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Abstract
Risk assessment of pollutants to humans and ecosystems requires much toxicological data. However, experimental
testing of compounds expends a large number of animals and is criticized for ethical reasons. The in silico method
is playing an important role in filling the data gap. In this paper, the acute toxicity data of 1221 chemicals to Vibrio
fischeri were collected. The global models obtained showed that there was a poor relationship between the toxicity
data and the descriptors calculated based on linear and nonlinear regression analysis. This is due to the fact that the
studied compounds contain not only non-reactive compounds but also reactive and specifically acting compounds
with different modes of action (MOAs). MOAs are fundamental for the development of mechanistically based QSAR
models and toxicity prediction. To investigate MOAs and develop MOA-based prediction models, the compounds
were classified into baseline, less inert, reactive, and specifically acting compounds based on the modified Verhaar’s
classification scheme. Satisfactory models were established by multivariate linear regression (MLR) and support
vector machine (SVM) analysis not only for baseline and less inert chemicals, but also for reactive and specifically
acting compounds. Compared with linear models obtained by the MLR method, the nonlinear models obtained by
the SVM method had better performance. The cross validation proved that all of the models were robust except for
those for reactive chemicals with nN (number of nitrogen atoms) = 0 and n(C=O) (number of carbonyl groups) > 0
(Q2

ext < 0.5). The application domains and outliers are discussed for those MOA-based models. The models devel-
oped in this paper are significantly helpful not only because the application domains for baseline and less inert
compounds have been expended, but also the toxicity of reactive and specifically acting compounds can be suc-
cessfully predicted. This work will promote understanding of toxic mechanisms and toxicity prediction for the
chemicals with structural diversity, especially for reactive and specifically acting compounds.

Keywords QSAR . Mode of action . Verhaar scheme . Vibrio fischer . In silico method . Multivariate linear regression . Support
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Introduction

New chemicals enter the market at a rate of about 1000–2000
per year (Judson et al. 2009). A number of synthetic chemicals
are produced and introduced to the environment through daily
life (Levet et al. 2016). Some herbicides, such as atrazine and
striazine, can induce developmental toxicity (Diana et al.
2000; Allran and Karasov 2001; Saka et al. 2017). 4-
Nitrophenol, a commercial compound with significant func-
tions in many industries, was reported as a potential carcino-
gen, teratogen, and mutagen (Mitchell and Waring 2000).
These chemicals can directly or indirectly harm humans and
aquatic organisms through bioaccumulation or amplification.
Therefore, there is greatly increasing concern about their
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toxicity; thus, it is important to assess the hazard and risk of
chemical substances released into the environment (Zhang
et al. 2013).

The toxicological information required in risk assessment
is usually obtained from experimental determination.
However, most traditional acute toxicity tests using animals
or organisms are material-consuming, time-consuming, and
technically difficult (Luis et al. 2007; de Melo et al. 2016;
Wang et al. 2019). They also violate the reduction, replace-
ment, and refinement (3R) principle of animal experiments
(Hamadache et al. 2016). Moreover, there is a large gap be-
tween existing experimental data and actual need for accurate
toxicological information of chemicals for risk assessment. It
is urgent that we develop predictive methods as an alternative
to animal experimentation. An in silico method, the quantita-
tive structure-activity relationship (QSAR), is a technique
with wide application prospects and is one of the best methods
to fill this gap (Papa et al. 2013; Zhang et al. 2019). The
QSARmethod cannot only predict and evaluate the ecological
toxicity and environmental behavior of unknown chemicals,
but also explore the toxic mechanism of pollutants and sup-
port the environmental risk assessment of organic chemicals
(Tsakovska et al. 2008).

Many studies have been carried out to develop QSAR
models for predicting the toxicity values of various chemicals
to aquatic organisms, for example, Vibrio fischer (V. fischeri).
QSAR models were developed to predict the toxicity of a set
of 52 aromatic sulfone chemicals against V. fischeri, and the
results showed that the toxicity was markedly related to water
solubility (de Melo et al. 2016). QSAR techniques were
adopted to predict the toxicity of alkylated aromatic hydrocar-
bons towards V. fischeri with the partial least square (PLS)
analysis, and goodness-of-fit was identified through a high
statistical value (R2 = 0.956) (Wang et al. 2016b). The toxicity
of 24 bromide-based ionic liquids (Br-ILs) against V. fischeri
was used to establish a QSAR model with a relatively high
correlation coefficient; results indicated that the toxicity was
related to the energy of the lowest unoccupied molecular or-
bitals and the volume of Br-IL cations (Wang et al. 2015a).
Most QSAR models were established based on the similar
functional groups or usages/applications of chemicals, such
as alcohols (Belanger et al. 2018), anilines (Tugcu and
Sacan 2018), phenols (Abbasitabar and Zare-Shahabadi
2017), specifically acting antibiotics (Neale et al. 2017), pes-
ticides (Martin et al. 2017), surfactants in personal care prod-
ucts (Di Nica et al. 2017), and antidepressants (Minguez et al.
2018). However, the application domains of those models
were limited to narrow ranges of chemical species. Thus, they
cannot be used to predict toxicity for a large number of
chemicals with structural diversity. It is necessary, therefore,
to develop general models which can cover different
chemicals with structural diversity (Lessigiarska et al. 2004;
Levet et al. 2016; Bakire et al. 2018).

