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Abstract
In the present study, a hybrid intelligent model called SVR_RSM, which was extracted using response surface method
(RSM) combined by the support vector regression (SVR) approaches was applied for predicting monthly pan evapo-
ration (Epan). This method is established based on two basic calibrating process using RSM and SVR. In the first
process, an input data group with two different input variables are used to calibrate the RSM; hence, the calibrating
data by RSM in the first process are applied as input database for calibrating the SVR in the second process. Results
obtained using the proposed SVR_RSM was compared with those obtained using the RSM, SVR, and the well-known
multilayer perceptron neural network (MLPNN) models. Climatic variables including maximum and minimum tem-
peratures (Tmax, Tmin), wind speed (U2), and relative humidity (H%), and the periodicity represented by the month
number (α) were selected for predicting the monthly Epan measured with the standard class A evaporation pan. Data
was collected at six climatic stations located at the northern East of Algeria. The performances of the proposed models
were compared using the RMSE, MAE, modified index of agreement (d), coefficient of correlation (R), and modified
Nash and Sutcliffe efficiency (NSE). Using various input combination, the results show that the hybrid SVR_RSM
model performed better than all the proposed models. Overall, better accuracy was observed when the model contained
the periodicity (α), and it was demonstrated that the best accuracy was obtained using only Tmax and Tmin, coupled
with the periodicity.
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predictions
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Introduction

Water loss through evaporation constitutes the main part in the
water balance of a catchment, reservoir, and lake (McMahon
et al. 2013), and must be estimated as accurately as possible.
Exact quantification of the evaporation shall constitute a prin-
cipal requirement for many applications, among them water
balance studies, hydrological modeling, and irrigation sched-
uling (Cahoon et al. 1991). Over the years, several studies
conducted worldwide have shown that direct measurement
of evaporation using pan evaporimeter (Epan) is a commonly
used approach for estimating the evaporation rate.
Undoubtedly, direct measurement is a best and useful method.
However, despite its importance, several alternative indirect
empirical models were proposed and have been widely stud-
ied and they have a proven effectiveness (e.g., the Penman,
Stephens-Stewart, and Hargreaves and Samani models). The
use of indirect empirical models for evaporation estimation is
often associated by the need of a large number of climatic
variables. Unfortunately, except the temperature-based
methods, that needs generally fewer climatic variables as in-
put, the large amount of input variables were required for
applying the empirical and semi empirical models reflects
the difficulties which were needed to be overcome by using
alternative methods, offered by artificial intelligence (AI),
which relate the Epan to several climatic variables.

A number of researchers have been demonstrated the suc-
cessful application of several AI models for modeling and
predicting Epan using several climatic variables as input.
Sebbar et al. (2019) proposed a newmodel for predicting daily
Epan using four daily climatic variables from two stations in
Algeria, which is based on the extreme learning machine
(ELM) approach. They have applied and compared (i) the
optimally pruned extreme learning machine (OPELM); and
(ii) the online sequential extreme learning machine
(OSELM) models. Minimum and maximum air temperatures
(Tmin and Tmax), wind speed (U2), and relative humidity (H%)
have been employed to predict Epan measured using class A
evaporation pan, and the obtained result agrees well with the
measured values with a coefficient of correlation (R) between
0.800 and 0.872 using the OSELM, and between 0.808 and
0.853 using the OPELM. Feng et al. (2018) applied three AI
and two empirical models in predicting monthly Epan in
China. The proposed AI models were (i) ELM, (ii) multilayer
perceptron neural network (MLPNN) optimized by particle
swarm optimization (MLPNN-PS), (iii) and MLPNN opti-
mized by genetic algorithm (MLPNN-GAANN), and the ob-
tained results were compare to those provided by the Stephens
and Stewart (SS) and the Penman empirical models. From the
obtained results, they reported that the best accuracy was
achieved using the ELM model with average relative root
mean square error (RRMSE) and mean absolute error
(MAE) of 12.5–15.2% and 11.7–19.9 mm, respectively. In

the same year, Lu et al. (2018) presented a new kind of models
based on the tree-based machine learning (TBM) models: (i)
M5 model tree (M5Tree), (ii) random forests (RFs), and (iii)
gradient boosting decision tree (GBDT). In addition, the au-
thors compared the obtained results using the TBM models
with those provided by four empirical equations. All the
models were applied and compared using data at daily time
step in China. The more accurate prediction by the TBM
models was obtained using the GBDT model compared to
the M5Tree and RFs with root mean square error (RMSE),
mean bias error (MBE), and Nash-Sutcliffe efficiency (NSE)
of 0.86 mm, 0.07 mm, and 0.68, respectively. Regarding the
empirical model, the authors reported that the Priestley-Taylor
model was the most accurate model and the Trabert model
performed worst. Another new kind of AI model was intro-
duced by Eray et al. (2018). They applied at the first time an
evolving connectionist systems (ECoS) called dynamic evolv-
ing neural-fuzzy inference systems named (DENFIS) for
modeling monthly Epan using data from two stations in
Turkey. Compared to another AI model, the multi-gene genet-
ic programming (MGGP), DENFIS performed best in one
station while the MGGP performed best into the second sta-
tion. More recently, hybrid models evolutionary algorithms
have been successfully applied for modeling Epan. For exam-
ple, Ghorbani et al. (2018) combined the firefly algorithm
(FFA) with the standard MLPNN and a hybrid model called
MLP-FFA was employed for modeling daily Epan in the arid
regions of Iran. From the obtained results, the authors reported
that MLP-FFAwas more accurate than the MLPNN and sup-
port vector machine models (SVM) for both tested stations,
with Willmott’s index of agreement (WI), NSE, and RMSE
ranged from 0.926 to 0.976, 0.791 to 0.922, and 1.007 mm to
1.406 mm, respectively. Shiri (2019) compared adaptive
neuro-fuzzy inference systems (ANFIS) and multilayer
perceptron neural network (MLPNN) for modeling daily
Epan using data from four stations in the USA. Qasem et al.
(2019) compared four AI models for predicting monthly Epan

using data from two stations in Iran and Turkey. The proposed
models were the MLPNN, SVM, and combination of them
with wavelet transforms (WSVR and WANN). According to
the obtained results, the authors demonstrated that Epan was
highly related to the temperature and solar radiation and on the
other hand, the wavelet decomposition does not contribute to
the overall improvement of the models performances.

Different AI models for Epan can be found in the literature,
including radial basis function neural network (Allawi and El-
Shafie 2016), support vector machine (Rezaie-Balf et al.
2018), modified response surface method (Keshtegar and
Kisi 2016, 2017), least square support vector regression
(Wang et al. 2017), co-active neuro-fuzzy inference system
(Malik et al. 2017), minimax probability machine regression
(Deo et al. 2016), generalized regression neural networks
(Kim and Kim 2008), linear genetic programming (Guven
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and Kisi 2011), gene-expression programming (Shiri and Kisi
2011), ANFIS (Shiri et al. 2011), evolutionary neural net-
works (Kisi 2013), fuzzy genetic approach (Kisi and Tombul
2013), and multivariate adaptive regression splines (Kisi
2015). Hence, it is clear that significant efforts to predict daily
and monthly pan evaporation using AI models have been car-
ried out in the last two decades. The review of the literature
reveals that models based on response surface method were
extremely rare. To the best of our knowledge, only the inves-
tigations conducted by Keshtegar and Kisi (2016, 2017), no
other studies, have reported an application of the response
surface method (RSM) for modeling evaporation. The pur-
pose of this paper is to develop a hybrid model that combines
the standard support vector regression (SVR) and the RSM in
order to develop a hybrid model called SVR_RSM. The pres-
ent study is based on measured data at monthly time step in
Algeria. The suitability of the proposed hybrid method is an-
alyzed in terms of prediction accuracy for estimating monthly
Epan, and the obtained results were compared to those obtained
using MLPNN, SVR, and RSM models.

