposure
to PM10 (PWEL) and the average of the PM10 concentra-
tions were calculated (shown in Fig. 7a). The trend of
PWEL was similar to the PM10 average in all Germany
areas. Meanwhile, the monthly PWEL and PM10 average
were also calculated to show their monthly trend charac-
teristics more intuitively (Fig. 7b). The concentrations
were higher in January and February, reaching average
values of 29.14 and 28.93 μg/m3, respectively, indicating
humans could be adversely affected by exposure to air
pollutants in winter. Certainly, it is worth mentioning that
the population exposures to PM10 in other months were
lower than 20 μg/m3, suggesting a high ambient air quality
in Germany.

Figure 1S shows the cumulative exposure days exceed-
ing the standard value provided by the EU and the

cumulative population exposure to PM10 concentrations.
Figure 1Sa demonstrates days with extremely high expo-
sure in south and east of Germany, mainly belonging to
Bavaria, Brandenburg, and Berlin, reaching 17 exposure
max days. Figure 1Sb shows that the distribution of cumu-
lative population exposure to PM10 was similar to the dis-
tribution of cumulative exposure time.

Spatial distribution of PM10 pollution exposure
in Germany

In Section 3.5, the time evolution of the German PM10

pollution exposure level in 2017 was discussed. This sec-
tion introduces the concept of population pollution expo-
sure intensity to further explore the spatial interaction and
distribution of the population PM10 pollution distributions.

The results show that long-term exposure to ambient
particulate matter air pollution is associated with natural-
cause mortality, even in concentration ranges far below the
present European annual mean limit value (Beelen et al.
2014) . In addition, the original air pollution concentra-
tions cannot clearly reflect the spatial extent of population
exposure to air pollution. The clustered regions extracted
by the ht-index method are not affected by human subjec-
tive cognition based on legal and administrative factors.
Their border ranges differ from the administrative border.
In this case, they can show the high concentration ranges of

Fig. 5 Two-dimension graphics cluster in districts with higher pollution, based on the data of PM10 in Germany in 2017
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human activity and pollution concentration distribution.
For this reason, the distribution of exposure intensity was
analyzed based on the head/tail breaks classification
method.

Firstly, using 50% as threshold, the population distribution
of PM10 pollution was statistically analyzed with the head/tail
breaks classification method. According to the calculations,
the ht-index of the PM10 pollution exposure of the entire
German population is 12. Subsequently, the appropriate ag-
gregation area was determined as the extraction value.
According to the mean value of each level, the distribution

of the population’s PM10 pollution exposure was classified,
and the above-average range was extracted. In line with the
daily standard of WHO and EU, Fig. 8a, b, and c show the
effect of clustering regions at means 1912.71 day·person/km2,
4307.37 day·person/km2, and 7957.98 day·person/km2,
respectively.

Comparing the extraction results of the three maps, the
ranges of the aggregated areas shown in Fig. 8a are quite
vague. The urban details shown in Fig. 8c are too few, and
the boundaries of the clustered regions are significantly
less than the boundaries of the administrative borders.

Fig. 7 The daily (a) and monthly
(b) variations in the total PWEL
and MEAN concentration during
2017

Fig. 6 Population density in Germany and the corresponding Moran’s I scatter plots (data obtained from the Federal Statistical Office of Germany in
2016 and population density is expressed as inhabitants per km squared)
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The city boundaries in Fig. 8b show a quality extraction effect.
Therefore, this section selects 4307.37 (day·person/km2) for the
daily WHO and EU standard as the final aggregation area ex-
traction values. As seen in Fig. 8b, the details are similar. The two
largest areas of PM10 pollution are located in the surrounding
areas of Berlin and Düsseldorf.

Liu (2014) examined the extraction of natural cities based on
nightlight data in 2014 and suggested that the scope of natural
cities is closely related to the scope of the population’s living and
activities. Based on the head/tail breaks classificationmethod, the
extraction of nocturnal natural cities was realized. Liu (2014)
found that in most cities there is some overlap between the nat-
ural city boundaries and administrative boundaries. Combining
the concepts of natural cities with Fig. 8, the polluted areas in
Germany can be used to describe the “PM10 pollution exposure
and aggregation area of the population.”

Power-law distribution test

Various phenomena governed by power-law distributions are
ubiquitous in nature and in society; thus, their study carries
broad and far-reaching significance. In this section, power-law
distribution tests are performed on the area distribution of
PM10 pollution accumulation. By using Pareto distribution
analysis, PM10-gathered area data can be fitted by a power-
law distribution in log-log coordinates. The power-law distri-
bution is simulated as f(x) = 14.25x−0.82 (R2 = 0.7). From the
power-law detection results, it can be concluded that the area
distribution of PM10 clustering area has a significant heavy-
tailed distribution and obeys the power-law distribution.

Conclusions

In summary, this paper investigated the spatio-temporal
distribution of PM10 air pollution with GIS techniques,
analyzed the multi-source spatio-temporal data collected
from UBA networks, and obtained additional meaningful

discoveries according to PM10 spatialization results. The
national average PM10 amounted 17.20 μg/m3 in 2017
and was much lower than the annual mean PM10 concen-
tration of 40 μg/m3 as declared by the European Union,
and only slightly lower than the standard concentration of
the WHO, which amounts for 20 μg/m3, indicating humans
could be adversely affected by exposure to air pollutants in
the ambient air. In terms of spatial distribution, PM10 pol-
lut ion was mainly concentrated in North Rhine-
Westphalia, Brandenburg, and Berlin. In terms of time dis-
tribution, PM10 pollution exhibited a distinct seasonal
characteristic, i.e., PM10 pollution in winter was higher
than in summer and lowest in June.

Combined with the concept of a natural city, this paper
proposes to use the PM10 air pollution accumulation area to
describe the current status of PM10 air pollution. The German
PM10 air pollution accumulation area extraction results show
that the German PM10 pollution accumulation area distribu-
tion meets the power-law distribution characteristics; that is,
“a small area of pollution agglomeration area is much larger
than the number of large areas of pollution agglomeration
area.” The largest contaminated areas of concentration are in
Berlin, Dusseldorf, and Munich but are not entirely within the
city limits.

The population distribution by exposure level shows
that the majority of people is living in polluted areas.
Also, the exposure level changes greatly from North to
South, and each sub-district maintains similarity to neigh-
boring sub-districts. In addition, PM10 pollution aggrega-
tion area boundaries and administrative boundaries do not
coincide, even across multiple administrative city bound-
aries. Therefore, PM10 air pollution control is not only the
task of a single city but should be a joint effort by multiple
cities in order to govern effectively.
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