The mode of action (MOA) is essential in the understand-
ing of toxic mechanisms. It also plays a key role in the devel-
opment of QSARmodels. Avariety of methods for the assign-
ment of chemicals to specific MOAs are available
(KÖnemann 1981; McKim et al. 1987; Verhaar et al. 1992;
Russom et al. 1997). The Verhaar scheme (Verhaar et al. 1992)
is one of the most widely used methods in which chemicals
can be classified based on physicochemical properties and
structure rules. Chemicals are categorized using the Verhaar
scheme into five different MOAs which are baseline
chemicals, less inert chemicals, reactive chemicals, specifical-
ly acting chemicals, and chemicals that are not possible to
classify using the Verhaar scheme, respectively. Up to now,
the QSAR models for baseline chemicals against different
aquatic organisms were mostly generated. A general baseline
toxicity QSAR model for the fish embryo’s acute toxicity has
been developed with R2 = 0.97 using liposome-water partition
coefficient (logKlipw) instead of the octanol/water partition
coefficient (logKow) (Klüver et al. 2016). A relationship has
been found between fish toxicity and theoretical Volsurf mo-
lecular descriptors for 36 baseline chemicals with a robustness
of R2 = 0.823 (de Moraise Silva et al. 2018). Although a
number of QSAR models for baseline or less inert (polar nar-
cotics) compounds have been established, fewer models have
been developed for reactive and specifically acting com-
pounds. Development of QSAR models for these compounds
is crucial because of their greatly toxic effect to humans and
environmental organisms.

In this paper, toxicity data of acute luminescence inhibition
toV. fischeriwere compiled for 1221 chemicals with structural
diversity and different MOAs. The purpose of the paper is to
develop linear and nonlinear QSAR models to predict the
toxicity of more organic chemicals with different MOAs to
V. fischeri. At the same time, the property or structure factors
that attribute to the acute toxicity of organic chemicals to
V. fischeri were investigated based on the MOA-based
models. According to international principles of QSARmodel
development (OECD guideline, 2007), the robustness and ap-
plication domains of developed models are discussed in this
paper. This information is very valuable for risk assessment of
organic chemicals in aquatic environment, specifically for re-
active and specifically acting compounds.

Material and methods

Toxicity data to V. fischeri

The acute toxicity data of organic chemicals to V. fischeri for
15 or 30 min expressed in the logarithmic form of 50% inhi-
bition concentration of bioluminescence (log1/IBC50, in the
unit of mol/L) was collected from literature (Kaiser and
Palabrica 1991; Cronin and Schultz 1998; Zhao et al. 1998a;
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Cronin et al. 2000; Dearden et al. 2000; Terasaki et al. 2009;
Qin et al. 2010; Aruoja et al. 2011; Jones et al. 2011; Shi et al.
2012; Villa et al. 2012). If acute toxicity data for both end-
points was present, the toxicity value at the 15-min endpoint
was preferred. A total of 1221 organic compounds and their
toxicity data were collated by (1) removing ions, salts, and
mixtures and (2) using arithmetic means as the final toxicity
data for chemicals with more than one experimental value.
The 1221 organic chemicals were divided into five MOAs
using Toxtree software (http://ecb. jrc.it/qsar/qsar-tools/
index.php?c=TOXTREE). The details of classification, to-
gether with CAS numbers, are reported inOnline Resource 2.

Calculation of molecular parameters

Hydrophobicity quantified by the logarithm of the octanol/
water partition coefficient (logKow) was obtained from the
KOWWIN program in EPISuite (verion 4.0) (http://www.
epa.gov/oppt/exposure/pubs/ episuitedl.htm). When possible,
measured log Kow values from experiments were used before
turning to calculated values. The dragon descriptors were
calculated by Dragon software (Version 6.0, Talete SRL,
Milano, Italy). The MM2 method (Schnur et al. 1991) in-
volved in the ChemBio3D Ultra (Version 12.0) (http://www.
cambridgesoft.com/services/) was used to optimize the
molecular structures. The initial descriptors were reduced by
excluding three types of descriptors, namely, highly correlated
descriptors with (abs) pair correlation larger than or equal to 0.
95, descriptors with constant (relative standard deviation < 0.
0001), and descriptors with at least one missing value. Thus, a
total of 1379 descriptors were maintained and used for further
analysis.

Model development and evaluation

The toxicity data was divided into the training and verifi-
cation sets that the toxicity values and structures of the
studied compounds were well covered in the ratio of 4:1
based on the random data segmentation (RSS) (Lyakurwa
et al. 2014b). The training set containing 80% of the
chemicals was used to develop models, and the verifica-
tion set was used for the external test. Multilinear regres-
sion (MLR) with a step-wise algorithm in SPSS 19.0 soft-
ware (SPSS Company, Chicago, IL, USA) was used for
linear QSAR model development. The support vector ma-
chine (SVM) running in MATLAB 2014 which has been
extensively applied for nonlinear analysis was employed
to build the nonlinear QSAR models.

The linear models obtained in the analysis abide by follow-
ing principles. Firstly, the number of predictor variables
should be reduced to avoid over-fitting. The ratio between
the number of chemicals in the training set and the number
of selected descriptors should be more than 5:1 (Tropsha et al.