Materials and methods

Case study

In this study, six sites were selected to develop the proposed
models: Ain Dalia, Beni Haroun, Bouhamden, Chaffia, El
Agram, and Zit Emba. The sites are located in northern East
of Algeria. The spatial location of these stations is shown in
Fig. 1. Table 1 shows the coordinates of these sites with re-
spect to latitude, longitude, time period of record, and the total
pattern used for developing the models. Evaporation pan
(Epan), which is the predicted variable, was measured using
the class A evaporation pan. In addition, data on measured,
maximum and minimum temperatures (Tmax, Tmin), wind
speed (U2), and relative humidity (H%) were selected as input
variables. Table 2 reports the various input combinations for
prediction of monthly Epan. The data for all stations were
divided into two subset; training and validation subsets, which
correspond to 70% and 30%, respectively. Six combinations
of input variable were used in the MLPNN, SVR, RSM, and
SVR_RSM models to predict the monthly Epan (Table 2). It is
clear from Table 2 that the periodicity (α) that corresponds to
the month number from 1 to 12 is included in the all combi-
nation. Combinations 4 to 6 include only two climatic vari-
ables in addition to α, while combination 2 is the unique
combination for which the periodicity is not included. A mod-
el without wind speed was also considered as one of the com-
binations (combination 3).The descriptive statistics of the cli-
matic variables and the Epan are presented in Table 3, where
Xmean, Xmax, Xmin, Sx, Cv, and R denote the mean, maximum,

minimum, standard deviation, coefficient of variation, and
coefficient of correlation with Epan, respectively.

Modeling methods

Artificial neural network

Artificial neural network (ANN) is a powerful modeling tool
which is extended based on biological nervous system
(Pathirage et al. 2018). Predicting data, classifying database,
or performing pattern can be applied based on ANNs, and also
in complex modeling events such as hydrology, reliability
analysis, structural design, chemical process, environmental
problems, and medicinal patterns. The multilayer perceptron
neural network (MLPNN) is a popular well-known ANNs
algorithm using train-based optimization methods. The
MLPNN is usually structured by an input, one or more hidden
and one output layers, that accuracy of prediction using this
model strongly depended on the number of neurones in each
hidden layer. In the first stage, the input layer is connected
using relative weights to the neurones in first hidden layer
(φ1) by the following relation:

φ1
j ¼ f 1j b1j þ ∑

n

i¼1
w1
ijxi

� �
ð1Þ

where φ1
j represents jth neuron of hidden layer 1, b

1
j repre-

sents the bias of the jth node in hidden layer 1, w1
ij denotes

weights to connect the jth node of hidden layer 1, and ith input
node of input layer with n number of input nodes xi , i = 1,
2,…, n. f is the activation function, for which the sigmoid
function f is commonly utilized as follows:

f 1j ¼ 1þ exp − b1j þ ∑
n

i¼1
w1
i jxi

� �� �� �−1
ð2Þ

The second hidden layer is built using the first hidden layer
as input data as well as the first hidden layer by the following
relation:

φ2
j ¼ f 2j b2j þ ∑

M

i¼1
w2
ijφ

1
i

� �
ð3Þ

whereφ2
j represents jth neuron of hidden layer 2, b

2
j andw

2
ij

respectively denote the bias of the jth node in hidden layer 2
and weights which connect jth node of hidden layer 2 to ith
node of hidden layer 1 with M elements φi i = 1,2,…, M and

f 2j is the activation function in hidden layer 2 as follows:

f 2j ¼ 1þ exp − b2j þ ∑
n

i¼1
w2
i jφ

1
i

� �� �� �−1
ð4Þ
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The predicted function for pan evaporation is applied to
connect the input database on hidden layer 2 and output neu-
ron as (Epan) which is expressed as below:

Ê̂ ¼ bþ ∑
h

i¼1
wiφ

2
i ð5Þ

where h represents number of hidden nodes in layer 2, b is
the bias of the output layer, and wj represent the connection
weights between the output node and to jth neuron in hidden
layer 2. φ2

i is ith hidden node in layer 2 which is computed
based on Eq. (2) with sigmoid active function.

Generally, back-propagation learning tools-based optimi-
zation approaches can provide the suitable connections be-
tween input and output data (Kurt and Kayfeci 2009). By
using a randomweight as initial weights, the optimumweights
and biases are generally searched using a mathematical opti-
mization method as gradient, conjugate gradient, or Newton
approaches (Dao and Vemuri 2002). In the present study, the
learning approach to obtain the nonlinear relation between the
input and output variables was applied using Levenberg-
Marquardt algorithm (Fun and Hagan 1996). The randomly
weights are adjusted after each iteration process. In this study,
the number of neuron in the two hidden layers is explored

Fig. 1 Geographical locations of
the six weather stations across
Algeria

Table 1 Data set presentation for
all stations Station Latitude Longitude Period of record Total

pattern
Incomplete
pattern

Final
pattern

Ain Dalia 36° 15′
49′′

7° 51′ 43′′ 01/01/2003–31/12/2016 168 55 111

Beni
Haroun

36° 34′
00′′

6° 16′ 31′′ 01/01/2003–31/12/2014 144 20 124

Bouhamden 36° 27′
42′′

7° 14′ 16′′ 01/01/2004–31/12/2016 156 39 117

Chaffia 36° 36′
33′′

8° 02′ 32′′ 01/01/2000–31/12/2016 204 01 203

El Agram 36° 43′
36′′

5° 49′ 37′′ 01/01/2003–31/12/2015 156 09 147

Zit Emba 36° 41′
41′′

7° 18′ 07′′ 01/01/2005–31/12/2016 144 00 144
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using mean squared errors (MSE) by trial and error to give the
best connection between input layer and output layer with one
neuron of pan evaporation. In Fig. 2, a MLPNN with two
hidden layers and output layer with one neuron is presented
which is applied in the current study.

Response surface method

The response surface method (RSM) is a modeling-based
mathematical simple tool with low computational burden to
predict the engineering problem. The mathematical relation of
this model using second-order polynomial functions is pre-
sented as follows (Keshtegar and Heddam 2018; Heddam
et al. 2019; Keshtegar et al. 2019b):

E ̂ ¼ w0 þ ∑
n

i¼1
wixi þ ∑

n

i¼1
∑
n

j¼1
wijxix j ð6Þ

where E ̂ is the predicted pan evaporation using n - input
data, and wi and wij are connected weights between the poly-
nomial functions and the observed data with bias w0. In the
RSM, the polynomial nodes are directly computed using input
data (x) with linear, second order and cross terms. In the
modeling process of the RSM, N nodes, i.e., N = n (n + 1)/2
is applied using one hidden layer which is computed using the
input layer elements. The schematic view of this model is
presented in Fig. 3. Commonly, the weights and bias of
RSM is computed using last square estimator (Keshtegar
et al. 2018; Keshtegar and Seghier 2018).

