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Abstract
Cardiovascular disease has always been the most serious public health problem in China. Although many studies have found that the
risk of death caused by cardiovascular disease is related to air pollutants, the existing results are still inconsistent. The aim of this study
was to investigate the effects of air pollutants on the risk of daily cardiovascular deaths in Hefei, China. Daily data on cardiovascular
deaths, daily air pollutants, andmeteorological factors from 2007 to 2016 were collected in this study. A time-series study design using
a distributed lag nonlinear model was employed to evaluate the association between air pollutants and cardiovascular deaths. First, a
single air pollutant model was established based on the minimum value of Akaike information criterion (AIC), and the single day lag
effects andmulti-day lag effects were discussed separately. Then, two-pollutant models were fitted. Subgroup analyses were conducted
by gender (male and female), age (< 65 age and ≥ 65 age), and disease type (ischemic heart disease and cerebral vascular disease).
There were 34,500 cases of cardiovascular deaths during the period 2007–2016, and the average concentrations of air pollutants (PM10,
SO2, NO2, PM2.5, CO, O3) were 106.11, 20.34, 30.49, 72.59, 958.7, and 67.88 μg/m

3, respectively. An increase of interquartile range
(IQR) in PM10, SO2, NO2, PM2.5, CO, and O3 were associated with an increase of 4.34% (95%CI 1.54~7.23%) at lag 0–6, 5.79%
(95%CI 2.43~9.27%) at lag 0–5, 4.47% (95%CI 1.64~7.37%) at lag 0–5, 3.14% (95%CI 0.03~6.36%) at lag 0–4, 3.11% (95%CI
0.21~6.10%) at lag 0–3, and 8.17% (95%CI 1.89~14.84%) at lag 0–5 in cardiovascular deaths, respectively. Females, older group (≥ 65
years) and deaths from cerebral vascular disease weremore vulnerable to air pollution thanmales, younger individuals (< 65 years) and
deaths from ischemic heart disease. Our results suggest that air pollution increased the risk of cardiovascular deaths in Hefei. These
findings can provide evidence for effective air quality interventions in Hefei.
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Highlights
• The risk of CVD deaths increased with the rising in air pollutant
concentrations.
• Females were more vulnerable to air pollution exposure as compared to
males which were similar to comparison of ages ≥ 65 and < 65 ages.

• The ER of cerebral vascular disease was significantly correlated with the
concentration of PM10, SO2, and NO2, where as ischemic heart disease
was only determined by O3.
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Introduction

Cardiovascular disease (CVD) is the leading cause of death in
the world (Venkatesan 2016). As estimated by the World
Health Organization (WHO), 17.7 million people died of
CVD in 2015, accounting for 45% of the world’s
nonaccidental deaths, and 82% of these CVD deaths occurred
in low and middle-income countries (Butler 2011). With the
development of economy and the aggravation of population
aging, CVD has posed the greatest health burden to the
healthcare system of China. In addition, the prevalence and
mortality of CVD will continue to rise in the next 10 years
(Chen et al. 2017).

CVD is a multi-factorial disorder induced by interaction of
heredity, circumstance, and behavior. Smoking and air pollu-
tion are the major risk factors of CVD (Gakidou et al. 2017).
With the rapid development of industrialization and urbaniza-
tion, the air quality of China has deteriorated seriously over
the past few years. In 2016, air pollution was the fourth-
highest risk factor of global burden of disease, leading to
approximately 1.58 million deaths and 32.28 million DALYs
(Gakidou et al. 2017). The decrease of air pollutant concen-
tration and the improvement in personal protection can pre-
vent CVD effectively, thereby reducing the health and eco-
nomic burden of CVD.

Previous studies have suggested that air pollution is more
associated with lung and respiratory diseases, such as pneumo-
nia (Jiang et al. 2018; Nhung et al. 2017) and asthma (Guo et al.
2018). However, growing number of studies have shown that
there is a link between short-term exposure to air pollution and
CVD in China (Dehbi et al. 2017; Feng et al. 2019; Liu et al.
2019;Wu et al. 2019; Ye et al. 2016). Dehbi et al. (2017) used a
cohort analysis of two large follow-up years in the UK and
found that CVD deaths increased with increasing PM10,
PM2.5, and SO2. Liu et al. (2019) assessed the association be-
tween air pollutants and CVD mortality in Shenyang, China,
from 2013 to 2016, and observed that the increments in PM2.5,
PM10, SO2, NO2, CO, and O3 were associated with an increase
of CVD mortality. Wu et al. (2019) examined the effects of
atmospheric particulate matter on CVD deaths due to different
causes in Lanzhou, during 2014–2015, and found that elevated
concentrations of PM2.5, PMC, and PM10 had different effects
on CVD deaths due to different causes. Ye et al. (2016) reported
that for every 10 μg/m3 increase in PM2.5 and PM10, coronary
heart disease increased by 0.74% and 0.23% in Shanghai. Feng
et al. (2019) explored the relationship between PM10 and CVD
emergency department admissions in Beijing between January
2013 and December 2013 and found that for a 10 μg/m3 incre-
ment of PM10, the total CVD emergency department admis-
sions increased by 0.29%.