2003). Secondly, the model should have a higher adjusted
determination coefficient (R2

adj) and a lower root mean
squared error (RMSE). Thirdly, because the probability of
highly correlated descriptors rises with the increasing number
of available descriptors for model, the variable inflation fac-
tors (VIF) for the parameters should be less than 10 to avoid
the issue of colinearity. Fourthly, the QUIK rules (Stewart
1989) should be satisfied, i.e., Kx (intercorrelation of selected
descriptors) < Kyx (the correlation of the x block with y),
where x is the selected molecular descriptor matrix and y is
the response variable vector (Li et al. 2014;Wang et al. 2015b;
Luo et al. 2017). Last but not the least, the R2

YS and Q2
YS of

the Y-scrambling technique should be lower than the criteria
of 0.3 and 0.05, respectively (Eriksson et al. 2003).

The number of the terminated generation of the nonlinear
models was set to 100, and the best nonlinear model was
selected with minimum variance.

The performance of linear models was evaluated by the
statistical parameters. The determination coefficient (R2) and
root mean square error (RMSE)mainly reflect the goodness of
fit of the models. The Q2

LOO (leave-one-out cross-validation)
and Q2

BOOT (the bootstrap method, to 1/5 cross-validation,
repeated 5000 times) were used to evaluate the robustness of
the developed models. In addition, the slopes of the experi-
mental value against predicted value or predicted value
against experimental value without intercept (expressed as k
and k′, respectively) for the validation set were used to evalu-
ate the predictive ability of the models. If 0.85 ≤ k ≤ 1.15 or
0.85 ≤ k′ ≤ 1.15, models were considered acceptable
(Golbraikh and Tropsha 2002). Furthermore, the external
determination coefficient (R2

ext), the external explained
variance (Q2

ext), and the root mean square error of
verification sets (RMSEext) were also adopted to characterize
the predictability of the models.

The performance of nonlinear models was evaluated
through the determination coefficient (R2), the external deter-
mination coefficient (R2

ext), and cross-validated of verification
set (Q2

ext).

Applicability domain characterization

Application domains (ADs) were characterized using the
leverage distance method and the Euclidean distance
method. For leverage distance method, Williams plots
of the standardized residual (s) versus the leverage (h)
were used to characterize ADs and determine whether
the outliers or influential chemicals exist. The influential
chemicals can be identified by hi value larger than h*
(3p/n, where n and p are the number of chemicals and
descriptors, respectively) and the outliers were diag-
nosed by the criterion of the standardized residual (s)
being larger than 3 units (Bakire et al. 2018; Li et al.
2014). Similar to the leverage distance method, for the
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Euclidean distance method, plots of the standardized
residual(s) versus Euclidean distance were used to char-
acterize ADs and determine whether outliers existed.
The largest value of Euclidean distance in the training
set was set as the warning value (d*) (Li et al. 2014).

Results and discussion

QSAR models for all the chemicals

MLR analysis was carried out for all the collected chemicals.
The best global linear model obtained by the stepwise analysis
was

log1=IBC50 ¼ 3:096þ 0:766 SpMax4 Bh mð Þ þ 0:166 logKow

−0:720 GATS1i−0:147CATS2D 02 DA

−0:468 GATS3e−0:265 nROHþ 1:969 nRNHR

þ 1:946B02 S−Cl½ � þ 0:587 S−106−0:098 F02 C−F½ �
ð1Þ

ntra ¼ 977;R2 ¼ 0:500;R2
adj ¼ 0:495;Q2

LOO

¼ 0:486;Q2
BOOT ¼ 0:797;RMSE ¼ 0:817;Kyx

¼ 0:228;Kx ¼ 0:189; next ¼ 244;R2
ext

¼ 0:467;RMSEext ¼ 0:754;Q2
ext ¼ 0:433;R2

YS

¼ 0:010;Q2
YS ¼ −0:013

As shown in model (1), ten descriptors were used in
the linear equation (Online Resource 1 Table S1). This
model could only account for 49.5% of the variance
(R2

adj), suggesting an unsatisfactory fitting ability of
the model. Although the model and coefficient of vari-
ation (R2) could be improved with the increasing num-
ber of descriptors, the value of R2

ext was no higher than
0.6 even when more descriptors were introduced into
the model. At the same time, the nonlinear model was
developed for all the chemicals using the SVM method,
and the model was also unsatisfactory with C = 0.594,
g = 2.226, R2 = 0.581, and R2

ext = 0.533.
Considering the unsatisfactory results the global line-

ar and nonlinear models had, the chemicals were clas-
sified into four classes with different MOAs (baseline,
less inert, reactive chemicals, and specifically acting
chemicals) according to the modified Verhaar scheme
(Enoch et al. 2008b). It should be noted that the
MOAs of some chemicals cannot be assigned, and they
were not used in the model construction in the present
study. A total of 606 chemicals, therefore, were used for
QSAR model development based on classification and
analysis of mode of action.