Support vector regression

The nonparametric modeling approaches can be applied to
predict the performances of complex real engineering prob-
lems. The learning theory basis the support vector machines is
a powerful intelligence tool for regression (SVR) and

classification problems (Brereton and Lloyd 2010).
Consequently, the SVR modeling approach as a nonlinear
model to provide the suitable relation between the pan evap-
oration and climatological data can be used to predict these
complex environmental problems by the following model:

E ̂ ¼ bþ ∑
N

i¼1
wiK x; xið Þ ð7Þ

where b is bias and K(x, xi) represents the Kernel function
which is transferred the n-input database from X- space into
N-dimensional feature space. Generally, Gaussian kernel
function is used for transferring the input data as follows
(Brereton and Lloyd 2010):

K x; xið Þ ¼ exp −
x−xik k2
2σ2

 !
ð8Þ

where σ is the kernel parameter which provides the
smoothness of the Kernel function; it is given as σ = 8 in this
study. In Eq. (7), wi is the weight to connect the predicted pan
evaporation and input random data basis in feature space

which is computed using two slack variables ξi; ξ
*
i by the

following optimization problem (Lu 2014):

Minimize
wk k2
2

þ C ∑
N

i¼1
ξi þ ξ*i
� �

Subjected to
yi− < w:K x; xið Þ > −b≤εþ ξi
< w:K x; xið Þ > þb−yi≤εþ ξ*i

ξi; ξ
*
i ≥0

8<
:

ð9Þ

In which, factor C ≥ 0 is the regularization coefficient
which is given as C = 300 in this study, and ε is insensitive
loss function which is given asε = 0.15. The ε- insensitive loss
function is used to neglect the calibrating process-based SVR
when differences between the predicted and observed pan
evaporation are less than ε. The SVR model is schematically
shown in Fig. 4a that the structure-based prediction using
nonlinear Kernel function is presented in Fig. 4b with input
data set (x). By applying the Karush-Kuhn-Tucker (KKT)
condition, the optimum parameters of Eq. (9) can be comput-
ed using the Lagrange optimization model in regression pro-
cess as below (Thissen et al. 2004):

Maximize−
1

2
∑
N

i; j¼1
αi−α*

i

� �
α j−α*

j

� 	
K xi; x j
� �

−ε ∑
N

i¼1
αi−α*

i

� �þ ∑
N

i¼1
Ei αi−α*

i

� �

Subjected to
∑
N

i¼1
αi−α*

i

� � ¼ 0

0≤αi≤C
0≤α*

i ≤C

8>><
>>:

ð10Þ

where αi and α*
i are Lagrange multipliers. Thus, the pre-

dicted function-based SVR is given as follows:

Table 2 The six input combinations of different models

Models Inputs combinations

MLPNN SVR RSM SVR_RSM

MLPNN1 SVR1 RSM1 SVR_
RSM1

Tmax, Tmin, H%, U2,α

MLPNN2 SVR2 RSM2 SVR_
RSM2

Tmax, Tmin, H%, U2

MLPNN3 SVR3 RSM3 SVR_
RSM3

Tmax, Tmin, H%, α

MLPNN4 SVR4 RSM4 SVR_
RSM4

Tmax, Tmin, α

MLPNN5 SVR5 RSM5 SVR_
RSM5

Tmax, H%, α

MLPNN6 SVR6 RSM6 SVR_
RSM6

Tmin, U2, α

α: the periodicity (month number)
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E ̂ ¼ bþ ∑
N

i¼1
αi−α*

i

� �
K x; xið Þ ð11Þ

As seen, the weight is computed using the Lagrange mul-
tipliers as wi ¼ αi−α*

i which depended on the parameters of
the SVR asσ, ε, and C.

Hybrid model using SVR and RSM

In this study, the parameters of the SVR are selected as the
constant values, while optimization processes can be applied
to search the acceptable parameters for improving the accura-
cy of the predicted pan evaporation. Applying the optimiza-
tion process for modeling using the SVR is a good strategy but
it is a time-consuming algorithm with more computational

burden. Consequently, the main effort in this study is to im-
prove the predictions of SVR for calibrating pan evaporation
with constant SVR parameters in order to reduce the compu-
tational burden of modeling process. The accuracy of the pre-
dicted model can be improved based on the applied input
database as wavelet functions. Nevertheless, the effect of the
input data can be controlled by filtering them using a mathe-
matical relation based on the RSM. Generally, the AI-based
data-driven using two-step calibration is a strategy to improve
accuracy of prediction. This strategy is recently applied to
enhance the RSM as modified RSM (Keshtegar and Kisi
2017) and multi-layer RSM (Kowsar et al. 2019). Using two
calibrating process for improving the performance of the RSM
approach, Keshtegar and Seghier (2018) applied the hybrid
model for the burst pressure of corroded pipes and for solving
hydrological problems (Keshtegar and Kisi 2017). This

Table 3 Statistical parameters of the used data sets for all stations

Station Data set Unit Xmean Xmax Xmin Sx Cv R

Ain Dalia Tmax °C 21.534 35.590 7.679 8.157 0.379 0.876

Tmin °C 11.238 36.497 0.959 6.667 0.593 0.802

H % 63.833 83.742 34.871 12.490 0.196 − 0.818
U2 m/s 3.360 5.681 0.449 1.022 0.304 − 0.103
Epan mm 6.107 14.287 1.550 2.952 0.483 1.000

Beni Haroun Tmax °C 21.533 36.883 6.408 8.801 0.409 0.901

Tmin °C 8.918 20.174 -1.886 5.961 0.668 0.814

H % 0.673 0.941 0.311 0.172 0.256 − 0.854
U2 m/s 2.500 4.239 0.896 0.652 0.261 − 0.237
Epan mm 5.265 13.923 0.950 3.597 0.683 1.000

Bouhamden Tmax °C 25.595 39.516 12.818 7.616 0.298 0.936

Tmin °C 11.414 27.455 2.879 5.674 0.497 0.897

H % 62.725 80.733 36.032 10.762 0.172 − 0.836
U2 m/s 1.993 3.222 0.811 0.523 0.262 0.106

Epan mm 3.769 10.190 0.780 2.648 0.702 1.000

Chaffia Tmax °C 23.693 35.426 13.059 5.648 0.238 0.916

Tmin °C 12.625 21.374 4.500 4.891 0.387 0.895

H % 75.768 86.129 64.145 4.890 0.065 − 0.621
U2 m/s 3.701 5.693 2.537 0.462 0.125 0.016

Epan mm 2.793 7.087 0.820 1.681 0.602 1.000

El Agram Tmax °C 23.488 33.823 13.103 5.628 0.240 0.910

Tmin °C 13.549 22.300 4.103 5.165 0.381 0.872

H % 72.984 82.167 58.150 4.855 0.067 − 0.576
U2 m/s 2.539 4.565 0.658 0.741 0.292 − 0.135
Epan mm 4.104 9.560 0.970 2.280 0.556 1.000

Zit Emba Tmax °C 15.480 24.781 5.906 5.074 0.328 0.881

Tmin °C 22.710 30.813 8.877 5.123 0.226 0.875

H % 70.381 85.742 56.587 4.608 0.065 − 0.047
U2 m/s 3.413 4.710 0.000 0.604 0.177 − 0.489
Epan mm 4.973 11.820 0.587 3.038 0.611 1.000

Xmean mean, Xmax maximum, Xmin minimum, Sx standard deviation, Cv coefficient of variation, R coefficient of correlation with Epan
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strategy is used to modify the prediction of SVR with hybrid
modeling approach using RSM in first calibrating process and
SVR in second calibrating process. Consequently, the nonlin-
ear relations-based two modeling approaches may improve
the accuracy predictions of pan evaporation.

These modeling methods SVR and RSM were combined
using three basic layers in SVR_RSMmodel as the input data
nodes in first layer, modeling nodes using RSM in second
layer, and predicted pan evaporation using SVR in third layer.
In the second and third layers, two modeling approaches of

Fig. 3 Schematic view of the
RSM model

Fig. 2 Schematic view of the
MLPNN model for calibrating
pan evaporation with structure n-
M-h-1

Environ Sci Pollut Res (2019) 26:35807–35826 35813



RSM and SVR are used to calibrate the pan evaporation.
Generally, the nodes in the second calibrating process are
computed using the predicted results of RSM with two indi-
vidual input variables which are given from input database.
Therefore, the RSM with cross terms is used in the first cali-
brating database on second layer as below relation:

φm ¼ w0 þ w1xn−1 þ w2xn þ w3x2n−1 þ w4x2n

þ w5xn−1xn ð12Þ

where w0-w5 are weights which represent the connection of
the input databases xn − 1 and xn with the data of node m. The
total number of nodes in the second layer which are obtained
using Eq. (12) with n input data is m ¼ n!