These different studies have demonstrated that air pollut-
ants have a detrimental effect on the occurrence or exacerba-
tion of CVD, but most prior studies were conducted in large

cities. The effect of air pollutants on health varied across dif-
ferent regions (Chen et al. 2013; Dong et al. 2013). Hefei is a
city with frequent haze events occurring, and its air quality
exceeds the national secondary concentration limit every year
(Zhang et al. 2017a). Therefore, it is essential to conduct study
on the effects of air pollution on residents’ health in Hefei.

This time-series analysis aimed to estimate the association
of short-term exposure to air pollution and deaths due to CVD
inHefei during 2007–2016. Stratified analyses by age, gender,
and disease type were conducted to identify the vulnerable
subgroups.

Materials and methods

Study Area

Hefei (30° 57′–32° 32′ north, 116° 41′–117° 58′ ) is the capital
of Anhui province, and it has a subtropical monsoon humid
climate with obvious monsoons. Hefei has a total area of
11,445 km2. By the end of 2016, the population of Hefei is
7.87 million, of which 2.59 million are registered residents.
Hefei has 4 districts, 4 counties, and 1 county-level city. The
cardiovascular death population included in this study was
only the registered population in Hefei urban area (Yaohai,
Luyang, Shushan, and Baohe districts). The cardiovascular
death data of the surrounding suburbs such as Changfeng
County, Feidong County, and Feixi County were not obtained,
and the air quality monitoring stations in Hefei City were
located in the urban area. The level of air pollutants in the
suburbs was quite different from that in the urban area, so it
was not included in the study.

Air pollution and meteorology data

The daily data on air pollutants, including PM10, NO2, PM2.5,
CO, SO2, and O3, were provided by the Hefei Environmental
Monitoring Center. Daily air pollutant values were calculated
by averaging the 24-h values. The data were originally col-
lected from 10 air quality monitoring stations. The daily me-
teorological factors of Hefei from 2007to 2016 were obtained
from the China Meteorological Data Network (http://data.
cma.gov.cn/).

Cardiovascular death data collection

We obtained the 2007–2016 resident death data from the
Hefei Municipal Center for Disease Control and extracted
the CVD deaths data using the International Statistical
Classification of Diseases and Related Health Problems 10th
Revision (ICD-10). Specifically, data on cardiovascular dis-
ease (I00–I99), ischemic heart disease (I20–I25), and cerebral
vascular disease (I60–I69) were extracted. In order to identify
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the subgroups vulnerable to air pollutants, we conducted strat-
ified analyses by gender (male and female), age (< 65 years
old and ≥ 65 years old), and disease type (ischemic heart
disease and cerebral vascular disease) (Zhu et al. 2017).

Statistical analysis

Daily CVD deaths, air pollutants, and meteorological factors
were described as mean standard deviation (SD) and quartiles.
Spearman rank correlation analysis was conducted to estimate
the relationships between air pollutants and meteorological
factors. A time-series analysis approach in DLNM was ap-
plied to estimate the association between ambient air pollution
and CVD deaths. Studies have shown that daily CVD deaths
are consistent with the Poisson distribution, and the number of
daily deaths may be excessively discrete (Lu et al. 2015; Maji
et al. 2017). Therefore, the quasi-Poisson distribution was
adopted in the DLNM model in our study (Lu et al. 2015;
Yang et al. 2016a; Zhu et al. 2017).