MOA-based linear QSAR models

Linear QSAR model for baseline chemicals

A total of 215 chemicals were assigned to baseline com-
pounds. They were divided into the training and verification
sets in the ratio of 4:1. The optimal linear model was con-
structed by the MLR method and the result is shown as fol-
lows:

log1=IBC50 ¼ 0:55þ 0:468 logKowþ 0:293 SpDiam AEA edð Þ
þ 0:237 N%−0:741 O−057−2:14 B09 C−Cl½ �
þ 0:455 Eig04 AEA edð Þ−0:761 GGI3

ð2Þ
ntra ¼ 172;R2 ¼ 0:787;R2

adj ¼ 0:778;Q2
LOO

¼ 0:764;Q2
BOOT ¼ 0:783;RMSE ¼ 0:579;Kyx

¼ 0:379;Kx ¼ 0:345; next ¼ 43;R2
ext

¼ 0:788;RMSEext ¼ 0:578;Q2
ext ¼ 0:786;R2

YS

¼ 0:041;Q2
YS ¼ −0:072

Model (2) contains a total of seven descriptors and their
detailed information is listed in Online Resource 1 Table S2.
It can be found that, as a dominant descriptor, logKow can
account for the largest proportion (t = 13.277). This result is
consistent with the observation published in the literature for
nonpolar anesthetic compounds (He et al. 2014). The hydro-
phobicity expressed as logP or logKow is regarded as one of
the most common descriptors to predict the toxicity of organic
chemicals to organisms and this property decided the process
of a chemical passing through the cell membrane. Studies
found that hydrophobicity had a good correlation with the
acute toxicity of chemicals to many aquatic species, such as
fish or embryo (Poecilia reticulata (Su et al. 2014), zebrafish
embryo (Zhu et al. 2018)), tadpoles (Rana chensinensis and
Rana japonica) (Wang et al. 2019), green algae (Bakire et al.
2018), D. magna (Zvinavashe et al. 2009), and Tetrahymena
pyriformis (Enoch et al. 2008a). Model (2) indicates that the
acute toxicity to V. fischeri is correlated not only with logKow,
but also with other factors. In the present study, the correlation
coefficient could increase from 0.543 to 0.787 when another
six descriptors were employed in the model. The value of k is
0.986 and k′ is 0.992 for the validation set (details in Online
Resource 1 Fig. S4), indicating that the model predictive abil-
ity is acceptable. The Q2

LOO of the equation (2) is 0.764 and
the Q2

BOOT is 0.783, indicating that the model yields a good
statistical performance. Additionally, the R2

YS andQ
2
YS of the

Y-scrambling technique are 0.041 and − 0.072, respectively,
suggesting the acceptablemodel. The plot of experimental and
predicted values of log1/IBC50 is Fig. 1a. The Pearson
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correlation coefficient (expressed as Rp) of experimental and
predicted values is 0.886, indicating that themodel established
for class 1 chemicals is suitable and robust.

It should be noted that the linear model is not for highly
hydrophobic chemicals with logKow value over 5 (Lee et al.
2013). Due to the 15 PAHs in the data set with logKow > 5, it
will have a greater impact on the development of baseline
model. Therefore, those chemicals are not considered in the
establishment of baseline model.

Linear QSAR model for less inert chemicals

The model constructed by the MLR method for less inert
chemicals was as follows:

log1=IBC50 ¼ −4:626þ 1:951 EE B pð Þ þ 0:804 logKow

−0:612 X2v−3:98 Eig03 EA dmð Þ
−6:251 JGI3þ 1:662 CATS2D 05 DP

þ 0:102 GATS7e

ð3Þ
ntra ¼ 133;R2 ¼ 0:737;R2

adj ¼ 0:723;Q2
LOO

¼ 0:641;Q2
BOOT ¼ 0:790;RMSE ¼ 0:454;Kyx

¼ 0:388;Kx ¼ 0:348; next ¼ 33;R2
ext

¼ 0:758;RMSEext ¼ 0:431;Q2
ext ¼ 0:729;R2

YS

¼ 0:053;Q2
YS ¼ −0:060

It was found that the model tested by Y-scrambling tech-
nique was acceptable with R2

YS 0.053 and Q2
YS = − 0.060

with a total of seven descriptors. Detailed information is listed
inOnline Resource 1 Table S3. This model could account for
72.3% of the variance (R2adj), indicating the preferable fitting
ability of the model. The value of k is 0.978 and k′ is 1.013 for
the validation set (Online Resource 1 Fig. S5), indicating that
the predictive ability of the regression for less inert com-
pounds is acceptable. The plot of experimental and predicted
values of log1/IBC50 for less inert chemicals is shown in Fig.
1c and the outcome was acceptable (Rp = 0.858). The ob-
served and predicted log1/IBC50 values, together with the de-
scriptors introduced to model (3), are reported in Online
Resource 2. It was found that logKow still has a large influ-
ence on the toxicity of less inert chemicals. This situation was
also observed in other aquatic organisms (Qin et al. 2010;
Vighi et al. 2009; Fu et al. 2015). EE_B (p) (t = 8), the second
most important descriptor in the model, is an estrada-like in-
dex (logarithmic form) from Burden matrix weighted by po-
larizability. Therefore, it is considered that the polarizability of
less inert chemicals has a significant effect on the toxicity. A
positive relationship indicates that the higher polarizability a
chemical has, the more toxic the chemical is.