2!� n−2ð Þ!, where (!)

represents the factorial operator. Thus, it can be provided m
predicted nodes-based RSM that this dataset is used to cali-
brate SVR in third layer by the following relation:

E ̂ ¼ bþ ∑
N

i¼1
wiK φ;φið Þ ð13Þ

where b is bias and K(φ,φi) represents the Kernel function
which transferred the data-based predicted RSM from the real-
space into feature-space. Commonly, the Gaussian Kernel
function as well as the original SVR with parameter of σ = 2
while the other SVR in this hybrid modeling approach are
given as ε = 0.1 and C = 300. The structure of the
SVR_RSM is presented in Fig. 5. As seen from Fig. 5, the
SVR_RSM was structured using two nonlinear models of
RSM combined by SVR which is calibrated using input data
handing by RSM predictions. The SVR predictions depended
on the input dataset which are provided using RSM.
Consequently, the accuracy prediction can be affected on
agreement and accuracy of SVR. The cross-linear correlation
of input variables is considered in first calibrating process
using RSM, while the nonlinear correlation between the input

data and the observed pan evaporation are given using SVR in
the second calibrating process by using m predicted nodes of
RSM database. This calibrating model-based two phases may
improve the prediction of monthly pan evaporation based on
the following steps:

Step 1: Input dataset as train and test data points
Step 2: Separate different two data sets form training

database
Step 3: Calibrate the nodes of first stage using the RSMwith

2-set original input variables which are given from
step 2

Step 4: Give the input database from data provided by RSM
in step 3 for SVR as the input database in the training
phase

Step 5: Set the parameters of SVR
Step 6: Calibrate SVR using the parameters in step 5 and

input data in step 4
Step 7: Predict the data using hybrid intelligent model by

using steps 3–6 for test data point

The SVR_RSM model using two calibrating processes
may provide highly correlated between the observed and pre-
dicted pan evaporations. Consequently, it can provide the ac-
curate predictions and is defined as a robust modeling
approach.

Comparative statistics

Four models such as MLPNN, RSM, SVR, and SVR_RSM
are used for nonlinear modeling of pan evaporation that their
predictions were compared using five comparative statistics
which are used to compare the accuracy and the agreement
between the predicated and observed datasets. The statistics

Fig. 4 Schematic view of SVR model: a structure of SVR and b calibrating data with ɛ-insensitive loss function
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are root mean square error (RMSE), mean absolute error
(MAE), modified index of agreement (d), coefficient of cor-
relation (R), and modified Nash and Sutcliffe efficiency (NSE)
with below relations (Keshtegar et al. 2019a, b):

R ¼
1

N
∑ Ei−Emð Þ Pi−Pmð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N
∑
n

i¼1
Ei−Emð Þ2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑
n

i¼1
Pi−Pmð Þ2

r
2
664

3
775 ð14Þ

d ¼ 1−
∑
N

i¼1
Ei−Pið Þ

∑
N

i¼1
Oi−Emj j þ Pi−Emj jð Þ

ð15Þ

NSE ¼ 1‐
∑
N

i¼1
Ei−Pi½ �

∑
N

i¼1
Ei−Em½ �

ð16Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑
N

i¼1
Ei−Pið Þ2

s
ð17Þ

MAE ¼ 1

N
∑
N

i¼1
Ei−Pij j ð18Þ

Where N is number of observed datasets Ei and Pi are
observed and predicted pan evaporation for ith data point,
respectively. Oi and Pi are the mean of observed and calculat-
ed data. The nonlinear model is better than the other modeling
techniques when its comparative statistics are computed for

MAE, RMSE values tended to zero and other agreement in-
dexes as R, d, and NSE tended to 1.

Results and discussion

In this section, the MLPNN, SVR, RSM, and SVR_RSM
algorithms were validated on the six dataset described in the
previous section. The correspondence between the measured
and model estimates of Epan are reported in Tables 4, 5, 6, 7, 8,
and 9, in terms of RMSE, MAE, R, NSE, and d, during the
training and validations phases. Hereafter, we focused our
discussion on the results obtained during the validation phase.
At Ain Dalia station (Table 4), the estimation of monthly Epan

was robust, having RMSE ranging from 1.523 to 2.218 mm,
MAE ranging from 1.094 to 1.651 mm, and correlation coef-
ficient (R) ranged from 0.774 to 0.891, based on the six
MLPNNmodels. Estimates based on NSE and d indexes were
almost equally accurate results with NSE ranged from 0.508
to 0.768, and d ranged from 0.780 to 0.925. Table 4 shows that
high variability of models performances has been observed
between the first five MLPNN models (MLPNN1 to
MLPNN5) and the sixth model (MLPNN6). These differences
in accuracy of models could possibly be due to the exclusion
of the relative humidity (H %) from the input variables of the
MLPNN6 model. Among the six MLPNN models (Table 4),
the MLPNN1 has the highest accuracy with lower RMSE and
MAE, and high NSE and d values. The MLPNN1 has R value
of 0.889, NSE of 0.768, and d of 0.922, when evaluated using
the validation data. Predictor variables selected by this model

Fig. 5 Schematic view of SVR_
RSM model
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included the four original climatic variables (Tmax, Tmin, H%,
U2) coupled with the periodicity (the month number: α).
Finally, the R, NSE, and d values were further improved to
0.891, 0.757, and 0.919 when H% was used (MLPNN5) in-
stead of U2 (MLPNN6), and model errors as measured using
RMSE and MAE were reduced by 29.75% and 32.89%, re-
spectively. Table 4 indicates better error statistics in terms of
MAE (1.455 mm) and RMSE (1.846 mm), and higher R
(0.813), NSE (0.659), and d (0.890) values, using the RSM6
model against (R = 0.774), (NSE = 0.508), and (d = 0.780)
obtained suing the MLPNN6 model. In addition, it is clear
from Table 4 that using fewer input variables, the RSMmodel
was able to provide high accuracy compared to the MLPNN
model. Results clearly indicated that the MAE and RMSE of
the RSM4 was decreased from 1.574 to 1.514 (2.6%) and
from 1.153 to 1.123 (3.8%), respectively, compared to the
MLPNN4. Overall, when comparing the RSM and the
MLPNNmodels, it is clear that there was a strong relationship
between the number of input variables and the accuracy of the
models. The relationship varied, however, significantly for the
MLPNN model, which means that RSM is more suitable for
building robust models using only fewer inputs. The RSM6

with only Tmin, U2, and α as input variables improved the R,
NSE, and d of the MLPNN6 by 3.9%, 11%, and 15.1%, re-
spectively, and decreasing the values of the RMSE and MAE
by 11.87% and 16.77%, respectively. According to Table 4,
high accuracy was obtained using SVR models compared to
the MLPNN and RSM models, for all the six input combina-
tion. The Epan showed good correlation between measured
and calculated values using the SVR models. This class of
models was characterized by R, NSE, and d values varying
from 0.859 to 0.899, 0.734 to 0.804, and from 0.917 to 0.939,
higher than the values obtained using the MLPNN and the
RSM models. SVR1 exhibited a decrease in RMSE and
MAE value by 8.78% and 0% compared to the MLPNN1,
and by 9.67% and 1.46% compared the RSM1, respectively.
The good accuracy of the SVR models is obvious, especially
when comparing the models having a fewer input variables.
SVR6 decreased the RMSE and the MAE of the MLPNN6 by
26.42% and 26.95%, respectively, and by 11.59% and 16.70%
compared to the RSM6, respectively. The proposed hybrid
method of SVR_RSM produces high nonlinear mapping of
Epan which are substantially higher than the three other
models, as stated in Table 4. This can be nearly always

Table 4 Performances of different models in modeling monthly Epan at Ain Dalia Station