We use cubic spline functions to control the confounding
effects of long-term trends, seasons, day of the week, and
public holiday, and meteorological factors (average tempera-
ture, average pressure, relative humidity, wind speed, and pre-
cipitation) were sequentially included in the model; the
Akaike information criterion (AIC) (Gasparrini et al. 2010)
was used to measure the goodness of fit of the model, and
the minimum AIC value is expressed as the preferred model.
Finally, the model of the average temperature and relative
humidity is introduced. The basic model of this study is as
follows:

Y t∼Poisson μtð Þ
Log μtð Þ ¼ αþ ns Timet; dfð Þ
þ DOWt þ Holidayt þ ns Tempt; dfð Þ þ ns RHt; dfð Þ

ð1Þ

where t is the time observed (days); Yt is the dependent vari-
able, number of CVD deaths at t day; μt is the expected mean
of Yt; α is the constant of model; ns is the natural cubic spline
function; Timet is the time variable, day t, used to control the
long-term trend and seasonality of time; df is the degree of
freedom; DOWt is the day of the week effect; Tempt is the
average temperature on day t; and RHt is the average relative
humidity of the day t. According to previous research experi-
ence, the mean temperature and relative humidity degrees
were both set to 4 (Li et al. 2015), the maximum lag days of
average temperature and relative humidity were 27 (Guo et al.
2011) days and the current day (Luo et al. 2018), respectively,
the degree of freedom of the time variable in the model is
selected as 7 df/year (Yang et al. 2016b). A single-
contaminant model was established to assess the impact of
single air pollutants on CVD deaths in residents. The single
pollutant model is shown as follows:

Y t∼Poisson μtð Þ
Log μtð Þ ¼ αþ COVS þ λX t; l1

ð2Þ

where Xt,l1 represents pollutant concentrations at day t (PM10,
PM2.5, NO2, SO2, CO, and O3), λ is the coefficient of the
matrix, and l1 is the maximum number of days of lag in air
pollutants. COVs denotes all the confounders in the core model
(1). We examined the associations with different lag structures
from the current day (lag 0) up to 7 days before (lag 7). We also
estimated the cumulative effect of air pollution with distributed
lag models (defined as lag 0–1, lag 0–2,…, lag 0–7). According
to the Akaike information criterion (AIC) (Li et al. 2015), the df
for air pollutants lag days was specified to be 5.

Based on the single pollutant model, a multiple-pollutant
model was constructed to assess the stability of each air pol-
lutant’s impact on CVD deaths. Optimal lag day for each
contaminant in the single-contaminant model were fixed, then
we added additional air pollutants for adjustment. Considering
the collinearity between air pollutants, PM10 and PM2.5 do not
appear in the model simultaneously (see Supplementary
material 1). We used nonparametric tests to compare whether
the effect of air pollution on CVD deaths were significantly
different by gender (male and female), age (< 65 years and ≥
65 years), and different types of CVD (ischemic heart disease
and cerebral vascular disease), and the effects of air pollutant
concentration on CVD deaths in subgroups were analyzed.
Sensitivity analysis were conducted by varying dfs for time
(6,8,9), temperature and relative humidity (3,5,6) to examine
the robustness of the results in our study.

Time-series analysis was performed using the “dlnm” and
“splines” software packages in R3.3.3. The results were
expressed as excess risk (ER) and 95% CI, where ER = (RR
− 1) × 100% (Zhang et al. 2017b), that mean with per inter-
quartile range (IQR) increase in air pollutant. The results were
shown by the excess relative risk [(relative risk − 1) × 100%]
with their 95% confidence intervals (95%CI) associated with
per interquartile range (IQR) increase in air pollutant (Lu et al.
2015; Tao et al. 2014), percentage change in risk of CVD
deaths, P value < 0.05 was considered to be statistically
significant.

Results

Description of data

The geographical location of Hefei and the distribution of air
monitoring stations are shown in Fig. 1. Table 1 summarizes
the basic statistics of CVD deaths, air pollutants, and meteo-
rological factor in Hefei from 2007 to 2016. During the study
period, a total of 34,500 deaths caused by CVD were in-
volved, of which 18,774 (54.41%) and 15,726 (45.59%) were
male and female; 5222 (14.92%) and 29,278 (84.86%) were <
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65 age and ≥ 65 age. There were 10,837 (31.41%) deaths
caused by ischemic heart disease and 14,382 (41.69%) deaths
caused by cerebral vascular disease. For air pollutants, the
daily average concentrations of PM10, SO2, and NO2 were
106.11, 20.34, and 30.49 μg/m3 (2007–2016); the average
daily concentrations of PM2.5, CO, and O3 were 72.59,
958.7, and 67.88 μg/m3 (2013–2016). The IQR of PM10,
SO2, NO2, PM2.5, CO, and O3 were 64.4, 14.3, 15.8, 46.2,
400, and 50.1 μg/m3, respectively. The average daily temper-
ature is 16.73 °C, and the average relative humidity is 74.43%.