Linear QSAR models for reactive chemicals

For reactive compounds, poor relationship was usually found
between toxicity values and descriptors (Zhu et al. 2018). The
unified prediction model on reactive chemicals could not be
obtained due to the fairly complex structures of the com-
pounds in class 3. It has been identified that the toxicity would
be influenced by some structural characteristics such as the
number of nitrogen atoms (nN) or carbonyl groups (n(C=O))
(Lyakurwa et al. 2014a). Therefore, the chemicals in class 3
were further divided into three groups according to nN or
n(C=O). The results were as follows:

Group 1:nN > 0

log1=IBC50 ¼ 2:509þ 21:815 X5Av−2:751 MATS3s

þ 0:252 GATS8m−0:249 Eig11 EA dmð Þ
−0:227 F06 C−O½ � þ 0:64 MLOGP

ð4Þ
ntra ¼ 57;R2 ¼ 0:801;R2

adj ¼ 0:777;Q2
LOO

¼ 0:729;Q2
BOOT ¼ 0:757;RMSE ¼ 0:527;Kyx

¼ 0:299;Kx ¼ 0:189; next ¼ 14;R2
ext

¼ 0:738;RMSEext ¼ 0:605;Q2
ext ¼ 0:715;R2

YS

¼ 0:106;Q2
YS ¼ −0:199

The R2
YS and Q2

YS of the Y-scrambling technique are
0.106 and − 0.199 lower than the criteria of 0.3 and 0.05,
respectively, which confirms that the model is acceptable.
Six descriptors were introduced to the model (4) and de-
tailed information is listed in Online Resource 1
Table S4. Although both MLOGP and logKow represent
the octanol/water partition coefficient, the results from
different calculation methods could be slightly different.
MLOGP and X5Av had the fairly large t values, 7.692
and 4.501, respectively (Online Resource 1), demonstrat-
ing that the toxic values of chemicals in this group are
mainly affected by the hydrophobicity and the average
connectivity index of chemicals. The fitting ability and
robustness of the model are acceptable (R2 = 0.801,
RMSE = 0.527, Q2

LOO = 0.729, Q2
BOOT = 0.757). The

predictive ability is acceptable with k = 0.969 and k′ =
1.015 (see Fig. S6 A and B in Online Resource 1).
Moreover, the plot of experimental and predicted values
of log1/IBC50 for chemicals in group 1 is shown in Fig.
S1A in Online Resource 1 with Rp = 0.877, indicating
that the model was statistically significant.

Group 2: nN = 0, n(C=O) = 0

log1=IBC50 ¼ 2:111þ 2:078 B03 C−C½ �−0:759 Hy

þ 1:759 B06 C−Cl½ �−0:946 B06 O−F½ � ð5Þ
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ntra ¼ 29;R2 ¼ 0:864;R2
adj ¼ 0:841;Q2

LOO

¼ 0:749;Q2
BOOT ¼ 0:784;RMSE ¼ 0:489;Kyx

¼ 0:360;Kx ¼ 0:191; next ¼ 7;R2
ext ¼ 0:833;RMSEext

¼ 0:614;Q2
ext ¼ 0:720;R2

YS ¼ 0:143;Q2
YS ¼ −0:237

The model is acceptable with the R2
YS = 0.143 and Q2

YS =
− 0.237. There are four descriptors in model (5) and detailed
information is listed in Online Resource 1 Table S5. B03[C-
C] which is a 2D atom pair descriptor was positively correlat-
ed to log1/IBC50 with the largest value of t (t = 8.527), man-
ifesting that the toxicity of the compounds increased with the
increasing number of the C–C structure fragment. This trend
is opposite to that predicted by Hy which is a descriptor of
hydrophilia. Bakire et al. (2018) found that, for reactive
chemicals (nN = 0, n(C=O) = 0), only logKow observably
related to the toxicity to green algae. Compared with the de-
scriptor Hy in this model, logKow stands for hydrophobicity
which is the opposite descriptor of Hy. It states clearly that
hydrophobicity is positively related to the toxicity of reactive
chemicals without nitrogen atoms and carbonyl groups (nN =
0, n(C=O) = 0). The highly hydrophobic chemicals would be
more lipophilic and easier to pass through the membrane to
cause toxicity. Relatively high negative correlation was found
between logKow and Hy (Rp = − 0.778). Hy instead of hy-
drophobicity introduced to the model (5) indicates that the
more the solubility of a chemical is, the less the toxicity to
V. fischeri is. A few 2D atom pairs descriptors ( B06[C-Cl],
B06 [O-F]) in the present study were also introduced into the
model (5) and satisfactory performance was obtained (R2 =
0.864, R2

ext = 0.833, Q2
ext = 0.720). The plot of experimental

and predicted values of log1/IBC50 is shown in Fig. S1C in
Online Resource 1 and significant correlation was found (Rp

= 0.919). The values of k and k′ (Online Resource 1 Fig. S6 C
and D) for the validation set of reactive compounds in group 2
are 0.916 and 1.073, respectively. It is clear that model (5) has
good predictive ability.