Models Training Validation

MAE RMSE R d NSE MAE RMSE R d NSE

MLPNN1 0.784 1.029 0.925 0.958 0.853 1.094 1.523 0.889 0.922 0.768

MLPNN2 0.826 1.091 0.916 0.953 0.835 1.150 1.542 0.876 0.925 0.762

MLPNN3 0.917 1.145 0.905 0.947 0.819 1.228 1.583 0.874 0.914 0.749

MLPNN4 0.899 1.179 0.900 0.947 0.808 1.153 1.574 0.870 0.922 0.752

MLPNN5 0.776 1.050 0.922 0.958 0.848 1.108 1.558 0.891 0.919 0.757

MLPNN6 1.289 1.684 0.836 0.841 0.608 1.651 2.218 0.774 0.780 0.508

RSM1 0.611 0.814 0.953 0.976 0.908 1.112 1.550 0.880 0.925 0.760

RSM2 0.774 1.009 0.927 0.961 0.859 1.114 1.548 0.874 0.924 0.760

RSM3 0.729 0.993 0.929 0.962 0.864 1.133 1.541 0.886 0.923 0.762

RSM4 0.800 1.049 0.921 0.957 0.848 1.123 1.514 0.885 0.926 0.771

RSM5 0.822 1.064 0.918 0.956 0.844 1.163 1.544 0.881 0.922 0.762

RSM6 0.918 1.216 0.892 0.941 0.795 1.455 1.846 0.813 0.890 0.659

SVR1 0.525 0.868 0.948 0.973 0.896 1.096 1.400 0.899 0.939 0.804

SVR2 0.680 1.049 0.923 0.958 0.848 1.057 1.476 0.889 0.931 0.782

SVR3 0.658 1.006 0.929 0.963 0.860 1.125 1.513 0.881 0.927 0.771

SVR4 0.750 1.062 0.921 0.958 0.844 1.119 1.492 0.884 0.930 0.777

SVR5 0.683 1.022 0.929 0.962 0.855 1.078 1.424 0.895 0.937 0.797

SVR6 0.761 1.115 0.911 0.953 0.828 1.212 1.632 0.859 0.917 0.734

SVR_RSM1 0.459 0.701 0.966 0.983 0.932 0.935 1.270 0.920 0.951 0.839

SVR_RSM2 0.612 0.925 0.940 0.967 0.882 0.977 1.374 0.907 0.941 0.811

SVR_RSM3 0.458 0.831 0.951 0.974 0.904 1.064 1.399 0.899 0.939 0.804

SVR_RSM4 0.723 0.997 0.930 0.964 0.863 1.001 1.394 0.903 0.940 0.806

SVR_RSM5 0.586 0.931 0.939 0.968 0.880 1.064 1.395 0.903 0.938 0.805

SVR_RSM6 0.704 1.046 0.923 0.960 0.849 1.190 1.616 0.861 0.923 0.739
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advantageous, especially in the situation where the input var-
iables were selected smaller. As can be seen, using only the
Tmax, H%, and the periodicity (α), an R, NSE, and d values of
0.903, 0.805, and 0.923 were achieved, which were not ex-
hibited by any of the other models. An RMSE of 1.395 mm
was achieved using the SVR_RSM5 model less than all the
values provided by the MLPNN5, RSM5, and SVR5 models.
Similarly, the hybrid SVR_RSM1 model generated with all
input variables has produced an R of 0.920, NSE of 0.839, and
d of 0.951 (Table 4) which are higher than the values provided
by the MLPNN1, RSM1, and SVR1, models. Both
SVR_RSM4 and SVR_RSM5 yielded similar accuracy in
terms of all the five statistical indexes, and slightly higher than
the SVR_RSM3. Performance characteristics also differ be-
tween SVR_RSM1 and SVR_RSM2, with and without peri-
odicity (α). Generally, the SVR_RSM2 without periodicity
(α) yielded higher RMSE (1.374 mm) compared to (1.270
mm) achieved using the SVR_RSM1. Of the six input com-
bination, the SVR_RSM6 had the largest RMSE value (1.616
mm). Moreover, the SVR_RSM6 generally yields the highest
MAE (1.190 mm) and the lowest R, NSE, and d values.

Results at Beni Haroun station are reported in Table 5. The
statistics indexes given in Table 5 show how well Epan can be
estimated from the climatic variables using the proposed
models. The results obtained using the four models showed
generally strong relationships between measured and calculat-
ed Epan values (Table 5). The low RMSE and MAE values
indicate small variations between measured and estimated
Epan for the training and validation data set. Using all the four
climatic variables in addition to the periodicity, the hybrid
model SVR_RSM1 provided slightly better prediction results
(R = 0.954 and NSE = 0.907) and the lowest errors indexes
(RMSE = 1.095 mm and MAE = 0.745 mm). Overall accura-
cy results were high for all the proposed models and the
SVR_RSM1 produced the highest overall accuracy, followed
by SVR1, and the RSM1 performed best compared to the
MLPNN1. In summary, the statistics performance calculated
betweenmeasured and predicted Epan values showed that both
SVR1 and SVR_RSM1 methods similarly perform with ac-
curacy slightly higher than the RSM1 model, and largely
higher than the MLPNN1 model. The performance differ-
ences between SVR1 and SVR_RSM1 methods, however,

Table 5 Performances of different models in modeling monthly Epan at Beni Haroun Station

Models Training Validation

MAE RMSE R d NSE MAE RMSE R d NSE

MLPNN1 0.676 1.013 0.959 0.979 0.915 1.083 1.458 0.935 0.959 0.835

MLPNN2 0.688 1.061 0.953 0.975 0.907 1.028 1.357 0.931 0.959 0.857

MLPNN3 0.827 1.286 0.933 0.964 0.863 0.976 1.308 0.948 0.964 0.867

MLPNN4 0.768 1.191 0.940 0.969 0.883 0.921 1.224 0.944 0.968 0.884

MLPNN5 1.194 1.493 0.908 0.944 0.816 1.022 1.342 0.937 0.959 0.860

MLPNN6 0.829 1.118 0.950 0.974 0.897 1.124 1.373 0.932 0.962 0.854

RSM1 0.709 0.998 0.958 0.978 0.918 0.957 1.323 0.942 0.964 0.864

RSM2 0.752 1.107 0.948 0.973 0.899 0.964 1.364 0.943 0.959 0.856

RSM3 0.702 1.051 0.953 0.976 0.909 0.925 1.309 0.942 0.964 0.867

RSM4 0.800 1.163 0.943 0.970 0.888 0.949 1.175 0.950 0.970 0.893

RSM5 0.781 1.135 0.945 0.971 0.894 0.949 1.272 0.942 0.966 0.875

RSM6 0.951 1.273 0.931 0.963 0.866 1.044 1.401 0.925 0.959 0.848

SVR1 0.724 1.207 0.939 0.968 0.880 0.779 1.130 0.952 0.973 0.901

SVR2 0.731 1.054 0.954 0.975 0.908 1.078 1.357 0.939 0.960 0.857

SVR3 0.739 1.201 0.939 0.968 0.881 0.808 1.134 0.951 0.973 0.900

SVR4 0.744 1.006 0.957 0.978 0.917 0.976 1.193 0.948 0.970 0.890

SVR5 0.789 1.145 0.945 0.970 0.892 0.944 1.189 0.945 0.969 0.890

SVR6 0.889 1.373 0.919 0.957 0.845 1.019 1.393 0.923 0.959 0.850

SVR_RSM1 0.675 0.943 0.963 0.980 0.927 0.745 1.095 0.954 0.975 0.907

SVR_RSM2 0.523 0.873 0.969 0.983 0.937 0.798 1.179 0.948 0.971 0.892

SVR_RSM3 0.517 0.869 0.969 0.983 0.938 0.841 1.114 0.953 0.974 0.904

SVR_RSM4 0.518 0.872 0.969 0.983 0.937 0.762 1.071 0.957 0.977 0.911

SVR_RSM5 0.585 1.023 0.957 0.977 0.914 0.776 1.129 0.952 0.974 0.901

SVR_RSM6 0.685 0.932 0.964 0.980 0.928 0.938 1.232 0.944 0.969 0.882
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are not large and therefore, Epan based on climatic variables
can be predicted very well by the models. Using only fewer
input variables, the SVR_RSM6 showed the best perfor-
mances among the other models, with overall R and NSE of
0.944 and 0.882, respectively, RMSE of 1.232 mm, and MAE
of 0.938 mm. For comparison, the RSM6 and SVR6 per-
formed with equal accuracy, while MLPNN6 modeled Epan