Time-series analysis

The time-series plot showed the daily mutations of air pollut-
ant concentrations and CVD deaths during the study period
(Fig. 2). CVD deaths showed seasonal changes during the
study, CVD deaths in winter (In December of that year to
February of the next year) is significantly higher than in sum-
mer (June–August), and CVD deaths is increasing year by
year. The PM10, SO2, and PM2.5 daily concentration generally
have been declining year by year, and NO2, CO, and O3

Fig. 1 Geographic location and
distribution of air monitoring sites
in Hefei city

Table 1 Descriptive statistics for
cardiovascular disease death, air
pollutants, and meteorological
factors in Hefei, China, 2007–
2016

Factors Mean ± SD Min P25 Median P75 Max IQR

Total death counts 9.44 ± 4.11 0 6 9 12 27 6

Male 5.14 ± 2.70 0 3 5 7 18 4

Female 4.30 ± 2.45 0 2 4 6 18 4

< 65 1.43 ± 1.26 0 0 1 2 8 2

≥ 65 8.01 ± 3.75 0 5 8 10 25 5

Ischemic diseases 2.97 ± 2.13 0 1 3 4 15 3

Cerebral vascular disease 3.59 ± 2.64 0 3 5 7 20 4

Air pollutants (μg/m3)

PM10 106.11 ± 54.28 6 68.8 99 133.2 545 64.4

SO2 20.34 ± 12.64 1 11.7 18 26 111.6 14.3

NO2 30.49 ± 13.63 8 21 27.6 36.8 133.5 15.8

PM2.5 72.59 ± 46.15 4.6 42.8 62 89 373 46.2

CO 958.7 ± 380.7 227 700 900 1100 4034 400

O3 67.88 ± 38.57 11.5 38 57 88.1 212.1 50.1

Meteorological factors

Temperature (°C) 16.73 ± 9.46 -5.9 8.4 18.1 24.8 34.4 16.4

Relative humidity (%) 74.43 ± 14.31 21 65 76 85 100 20
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showed an upward trend year by year. But all of them had
similar characteristics of periodic fluctuation, the seasonal pat-
tern of PM10, SO2, PM2.5, NO2, CO, and O3 showed low
concentration in summer and autumn and high concentration
in winter and spring.

Spearman’s correlation analysis
and exposure-response relationships

Table 2 describes the correlation between meteorological fac-
tors and air pollutants. There was a high correlation between

Fig. 2 Time series of air pollutants and CVD death in Hefei, China
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PM2.5 and PM10 (r = 0.804), and PM10 was moderately cor-
related with other air pollutants and weather factors. There is a
positive correlation (P < 0.05) between PM10 and PM2.5, SO2,
NO2, and CO, while it is negatively correlated with O3, tem-
perature, and relative humidity (P < 0.05); PM2.5 is positively
correlated with NO2, SO2, and CO, negatively correlated with
O3, temperature, and relative humidity (P < 0.05); NO2, SO2,
and CO related analysis result is in accord with the result of
PM2.5 and PM10 analysis (see Table 2). It is recommend that
full consideration shall be given to the confounding effect of
meteorological factor in the research on the influences of air
pollutions on the deaths caused by CVD, and multi-pollutant
model shall be employed to control the influences of other
pollutants.

Figure 3 illustrates the exposure-response relationships be-
tween six air pollutants at the current day and the relative risk
of CVD deaths. We can also find that the curves associated
with PM10, SO2, NO2, PM2.5, and CO presented similar linear
trends, which indicated that the higher concentration of air
pollutants might cause a significant increase in CVD deaths,
and O3 curve tended to be not associated with CVD deaths.

Analysis of the DLNM

Single pollutant model analysis

Three-dimensional plot of relative risks (RRs) of CVD deaths
along air pollutions and lag 0~lag 7 days are shown in Fig. 4.
The distributed lag surface reveals that CVD deaths risk in-
creased with an increase in PM10, SO2, NO2, PM2.5, CO, and
O3. We presented the associations of PM10, SO2, NO2, PM2.5,
CO, and O3 with CVD deaths over different lag days in
Table 3. For the single-day lag effects, the greatest impact on
the risk of CVD deaths with per IQR increment in PM10 were
found at lag 0 with 1.64% (95%CI 0.46~2.83%), SO2 at lag 2
with 1.45% (95%CI 0.72~2.18%), NO2 at lag 1 with 1.04%
(95%CI 0.27~1.55%), PM2.5 at lag 1 with 0.84% (95%CI
0.04~1.65%), CO at lag 0 with 1.66% (95%CI 0.04~3.31%),