Group 3: nN = 0, n(C=O) > 0

log1=IBC50 ¼ −1:714þ 0:758 nRCO−0:482 nArOR

þ 11:071 SpPosA A−1:799 Eta F A

þ 0:727 F02 O−Cl½ � þ 0:346 Eig02 EA dmð Þ
þ 0:327 Eig06 EA dmð Þ

ð6Þ

ntra ¼ 69;R2 ¼ 0:734;R2
adj ¼ 0:704;Q2

LOO

¼ 0:659;Q2
BOOT ¼ 0:772;RMSE ¼ 0:326;Kyx

¼ 0:303;Kx ¼ 0:246; next ¼ 18;R2
ext

¼ 0:447;RMSEext ¼ 0:639;Q2
ext ¼ 0:441;R2

YS

¼ 0:096;Q2
YS ¼ −0:171

Y-scrambling test indicates that the model is acceptable
(R2

YS = 0.096 and Q2
YS = − 0.171). A total of seven descrip-

tors were used in model (6) and detailed information is listed
in Online Resource 1 Table S6. The number of carbonyl in
the aliphatic chemicals represented by nRCO was positively
correlated to log1/IBC50, suggesting that the more carbonyl a
chemical has, the more toxic the chemical is. Eig06_EA(dm)
stands for an edge adjacency index weighted by the molecular
dipole moment reflecting the polarity of a molecule (Luo et al.
2017). It indicated that the toxicity may be caused by the
chemi ca l s unde rgo ing po l a r i n t e r a c t i on s w i t h
biomacromolecules. The plot of experimental and predicted
values of log1/IBC50 is shown inOnline Resource 1 Fig. S1E
and Rp was equal to 0.812. The prediction of the model for
training set was satisfactory; however, when it was used to
predict the toxicity of the chemicals in validation set, an un-
satisfactory outcome was obtained with R2ext = 0.447.

Linear QSAR model for specifically acting chemicals

The model by the MLR method for the class four chemicals
was as follows:

log1=IBC50 ¼ −10:193þ 5:839 SpMAD AEA dmð Þ
−0:179 F03 C−N½ � þ 3:994 SpMAD B pð Þ

ð7Þ
ntra ¼ 25;R2 ¼ 0:766;R2

adj ¼ 0:733;Q2
LOO

¼ 0:665;Q2
BOOT ¼ 0:729;RMSE ¼ 0:327;Kyx

¼ 0:351;Kx ¼ 0:172; next ¼ 6;R2
ext ¼ 0:749;RMSEext

¼ 0:649;Q2
ext ¼ 0:703;R2

YS ¼ 0:127;Q2
YS ¼ −0:269

Specifically acting chemicals are made up of various
chemicals and the toxicity mostly ascribes to the interaction
with the target receptors. A total of three descriptors were
introduced into the model (7), namely, SpMAD_AEA(dm),
F03[C-N], and SpMAD_B(p). SpMAD_AEA(dm), which
stands for spectral mean absolute deviation from augmented
edge adjacency matrix weighted by dipole moment edge ad-
jacency indices, has the largest influence on toxicity. F03[C-
N] is the frequency at which the C-N of the topological dis-
tance is 3, and SpMAD_B(p) represents the spectral mean
absolute deviation from Burden matrix weighted by

�Fig. 1 Fitting plots of experimental values and predictive values for
baseline, less inert, and specifically acting chemicals (a baseline
chemicals by the MLR method; b baseline chemicals by the SVM
method; c less inert chemicals by the MLR method; d less inert
chemicals by the SVM method; e specifically acting chemicals by the
MLR method; f specifically acting chemicals by the SVM method)
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polarizability. The values of R2YS and Q2
YS by Y-scrambling

test are 0.127 and − 0.269, respectively. The results indicate
that model (7) is acceptable for the toxicity prediction of spe-
cifically acting chemicals to V. fischeri. The Q2

LOO and
Q2

BOOT values (Q
2
LOO = 0.665,Q2

BOOT = 0.729) indicate that
the model has good robustness. The values of external predic-
tion correlation coefficients (R2ext = 0.749 and Q2

ext = 0.703)
as well as k and k′ (0.996 and 0.986) reflect the good external
prediction ability of the model. The plot of experimental and
predicted values of log1/IBC50 is shown in Fig. 1e and Rp was
0.864.

Comparison with existing linear QSAR models

The existing linear QSAR models for V. fischeri have
been collected and shown in Table 1. Inspection of the
QSAR models shows that most of them were
established based on chemical species (Cronin et al.
2000; Wang et al. 2016b; Wang et al. 2015a; de Melo
et al. 2016). Although a few MOA-based models have
been established, most of them are used to predict the
toxicity baseline (nonpolar narcotics) or less inert (polar
narcotics) compounds (Zhao et al. 1998b; Li et al.
2015; Wang et al. 2016a). Only one global model was

established. However, the AD of the model is limited
because a small data set (102 chemicals) was used for
building the model (Qin et al. 2010). To our knowledge,
this is the first work to carry out an investigation on
linear and nonlinear QSARs for the toxicity of
V. fischeri by a large number of chemicals based on
their MOAs. More importantly, the models developed
include not only baseline and less inert compounds,
but also reactive and specifically acting compounds. If
a chemical can be classified into one of four MOAs
(baseline, less inert, reactive chemicals, and specifically
acting chemicals) based on its structural characters, the
toxicity of the chemical to V. fischeri can be predicted
using the MOA-based models in this study. It should be
noted that, if the MOAs are unclear and cannot be
identified using the Verhaar scheme, their toxicity can-
not be well predicted by the models established in this
study. In addition, reactive chemicals with nN = 0 and
n(C=O) > 0 cannot be predicted either, because a satis-
factory model has not been established for this group of
chemicals. Compared with the established models pre-
sented in the references (Table 1), the ADs of the
models in this study have been broadened to the
chemicals with determined MOAs.

Table 1 QSAR models on the toxicity to V. fischeri from references

Chemicals n R2 QSAR modelsa Ref.