reasonably and slightly less than the SVR_RSM6 (Table 5).
When the periodicity (α) was excluded from the input vari-
ables, the RMSE and MAE of the SVR_RSM2 decreased by
13.11% and 25.97% compared to the SVR2, by 13.56% and
17.22% compared to the RSM2, and by 13.11% and 22.337%
compared to the MLPNN2, respectively. In summary,
MLPNN2 and SVR2 performed similarly in comparison with
RSM2 and SVR_RSM2. RSM2 produces relatively large
RMSE error (1.364 mm) slightly higher than the values cal-
culated using MLPNN2 and SVR2 (RMSE = 1.357 mm).
SVR_RSM2 shows improved performance estimates com-
pared to RSM2, showing the best performance among the
three models, indicated by the model performance statistics
in Table 5. Nonetheless, the use of the data-driven models
without hybridization did not result in substantial differences

with respect to the statistical indexes, and only the hybrid
model was characterized by the strongest accuracy.

Results at Bouhamden Station are reported in Table 6.
According to Table 6, the models performance varied signif-
icantly withR values ranging from 0.927 to 0.943, NSE values
ranging from 0.851 to 0.882, and the d values ranging from
0.958 to 0.970, for the MLPNN models. The SVR_RSM1
model was able to predict Epan much better than the SVR1
(R = 0.961 versus R2 = 0.936). The RSM1 model performs
better than the MLPNN1 (R = 0.941 versus R = 0.936) and
better than SVR1 (R = 0.941 versus R = 0.936). Overall,
except the high performances exhibited using the hybrid
SVR_RSM1 model (R =0.941, NSE = 0.915, and d =
0.976), the difference in R among the various approaches
was not large and did not considerably affect the correlation
between measured and estimated monthly evaporation (Epan)
and no greatest variability was observed between the models
performances. Although slightly more accurate than the
SVR_RSM1, estimated statistical indexes values using the
SVR_RSM5 (R = 0.963, NSE = 0.926, and d = 0.980) were
only weakly higher than those provided by the SVR_RSM1(R
= 0.961, NSE = 0.915, and d = 0.976). Consequently, the

Table 6 Performances of different models in modeling monthly Epan at Bouhamden Station

Models Training Validation

MAE RMSE R d NSE MAE RMSE R d NSE

MLPNN1 0.469 0.691 0.966 0.981 0.931 0.588 0.826 0.936 0.964 0.874

MLPNN2 0.423 0.677 0.969 0.982 0.934 0.653 0.842 0.940 0.963 0.869

MLPNN3 0.450 0.698 0.965 0.982 0.930 0.576 0.798 0.943 0.970 0.882

MLPNN4 0.527 0.743 0.961 0.978 0.920 0.652 0.869 0.932 0.960 0.860

MLPNN5 0.430 0.661 0.969 0.983 0.937 0.685 0.834 0.936 0.965 0.872

MLPNN6 0.460 0.624 0.972 0.986 0.944 0.684 0.898 0.927 0.958 0.851

RSM1 0.436 0.658 0.968 0.984 0.938 0.574 0.798 0.941 0.968 0.882

RSM2 0.442 0.669 0.967 0.983 0.935 0.578 0.793 0.942 0.968 0.884

RSM3 0.486 0.692 0.965 0.982 0.931 0.634 0.828 0.936 0.965 0.873

RSM4 0.500 0.716 0.962 0.980 0.926 0.549 0.746 0.949 0.971 0.897

RSM5 0.488 0.720 0.962 0.980 0.925 0.569 0.760 0.945 0.971 0.893

RSM6 0.654 0.879 0.943 0.970 0.889 0.753 0.991 0.910 0.943 0.818

SVR1 0.582 0.682 0.969 0.982 0.933 0.681 0.822 0.936 0.966 0.875

SVR2 0.585 0.715 0.968 0.979 0.926 0.729 0.903 0.924 0.956 0.849

SVR3 0.584 0.687 0.968 0.982 0.932 0.669 0.814 0.938 0.967 0.877

SVR4 0.559 0.707 0.965 0.982 0.928 0.618 0.826 0.935 0.966 0.874

SVR5 0.607 0.718 0.964 0.981 0.926 0.557 0.690 0.960 0.977 0.912

SVR6 0.586 0.730 0.962 0.979 0.923 0.735 0.931 0.918 0.954 0.840

SVR_RSM1 0.477 0.584 0.980 0.986 0.951 0.479 0.677 0.961 0.976 0.915

SVR_RSM2 0.463 0.605 0.976 0.985 0.947 0.521 0.708 0.956 0.974 0.907

SVR_RSM3 0.478 0.585 0.980 0.986 0.951 0.475 0.677 0.961 0.976 0.915

SVR_RSM4 0.453 0.638 0.972 0.984 0.941 0.466 0.687 0.962 0.975 0.913

SVR_RSM5 0.523 0.672 0.970 0.982 0.935 0.471 0.634 0.963 0.980 0.926

SVR_RSM6 0.417 0.599 0.975 0.986 0.948 0.626 0.830 0.946 0.963 0.873
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hybrid SVR_RSM models are usually characterized by fairly
high capabilities for providing high models accuracy using
only fewer input variables and are more highly suitable for
modeling nonlinear process such as pan evaporation. The dif-
ferent input combinations had a greater impact on the statisti-
cal errors index (RMSE and MAE). Errors were consistently
lower when fewer variables were used. Excluding theU2 from
the input variables of the MLPNN2 model resulted in smaller
gains in accuracies compared to the MLPNN3: (RMSE =
0.576 mm versus R = 0.653 mm) and (MAE = 0.576 mm
versus MAE = 0.653 mm). Similarly, using only Tmax and
Tmin as input of the RSM4 instead of the all four climatic
variables (RSM2) slightly improves its performances, despite
the smaller gains in accuracies: (RMSE = 0.746 mm versus R
= 0.798 mm) and (MAE = 0.549 mm versus MAE = 0.574
mm). Using only the Tmin and U2% coupled with the period-
icity (α), the difference in RMSE and MAE terms is maxi-
mized between RSM6 and RSM2, permitting an improved
estimation of Epan: the RMSE and MAE were decreased by
19.98% and 23.24%, respectively. Finally, when comparing
the performances of the two hybrid models: SVR_RSM5 and
SVR_RSM2 approaches, results were not significantly

different. RMSE and MAE do not change more than 4.16%
and 1.55% between these two approaches.