and O3 at lag 2 with 1.83% (95%CI 0.51~3.18%). In terms of
multi-day lag effects, the strongest effects of PM10, SO2, NO2,
PM2.5, CO, and O3 on CVD deaths were 4.34% (95%CI
1.54~7.23%) at lag 0–6, 5.79% (95%CI 2.43~9.27%) at lag
0–5, 4.47% (95%CI 1.64~7.37%) at lag 0–5, 3.14% (95%CI
0.03~6.36%) at lag 0–4, 3.11% (95%CI 0.21~6.10%) at lag 0–
3, and 8.17% (95%CI 1.89~14.84%) at lag 0–5, respectively.

Subgroup analysis

It was found that air pollutants have significant effects on
CVD deaths in male and female (Z = 13.539, P = 0.000), <
64 ages and ≥ 65 ages (Z = 70.201, P = 0.000), ischemic
heart disease, and cerebral vascular disease (Z = 19.278, P =
0.000). The percent change of overall CVD deaths with per
IQR increment in single pollutants by gender and age are
shown in Fig. 5 and Supplementary Tables S1–S2. PM10,
SO2, and NO2 both increased the risk of CVD deaths in male
and female. The strongest effects of PM10, SO2, and NO2 on
male CVD deaths were 4.76% (95%CI 0.49~7.20%) at lag
0–7, 5.69% (95%CI 1.23~10.34%) at lag 0–5, and 3.46%
(95%CI 0.00~7.04%) at lag 0–4; the strongest effects of
PM10, SO2, and NO2 on female CVD deaths were 5.37%
(95%CI 1.60~9.27%) at lag 0–5, 5.97% (95%CI
1.11~11.06%) at lag 0–5, and 5.65% (95%CI 1.55~9.92%)
at lag 0–5. However, PM2.5, CO, and O3 have been found to
exhibit sex selective effect; this study did not find signifi-
cant statistical significance between PM2.5, CO, and O3 and
CVD deaths in male, but female was just the opposite; the
strongest effects of PM2.5, CO, and O3 on female CVD
deaths were 5.06% (95%CI 0.03~10.34%) at lag 0–5,
5.63% (95%CI 1.30~10.14%) at lag 0–3, and 15.40%
(95%CI 5.67~26.03%) at lag 0–5, which means females
suffered more from the adverse effects of air pollutants.
For age subgroups, pollutants also exhibit age-selective ef-
fects, and only SO2, NO2, and PM2.5 increased the risk of
CVD deaths on age < 65 years group; the strongest effects of
SO2, NO2, and PM2.5 on age < 65 years group CVD deaths

Table 2 Spearman correlation between air pollutions and meteorological factors in Hefei, China, 2007–2016

Factorsa PM10 PM2.5
a SO2 NO2 COa O3

a Temperature Relative humidity

PM10 1.000

PM2.5 0.804* 1.000

SO2 0.592* 0.641* 1.000

NO2 0.486* 0.484* 0.515* 1.000

CO 0.547* 0.674* 0.427* 0.577* 1.000

O3 − 0.050 − 0.267* − 0.302* − 0.050 − 0.133* 1.000

Temperature − 0.125* − 0.380* − 0.577* − 0.375* − 0.308* 0.492* 1.000

Relative humidity − 0.386* − 0.135* − 0.421* − 0.234* 0.030 − 0.241* 0.129* 1.000

*P < 0.05 Note: Italicized item * means P<0.05
a Correlation between PM2.5, CO, O3, and other variables as the result of data analysis for 2013–2016
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were 8.62% (95%CI 0.18~17.78%) at lag 0–5, 5.94%
(95%CI 0.13~12.08%) at lag 0–2, and 15.18% (95%CI
2.31~29.66%) at lag 0–7. The strongest effects of PM10,
SO2, NO2, CO, and O3 on age ≥ 65 years group CVD deaths
were 4.45% (95%CI 1.00~8.01%) at lag 0–7, 5.97%
(95%CI 1.11~11.06%) at lag 0–5, 4.32% (95%CI
1.31~7.42%) at lag 0–5, 5.09% (95%CI 0.25~10.17%) at

lag 0–3, and 8.06 (95%CI 1.38~15.19%) at lag 0–5; elderly
groups (aged 65+) suffered more from the adverse effects of
air pollutants. Grouped according to different types of CVD
such as ischemic heart disease and cerebral vascular dis-
ease, it was found that there was only statistical significance
between O3 and ischemic heart disease; the strongest effects
were 13.08% (95%CI 1.97~25.39%) at lag 0–5. Cerebral