Baseline compound 77 0.87 log1/IBC50 = 0.970 logKow+ 0.98 Li et al. 2015

Polar narcotics 15 0.84 log1/EC50 = 2.50 + 0.645 logP Qin et al. 2010
Non-polar narcotics 33 0.88 log1/EC50 = 0.89 + 1.01 logP

Non-polar and polar narcotics 48 0.86 log1/EC50 = 0.76 + 0.790 logP + 1.16 S

Non-polar, polar, and reactive chemicals 90 0.81 log1/EC50 = 0.91 + 0.746 logP + 1.12 S+
1:15 INO2

Non-polar, polar, reactive, and ionizable chemicals 102 0.79 log1/EC50 = 1.04 + 0.701 logP + 1.11 S+
1:12 INO2−0:157 logF0

Non-polar narcosis 33 0.85 log1/EC50 = 0.824 logP + 1.29 Zhao et al. 1998b
Polar narcosis (phenols and anilines) 12 0.85 log1/EC50 = 0.617 logP + 2.61

Haloalcohols 15 0.908 pT15 = 1.15 logP − 1.34 Cronin et al. 2000
Halonitriles 11 0.954 pT15 = 1.61 logP − 0.501 (ELUMO) − 1.19
HaloesterS 11 0.873 pT15 = 0.473 logP − 0.521 (ELUMO) + 0.146

Diones 10 0.924 pT15 = 1.18 logP − 0.859 (ELUMO) − 0.281
Alkylated aromatic hydrocarbons 17 0.956 log(1/EC50, free) = 2.760 + 1.804 × 10

−3V
+1.909 × 10−3α + 8.580 × 10−1 EHOMO−
7.454 × 10−1 ω + 3.463 × 10−3 Eth + 8.646
×10−3 C°

v + 8.105 × 10
−3 S° − 5.973 × 10−4

ET − 5.975 × 10−4 H∘ + 5.974 × 10−4 G∘

Wang et al. 2016b

Bromide-based ionic liquids (Br-ILs) 24 0.954 logIC50 = 8.493 ELUMO − 0.026 V + 7.846 Wang et al. 2015a

Aromatic sulfone chemicals 35 0.804 pEC50 = 4.603 – 0.005 P _VSA _ v _ 3
−0.352 SM02 _AEA(dm) – 0.599 ATS4m
−0.009 CATS2D _ 07 _ LL

de Melo et al. 2016

Baseline compound 97 0.89 log1/IBC50 = 0.994 logKow+ 0.863 Wang et al. 2016a
Less inert compound 76 0.79 log1/IBC50 = 0.708 logKow+ 2.26

a In different models, log1/IBC50, pEC50, log1/EC50, pT15, log (1/EC50, free), and logIC50 represented different toxicity endpoints or different expres-
sions of the toxicity of chemicals to V. fischeri; logKow (also expressed as logP in some references) is a descriptor related to hydrophobicity.
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Nonlinear QSAR models

The nonlinear QSAR models were also investigated for
chemicals based on classification and MOAs using the SVM
method. The prediction ability and robustness as well as the
calculating parameters are shown in Table 2.

The results in Table 2 show that greater performance was
found from the nonlinear models developed with SVM when
compared with models developed with the MLR method ex-
cept for reactive chemicals without nitrogen atoms and car-
bonyl group.

High-influence chemicals and outliers diagnosis

Leverage distance and Euclidean distance methods were
used to characterize application domains (ADs). For
model established for baseline compounds, seven
chemicals are defined as influential compounds with hi
> h* and |s| < 3 using the leverage distance method
(see Williams plots in Fig. 2a). Those influential com-
pounds are not outliers. Three compounds (acetic acid,
octane in the training set, and 1-chlorooctane in the
verification set) are identified as outliers with |s| > 3.
The toxic i ty of 1-ch lorooc tane and octane is
overestimated (Table 3) from the model. Outliers oc-
curred for several reasons (Zhao et a l . 2009;
Hamadache et al. 2016; Wang et al. 2015b; Bakire
et al. 2018). First, experimental errors or experimental
uncertainty may be one reason for the deviation of 1-
chlorooctane and octane. Apparently, the experimental
toxicity sometimes does not really reflect “true” toxicity
of the compounds because of experimental errors or
experimental uncertainty (Zhao et al. 2009; Hamadache
et al. 2016). The toxicity of octane and 1-chlorooctane
(2.11 and 2.57) seems too low compared with that of
nonane and heptane (5.93 and 4.96) although they are
structurally similar compounds. Second, species sensitiv-
ity may be another reason for the outliers. Most
straight-chain alkanes belong to the baseline mode for
toxicity to fish, whereas more straight-chain alkanes in-
cluding octane and 1-chlorooctane are identified as out-
liers for toxicity to V. fischeri (Wang et al. 2016a). This

means that V. fischeri is not sensitive to all alkanes
which results in more outliers observed in V. fischeri
toxicity than in fish toxicity. The predicted toxic value
of acetic acid was underestimated and also identified as
an outlier. The pka value of acetic acid is 4.9, whereas
the pH of V. fischeri toxicity test is close to 7. The
ionic form of acetic acid exists under the test condition.
Higher toxicity of acetic acid was observed which may
ascribe to the higher ionization. This makes it easier for
the chemical to enter the cell tissue and interact with
the organism, V. fischeri. This phenomenon has been
observed by one other study (Zhang et al. 2010). In
addition, the water phases of V. fischeri are the main
storage sites, rather than the lipid tissue, for a highly
hydrophilic compound. This would result in the under-
estimation of toxicity from log Kow (Wen et al. 2012).