The comparisons between calculated Epan using the pro-
posed models and measured values at Chaffia station are pre-
sented in Table 7. For this station, it is clear that all the models
performed very well, and the statistical indexes indicate an
important finding: inclusion of the periodicity coupled with
the four climatic variables do not help to improving the per-
formances of the models; on the contrary, the accuracy of the
models was decreased. FromTable 7, when the periodicity (α)
is excluded from the inputs variable, we obtained the best
performances among the compared four models. Globally,
exclusion of the α improves the performance of the
MLPNN2 model by slightly increasing the values of the R,
NSE, and d by 0.5%, 0.7%, and 1.7%, and decreasing the
values of the RMSE and MAE by 8.44% and 1.9%, respec-
tively, (Table 7, models MLPNN1 and MLPNN2). In addi-
tion, the RSM2 model (without α) improves the accuracy of
the RSM1 model (with α) by increasing the R and d values by
0.3%, and decreasing the RMSE and MAE values by 1.51%
and 1.82%, respectively. Nevertheless, by comparing the per-
formances of the SVR2 model with the performances of the

Table 7 Performances of different models in modeling monthly Epan at Chaffia Station

Models Training Validation

MAE RMSE R d NSE MAE RMSE R d NSE

MLPNN1 0.376 0.519 0.957 0.972 0.906 0.369 0.509 0.950 0.969 0.893

MLPNN2 0.392 0.549 0.946 0.971 0.894 0.362 0.466 0.955 0.976 0.910

MLPNN3 0.309 0.416 0.969 0.984 0.939 0.366 0.494 0.949 0.974 0.899

MLPNN4 0.331 0.450 0.964 0.981 0.929 0.354 0.504 0.947 0.972 0.895

MLPNN5 0.347 0.456 0.964 0.980 0.927 0.395 0.510 0.949 0.970 0.892

MLPNN6 0.359 0.504 0.955 0.977 0.911 0.467 0.652 0.924 0.958 0.824

RSM1 0.296 0.412 0.970 0.984 0.941 0.328 0.463 0.955 0.976 0.911

RSM2 0.396 0.529 0.950 0.974 0.902 0.322 0.456 0.958 0.976 0.914

RSM3 0.303 0.416 0.969 0.984 0.939 0.320 0.457 0.956 0.977 0.914

RSM4 0.337 0.455 0.963 0.981 0.927 0.333 0.472 0.953 0.975 0.908

RSM5 0.326 0.439 0.966 0.982 0.932 0.324 0.448 0.959 0.977 0.917

RSM6 0.406 0.553 0.945 0.971 0.893 0.445 0.611 0.923 0.960 0.846

SVR1 0.296 0.372 0.976 0.987 0.951 0.394 0.501 0.947 0.972 0.896

SVR2 0.355 0.474 0.960 0.979 0.921 0.373 0.489 0.950 0.973 0.901

SVR3 0.295 0.377 0.976 0.987 0.950 0.372 0.495 0.948 0.973 0.899

SVR4 0.332 0.431 0.967 0.983 0.935 0.376 0.496 0.948 0.972 0.898

SVR5 0.309 0.398 0.972 0.986 0.945 0.354 0.470 0.954 0.976 0.909

SVR6 0.386 0.533 0.949 0.973 0.900 0.436 0.598 0.927 0.962 0.852

SVR_RSM1 0.346 0.396 0.977 0.984 0.945 0.329 0.442 0.964 0.977 0.919

SVR_RSM2 0.378 0.444 0.970 0.981 0.931 0.289 0.423 0.965 0.979 0.926

SVR_RSM3 0.233 0.347 0.979 0.989 0.958 0.289 0.428 0.964 0.979 0.924

SVR_RSM4 0.335 0.426 0.968 0.984 0.936 0.329 0.458 0.957 0.976 0.913

SVR_RSM5 0.306 0.389 0.973 0.986 0.947 0.289 0.408 0.968 0.981 0.931

SVR_RSM6 0.313 0.466 0.961 0.980 0.924 0.397 0.564 0.937 0.967 0.869
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SVR1model, we concluded that the periodicity (α) had only a
marginal effect and the two models have similar overall per-
formances; SVR2 model, improves the accuracy of the SVR1
model by increasing the R, NSE, and d values by 0.3%, 0.1%,
and 0.1%, respectively, and decreasing the RMSE and MAE
values by 2.39% and 5.33%, respectively. Finally, the hybrid
SVR_RSM2 model is a particular case in which the obtained
results reveal significant improvement of the models perfor-
mances. While the R, NSE, and d statistical indexes appear to
be relatively equal, the SVR_RSM2 model outperforms the
SVR_RSM1 when looking to the MAE value: the hybrid
SVR_RSM2 decreased the MAE of the SVR_RSM1 by
12.15%. Overall, among all the proposed models,
SVR_RSM5 was found to produce the highest correlation
between calculated and measured Epan (R = 0.968, NSE =
0.931, d = 0.981).

Results reported in Table 8 deals with the accuracy of the
proposed models at El Agram station, and it is clear that the
four proposed models were found to have a high performance
in estimating Epan. By comparison, the hybrid SVR_RSM
model has better performances, both during training or vali-
dation phase. Also, it is found that models with Tmax, Tmin, and

the periodicity (combination 4, Table 8) were more powerful
than the others in terms of prediction accuracy. Results of the
accuracy assessment for the MLPNN models showed that
MLPNN4 produced the best accurate estimation of Epan as
shown by all statistical indexes. For comparison, MLPNN4
decreased the RMSE and MAE of the MLPNN1 by 10.03%
and 3.53%, respectively. Also, it is clear from Table 8 that
when Tmin was used as input variable for theMLPNN4 instead
of U2 for model MLPNN6, the performances was increased,
by increasing the R, NSE, and d values, and decreasing the
RMSE and MAE values. MLPNN4 improves the accuracy of
the MLPNN6 model by increasing the R, NSE, and d values
by 3.6%, 2.9%, and 8.7%, respectively, and significantly de-
creasing the RMSE andMAE by 42.28% and 42.97%, respec-
tively. Regarding the RSM models, RSM4 produced the best
accurate estimation of Epan and contributed to the overall de-
crease in RMSE and MAE of the RSM1 by 18.76% and
19.31%, respectively. In addition, it is clear from Table 8 that
RSM4 is less affected by removing H% (RSM5) than U2

(RSM6): the RMSE and MAE of the RSM4 was decreased
by 19.90% and 16.81% compared to the RSM5, and by
33.63% and 32.13% compared to RSM6. A comparison of

Table 8 Performances of different models in modeling monthly Epan at El Agram Station