Fig. 3 Exposure response
relationships between six air
pollutants and CVD deaths. The
x-axis represented the
concentration of air pollutants
(μg/m3) at the current day, the y-
axis indicated log relative risk of
CVD deaths. The imaginary lines
were the 95%Cl. All models were
adjusted for time, temperature,
relative humidity, weekend, and
holiday
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vascular disease was mainly affected by PM10, SO2, and
NO2; the strongest effects of PM10, SO2, and NO2 on cere-
bral vascular disease were 6.25% (95%CI 1.31~11.43%) at
lag 0–7, 5.68% (95%CI 0.55%~11.07%) at lag 0–5, and
6.34% (95%CI 1.93~10.95%) at lag 0–5 (Table 4).

Multi-pollutant model analysis

After determining the optimal lag for each pollutant in a single
pollutant model, we added additional contaminants to adjust-
ment. The percent increase and 95%CI for CVD deaths asso-
ciated with per IQR increment of air pollutants in multi-

(a) (d)

(b)

(c) (f)

(e)

Fig. 4 The 3D graph for the
association of air pollutions and
CVD deaths
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pollutant models are presented in Table 5. The results of the air
pollutants in the two pollutants were lower than those of the
single pollutant model, and only the effects of SO2 and O3 on
CVD deaths were more stable (P < 0.05). The fitting results of
other pollutants PM10, NO2, PM2.5, and CO in the multi-
pollutant model were not statistically significant (P > 0.05).

Sensitivity analysis

In the range of (6,8,9), the change of df/year has no significant
effect on the connection of air pollution with CVD deaths
(Supplementary Fig. S1). In addition, we obtained similar re-
sults when modifying df (3,5,6) for the mean temperature and
relative humidity (Supplementary Figs. S2–S3).

Discussion

In this study, the DLNM was utilized to analyze the relation-
ship between air pollutants and CVD from 2007 to 2016 in
Hefei. The results showed that PM10, SO2, NO2, PM2.5, CO,
and O3 had significant adverse effects on overall CVD and its
subtypes, including ischemic heart disease and cerebral vas-
cular disease. Subgroup analysis showed that females were
more sensitive to the effects of PM10, SO2, NO2, PM2.5, CO,
and O3 than males, and regarding gender, residents aged ≥ 65
years were more susceptible to the effects of PM10, CO, and
O3 than residents < 65 years old, but < 65 years old were more

susceptible to the effects of SO2, NO2, and PM2.5 than aged ≥
65 years. Our results may be relevant for the prevention and
treatment of CVD and provide constructive advice for con-
trolling air pollution in Hefei, China.

The exceeded days of PM10, SO2, NO2, PM2.5, CO, and O3

(based on the first-class concentration limit of China’s
“Environmental Air Quality Standards” (GB3095-2012))
were 87.72%, 3.18%, 0.68%, 84.87%, 0.07%, and 2.33%,
respectively. PM10, PM2.5, and SO2 were the major pollutants
in Hefei. Hefei Air Quality ranks 48th out of 74 cities, and the
average concentration of PM10, SO2, NO2, PM2.5, CO, and O3

was ranked 38th, 38th, 32th, 71th, 37th, and 36th, respective-
ly. Studies have shown that particulate matter (PM10, PM2.5)
mainly comes from various industrial production, construction,
and road dust. SO2 is mainly derived from the combustion of
coal oil and the exhaust of motor vehicles. Therefore, it was of
great meaning and emergency to predict the risk of CVD
caused by air pollution in Hefei. We concluded that with per
IQR increase in PM10, CVD deaths were significantly increased
by 1.64% (95%CI 0.46~2.83%) at lag 0 in single-day lags and
4.34% (95%CI 1.54~7.23%) at lag 0–6 in multi-day lags. Our
results are similar to previous studies, Zahra Soleimani et al.
(2019). Exploring the relationship between air pollution and
hospitalization rates for CVD, they observed a 1.08% increase
in CVD hospitalization for every 10 μg/m3 increase in PM10.
Zhang et al. (2017b) concluded that with per 10 μg/m3 in-
creases in PM10, CVD mortality was significantly increased
by 1.012% (1.011–1.013) at lag 1 day. However, we found no

Fig. 5 The percent change and 95%CI for deaths due to CVD associated with per IQR increase in air pollutants concentrations by gender and age in
single-pollutant models in Hefei, China
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statistical association between PM10 CVD deaths in a study in
Wuhan. The inconsistent results may be due to the concentra-
tion of PM10 in different regions and demographic differences.