The AD of nonlinear model for base line chemicals is
shown in Fig. 2b; octane in the training set and 1-
chlorooctane in the verification set were also considered as
outliers with |s| > 3.The results were relatively matched by
those of linear model.

For less inert chemicals, the ADs of linear and non-
linear models are shown in Fig. S2A and Fig. S2B
(Online Resource 1), respectively. For linear model,
four compounds (allylamine, 4-chloro-N-methylaniline,
antioxidant 264, and p-aminodiphenylamine) in the
training set and 4-n-nonylpheno in the verification set
were defined as influential compounds with hi > h* and
|s| < 3. Only one compound (4-bromophenol) in the
training set with |s| > 3 is regarded as the outlier of
the model.

For reactive chemicals, it is found that three com-
pound s ( b e n z y l b e n z o a t e , me t o l a c h l o r , a n d
dithiocyanomethane in the training set) predicted by lin-
ear model are identified as influential chemicals with
leverages exceeding the warning value (h* = 0.368) in
group 1 (Fig. S3A and Fig. S3B in Online Resource
1). Similarly, the leverage value of 1′,4′-dichloro-p-xy-
lene in the training set exceeded the warning value in
group 2 (Fig. S3C and Fig. S3D in Online Resource
1). However, the predicted result is not significantly
affected. The standardized residuals obtained by the

Table 2 Parameters of nonlinear
QSAR models R2 Q2

cv R2ext Q2
ext C g

Baseline chemicals 0.814 0.774 0.792 0.782 0.616 0.957

Less inert chemicals 0.785 0.705 0.742 0.737 6.155 0.576

Group 1 of reactive chemicals 0.816 0.742 0.801 0.776 4.561 0.121

Group 2 of reactive chemicals 0.866 0.764 0.790 0.684 85.645 0.031

Group 3 of reactive chemicals 0.736 0.634 0.445 0.441 3.844 0.108

Specifically acting chemicals 0.799 0.732 0.767 0.675 35.841 0.068
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MLR method are similar to those obtained using the
SVM method. There is no significant difference
between ADs by the SVM method and by the MLR
method. All chemicals are within the ADs by both
methods. The Williams diagrams for linear model and
nonlinear model of group 3 are shown in Fig. S3E and
Fig. S3F in Online Resource 1. The result from the
toxicity to organism of green algae is consistent with
that from the present study and no acceptable models
were established for group 3 of reactive chemicals (nN
= 0, n(C=O) > 0) (Bakire et al. 2018).

For specifically acting chemicals, it has been verified that
the 31 compounds covered by linear or nonlinear models are
all within the AD of model (7) (Fig. S2C and Fig. S2D in
Online Resource 1).

Based on the Euclidean distance method, plots of the stan-
dardized residual (s) versus Euclidean distance were used to
characterize ADs and determine whether the outliers exist. All
plots not only for linear models but also for nonlinear models
are shown in Online Resourse 1 Fig. S9 and Fig. S10. The
outliers decided by Euclidean distance method are the same
with those by leverage distance method. As the biggest value
of Euclidean distance in the training set is set as the warning
value (d*), no influential chemicals exist for all the models.

The reason is probably due to the different warning values
adopted by different methods.

Conclusions

This study demonstrates that the global linear and non-
linear models for all collected acute toxicity data of
1221 chemicals to V. fischeri were unsatisfactory for
chemicals with structural diversity and different MOAs.
Identification of MOA is crucial for the establishment of
mechanistically based QSAR models. MOA-based linear
and nonlinear models have been developed for baseline,
less inert, reactive, and specifically acting compounds
based on the modified Verhaar’s classification scheme.
QSAR models based on MOAs were more predictable
and robust not only for baseline and less inert
chemicals, but also for reactive and specifically acting
compounds. Compared with linear models obtained
through the MLR method, the nonlinear models obtain-
ed by the SVM method had better performance. There
was no significant difference between ADs determined
by the SVM method and by the MLR method. The
most extensive chemicals with toxic values to
V. fischeri could be predicted when the MOA of a
chemical was assigned. The descriptors selected in the
models reveal that the acute toxicity of baseline com-
pounds is dominated by the hydrophobicity. Also of
note, chemical polarizability has an effect on the toxic-
ity of acute exposure when dealing with less inert and
reactive chemicals. The application domains of linear
and nonlinear models and outliers have been discussed
and explained. The models developed in this paper can
be used to predict the toxicity not only for baseline and
less inert compounds, but also for reactive and

a b

Fig. 2 Plots of ADs by the leverage distance method for baseline chemicals (a the MLR method; b the SVM method)

Table 3 Outliers of the model for baseline chemicals

CAS Compound Experimental Verhaar scheme

Class Predicted

64-19-7 Acetic acid (acetate) 2.93 1 0.61

111-65-9 Octane 2.11 1 4.70

111-85-3 1-Chlorooctane 2.57 1 4.61
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specifically acting compounds. This information is very
valuable for the risk assessment of organic chemicals in
an aquatic environment, specifically for reactive and
specifically-acting compounds.
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