For SO2, we concluded that with per IQR increase in SO2,
CVD deaths and cerebral vascular disease were significantly in-
creased by 1.45% (95%CI 0.72~2.18%) at lag 2 and 1.61%
(95%CI 0.54~2.69%) at lag 1 in single day, and the effects in
multi-day lags were greater than single-day lags, which were

consistent with most previous studies. In Beijing, the relative risks
(95%CI) of per 10 mg/m3 increased to SO2 were 1.008 (0.999–
1.018) on cardiovascular emergency room admissions (Ma et al.
2017). Dong et al. studied the effects of air pollution on CVD
morbidity in three cities in Northeast China, and it was found that
for every 20 μg/m3 increase in SO2 concentration, CVD rate in-
creased by 1.14% (Dong et al. 2013). The acute effects of SO2 on
population death in the atmosphere of six cities in China, we can

Table 5 Multi-pollutant model
analysis results of the effects of air
pollutants on cardiovascular
deaths in Hefei

Model Single-day lag maximum effect Multi-day lag cumulative maximum effect

ER 95%CI ER 95%CI

PM10
a

Single pollutant model 1.64* 0.46~2.83 4.31* 1.10~7.62

+SO2 1.61 − 0.46~2.74 3.87 − 0.08~8.01

+NO2 1.38 − 0.04~2.81 3.37 − 0.58~7.47

SO2
a

Single pollutant model 1.45* 0.72~2.18 5.79* 2.43~9.27

+PM10 1.27* 0.38~2.17 3.74 − 0.27~7.92

+NO2 1.22* 0.35~2.10 4.10 0.16~8.19

NO2
a

Single pollutant model 0.91* 0.27~1.55 4.47* 1.64~7.38

+PM10 0.56 − 0.25~1.37 2.31 − 1.23~5.97

+SO2 0.33 − 0.43~1.09 2.57 − 0.74~5.99

PM2.5
b

Single pollutant model 0.84* 0.04~1.65 3.14* 0.03~6.36

+SO2 0.22 − 0.68~1.13 0.67 − 2.78~4.25

+NO2 0.05 − 0.89~0.99 0.31 − 3.30~4.05

+CO 0.32 − 0.97~1.62 2.12 − 2.91~7.40

+O3 0.59 − 0.26~1.44 2.01 − 1.30~5.44

COb

Single pollutant model 1.66* 0.04~3.31 3.11* 0.21~6.10

+PM10 0.51 − 1.75~2.82 − 0.7 − 4.54~3.28

+SO2 1.22 − 0.58~3.05 1.2 − 1.95~4.45

+NO2 0.23 − 1.75~2.26 − 0.53 − 4.06~3.13

+PM2.5 1.48 − 0.97~3.99 1.77 − 2.85~6.60

+O3 1.4 − 0.24~3.07 2.22 − 0.79~5.32

O3
b

Single pollutant model 1.83* 0.51~3.17 8.17* 1.89~14.84

+PM10 1.16 − 0.27~2.62 4.2 − 2.46~11.32

+SO2 1.23 − 0.14~2.63 5.28 − 1.12~12.09

+NO2 1.17 − 0.23~2.59 4.33 − 2.24~11.34

+PM2.5 1.63* 0.24~3.04 6.61 − 0.04~13.71

+CO 1.65* 0.28~3.03 6.99* 0.48~13.92

Note: Italicized item * means P<0.05
a PM10, SO2, andNO2 during 2007–2016. PM10, SO2, andNO2 obtained themaximum single-day lag effect value
in lag 0, lag 2, and lag 1; themaximummulti-day lag cumulative effect value was obtained in lag 0–6, lag 0–5, and
lag 0–5
b PM2.5, CO, and O3 during 2013–2016. PM2.5, CO, and O3 obtained the maximum single-day lag effect value in
lag 1, lag 0, and lag 2; the maximum multi-day lag cumulative effect value was obtained in lag 0–4, lag 0–3, and
lag 0–5
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find that the effect of SO2 on CVD death is different, but they all
have an obvious correlation (Zeng et al. 2015).

This study found that the concentrations of NO2 and O3

were increasing year by year, and O3 had the greatest adverse
effect on CVD deaths; we concluded that with per IQR in-
crease in O3, CVD was significantly increased by 1.83%
(95%CI 0.51~3.18%) at lag 3 in single-day lags and 8.17%
(95%CI 1.89~14.84%) at lag 0–5 in multi-day lags. Different
from other studies (Huang et al. 2018; Yang et al. 2018), of the
six air pollutants in this study, only O3 has an effect on ische-
mic heart disease. We found that with per IQR increase in
NO2 at lag 0–5 days, it could lead to a 1.04% (95%CI
0.27~1.55%) and 1.61% (95%CI 0.54~2.69%) increment
in CVD deaths and cerebral vascular disease. Our finding
was also consistent with other previous studies (Huang
et al. 2018; Yang et al. 2018). NO2 and O3 can inhibit the
activity of enzymes, affect the metabolism of lipoproteins,
induce systemic inflammatory reactions, and cause CVD
diseases (Faridi et al. 2018). Our study showed that SO2+
NO2 and O3+CO still have significant effects on CVD deaths
in the two-pollutant models; this suggests that SO2, NO2, O3,
and CO were powerful predictors of CVD deaths in Hefei,
China. In other multi-pollution models, we did not find that
the combined effect of pollutants has an effect on CVD deaths,
probably due to the strong correlation between pollutants, af-
fecting their death effects on CVD.

Consistent with previous studies (Garcia et al. 2016;
Zhu et al. 2017), females were more susceptible to the
effects of PM10, SO2, NO2, PM2.5, CO, and O3 than
males. Although this relationship is not evident, some
biological and abiotic factors can explain this phenom-
enon (Bennett et al. 1996; Eaker et al. 1993); first, in
anatomy, females have smaller respiratory tract diame-
ters, so females have higher airway responses and par-
ticulate deposition effects than males. For the age sub-
group, the study showed that residents ≥ 65 years old
were more sensitive to PM10, CO, and O3 than residents
< 65 years old; the results of SO2, NO2, and PM2.5

were exactly the opposite. This may be explained by
differences in exposure to air pollutants among residents
of different ages, and it is more common in older peo-
ple with chronic diseases (Roth et al. 2017).

In this study, there are several advantages: first, this study
had a longer time span than similar studies in the past (gen-
erally 2–5 years), the time span of this study reached 10
years, can reveal the long-term exposure effects of air pol-
lutants, and compared to previous studies, the types of air
pollutants in our study are more comprehensive, and it is a
good response to the effects of air pollutants on CVD
deaths, so the results were more reliable and accurate.
Second, this study used a distributed-lag nonlinear model
to quantitatively analyze the effects of air pollutants on
CVD in residents, and the model is more active than the

generalized additive model. Third, the study compared dif-
ferent genders, ages, and the effects of air pollutants on
different types of CVD deaths in the same population; sen-
sitive populations were identified, and more favorable
targeted preventive and control measures were proposed.
Fourth, as we mentioned above, Hefei is the representative
area for the combined pollution of coal smoke and motor
vehicle exhaust in the central cities. This study will help us
better understand the impact of air pollution on CVD deaths
in a coal smoke and motor vehicle exhaust polluted region.
Of course, this study also has some shortcomings. First, as
with other similar studies, air pollutant concentration data
and meteorological data are obtained from fixed detection
sites, which could not represent total exposure to popula-
tion, underestimate the health effects of air pollution.
Second, due to the lack of data on indoor air pollutants,
indoor air pollution is not considered in this study, which
may also affect population exposure levels and overestimate
the link between ambient air pollutants and death. Finally,
this study only involves Hefei; the results of the study
should be cautious when extrapolated. However, from the
point of view of big data analysis, although there are some
shortcomings, the research results still have some
persuasion.

Conclusions

In summary, we evaluated the effects of ambient air pollutants
on CVD deaths during 2007–2016 in Hefei. Through the
DLNM of time-series analysis, we observed positive associa-
tions between PM10, SO2, NO2, PM2.5, CO, and O3 concen-
tration at different lag days and CVD deaths. NO2 and SO2

were the largest two risk pollutants of CVD deaths in Hefei.
Females and elderly for CVD were more vulnerable to air
pollution. In consequence, some effective measures should
be taken to strengthen the management of the ambient air
pollutants, and to enhance the protection of the high-risk pop-
ulation from air pollutants.
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