Models Training Validation

MAE RMSE R d NSE MAE RMSE R d NSE

MLPNN1 0.390 0.562 0.965 0.981 0.929 0.425 0.578 0.978 0.985 0.946

MLPNN2 0.600 0.752 0.935 0.965 0.873 0.666 0.840 0.949 0.968 0.887

MLPNN3 0.455 0.607 0.959 0.978 0.917 0.432 0.550 0.977 0.987 0.951

MLPNN4 0.439 0.570 0.964 0.981 0.927 0.410 0.520 0.981 0.988 0.957

MLPNN5 0.534 0.653 0.952 0.973 0.904 0.563 0.714 0.972 0.975 0.918

MLPNN6 0.669 0.836 0.919 0.954 0.843 0.719 0.901 0.945 0.959 0.870

RSM1 0.377 0.489 0.973 0.986 0.946 0.466 0.634 0.970 0.982 0.935

RSM2 0.602 0.756 0.934 0.965 0.872 0.717 0.884 0.940 0.965 0.875

RSM3 0.399 0.523 0.969 0.984 0.939 0.420 0.590 0.976 0.985 0.944

RSM4 0.416 0.534 0.968 0.983 0.936 0.376 0.515 0.981 0.988 0.957

RSM5 0.462 0.586 0.961 0.980 0.923 0.452 0.643 0.972 0.982 0.934

RSM6 0.583 0.747 0.935 0.966 0.875 0.554 0.776 0.962 0.971 0.903

SVR1 0.301 0.453 0.977 0.988 0.954 0.574 0.866 0.944 0.965 0.880

SVR2 0.496 0.701 0.945 0.969 0.890 0.654 0.971 0.927 0.954 0.849

SVR3 0.377 0.497 0.972 0.985 0.945 0.442 0.682 0.971 0.978 0.925

SVR4 0.411 0.532 0.968 0.983 0.937 0.380 0.511 0.983 0.988 0.958

SVR5 0.431 0.560 0.965 0.981 0.930 0.500 0.771 0.961 0.972 0.904

SVR6 0.581 0.743 0.937 0.965 0.876 0.569 0.778 0.965 0.970 0.903

SVR_RSM1 0.288 0.390 0.983 0.991 0.966 0.358 0.457 0.985 0.991 0.966

SVR_RSM2 0.473 0.657 0.951 0.974 0.903 0.698 0.839 0.950 0.966 0.887

SVR_RSM3 0.324 0.433 0.979 0.989 0.958 0.390 0.502 0.985 0.989 0.960

SVR_RSM4 0.400 0.465 0.976 0.988 0.952 0.359 0.436 0.989 0.992 0.970

SVR_RSM5 0.427 0.526 0.969 0.984 0.938 0.372 0.512 0.984 0.988 0.958

SVR_RSM6 0.510 0.680 0.947 0.971 0.896 0.503 0.714 0.973 0.975 0.918
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results obtained using the SVR models shows that Epan esti-
mates based on the Tmax, Tmin, andα variable (SVR4, Table 8)
are better than those from the other models. The performances
of the SVR4 model are improved by an increase of R from
0.944 to 0.983, NSE from 0.880 to 0.958, and d from 0.965 to
0.988 respectively, compared to the SVR1 with all the four
climatic variables. The SVR1method shows slightly less error
than the SVR2 (without α) in terms of RMSE (10.81%) and
MAE (12.23) statistics, while it performs worse than the
SVR3: the SVR3 decreased the RMSE and MAE of the
SVR1 by 21.24% and 22.98%, respectively. Finally, it can
be seen that the hybrid SVR_RSM4 models shows the best
performance for the all six input combinations, owing to its
smallest RMSE and MAE values and largest values of R,
NSE, and d. The SVR_RSM4 model reduce the RMSE and
MAE to nearly 0.436 mm and 0.359 mm, less than any values
calculated using the other models, and the peak values of the R
(0.989), NSE (0.970), and d (0.992) reached during the vali-
dation phase clearly underlines the superiority and the robust-
ness of the hybrid approach. The SVR_RSM1 model had a
comparable performance with SVR_RSM3, with slight supe-
riority in favor to the SVR_RSM1. While results obtained

from the SVR_RSM1 show an increasing performances com-
pared to the SVR_RSM2, for which the periodicity is re-
moved with an increasing in the R, NSE, and d by 3.5%,
2.5%, and 7.5%, respectively. Similarly, SVR_RSM5 per-
forms well compared to the SVR_RSM2, but relatively poor
compared to the SVR_RSM1 and SVR_RSM4.

Table 9 summarizes the results obtained using the six dif-
ferent input combinations for the four different models. In all
input combination without exception, all the statistical indexes
values show that the hybrid SVR_RSM is the best model. The
comparison between measured Epan and the calculated values
are reported as well. During the validation phase, the statistical
indexes for different models shows that the RMSE and MAE
are lowest for the SVR_RSM model (Table 9), and the best
accuracy with lowest values was obtained using SVR_RSM1
(RMSE = 0.991 mm and MAE = 0.781 mm). In general, the
agreement between measured and calculated values of Epan is
good: the R, NSE, and d values are generally larger than 0.90,
0.88, and 0.94, respectively for most of the models, and the
RMSE are reasonably low.When using only the Tmax and Tmin

as the unique input variables coupled with the periodicity
(SVR_RSM4), the R values is often close to 0.947 and the

Table 9 Performances of different models in modeling monthly Epan at Zit Emba Station

Models Training Validation

MAE RMSE R d NSE MAE RMSE R d NSE

MLPNN1 0.971 1.215 0.915 0.955 0.830 0.913 1.159 0.933 0.964 0.854

MLPNN2 0.932 1.176 0.919 0.957 0.840 1.138 1.403 0.901 0.940 0.786

MLPNN3 0.875 1.127 0.925 0.959 0.854 0.969 1.172 0.928 0.961 0.851

MLPNN4 0.838 1.083 0.933 0.964 0.865 0.869 1.101 0.936 0.967 0.868

MLPNN5 0.857 1.181 0.917 0.956 0.839 0.922 1.214 0.921 0.957 0.840

MLPNN6 0.785 1.016 0.943 0.967 0.881 0.869 1.064 0.938 0.965 0.877

RSM1 0.779 0.968 0.944 0.971 0.892 0.896 1.165 0.939 0.963 0.853

RSM2 0.978 1.222 0.910 0.951 0.828 1.310 1.547 0.890 0.926 0.740

RSM3 0.770 0.986 0.942 0.969 0.888 0.919 1.205 0.932 0.961 0.842

RSM4 0.815 1.042 0.935 0.965 0.875 0.914 1.150 0.940 0.965 0.856

RSM5 0.894 1.165 0.918 0.956 0.843 0.872 1.101 0.938 0.963 0.868

RSM6 0.914 1.130 0.923 0.959 0.853 0.952 1.149 0.937 0.962 0.856

SVR1 0.643 0.908 0.952 0.975 0.905 0.918 1.171 0.931 0.963 0.851

SVR2 0.886 1.165 0.919 0.957 0.843 1.202 1.467 0.889 0.931 0.766

SVR3 0.651 0.923 0.950 0.974 0.902 0.937 1.243 0.923 0.959 0.832

SVR4 0.751 1.089 0.930 0.963 0.863 1.072 1.269 0.933 0.961 0.825

SVR5 0.817 1.148 0.922 0.958 0.848 0.865 1.108 0.932 0.964 0.867

SVR6 0.782 1.055 0.934 0.964 0.872 0.825 0.986 0.947 0.972 0.894

SVR_RSM1 0.511 0.742 0.968 0.984 0.937 0.781 0.991 0.950 0.972 0.893

SVR_RSM2 0.752 1.035 0.937 0.967 0.876 1.161 1.371 0.911 0.942 0.796

SVR_RSM3 0.542 0.838 0.959 0.979 0.919 0.807 1.037 0.944 0.970 0.883

SVR_RSM4 0.671 0.992 0.942 0.969 0.886 0.832 1.007 0.947 0.972 0.890

SVR_RSM5 0.761 1.104 0.928 0.962 0.859 0.838 1.094 0.938 0.967 0.870

SVR_RSM6 0.655 0.978 0.946 0.972 0.890 0.814 1.047 0.949 0.972 0.881
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Fig. 6 Scatterplots showing the relation between themeasured and calculated values of monthly evaporation (Epan) in the validation phase for all stations
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RMSE is very low (1.007 mm). Compared to the other
models, SVR_RSM1 is more accurate, followed by
SVR_RSM4 (RMSE = 1.007 mm and MAE = 0.832 mm)
and SVR_RSM6 (RMSE = 1.047 mm and MAE = 0.814
mm) with relatively similar accuracy and a favor to the
SVR_RSM4 when looking to the NSE value, and finally the
SVR_RSM2 is ranked in the last place with the highest RMSE
(1.371 mm) and MAE (1.161 mm) values, respectively. From
Table 9, it is clear that using all the four climatic variables

without periodicity reveal important finding: MLPNN2,
RSM2, SVR2, and SVR_RSM2 were the worst models, for
which the R, NSE, and d values have been decreased consis-
tently with an increasing in the RMSE and MAE values.
Removing the periodicity increased the MAE and RMSE of
the MLPNN1, RSM1, SVR1, and the hybrid SVR_RSM1
model by (19.77% and 17.39%), (31.6% and 24.69%),
(23.63% and 20.18%), and (32.73% and 27.72%), respective-
ly; consequently, an important point should be distinguished:

Fig. 8 Violin plots of measured and calculated monthly pan evaporation (Epan) in the validation phase of all stations. The two lines with black and red
color display the mean and the median values of Epan

Fig. 7. Boxplots of measured and calculated values of monthly pan evaporation (Epan) in the validation phase of all stations. The central mark is the
median, the edges of the box are the 25th and 75th percentiles, and the whiskers correspond to the most extreme data points
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the periodicity is more important for the hybrid model com-
pared to the other.

Finally, Scatterplot comparison between measured and cal-
culated values of the Epan was plotted in Fig. 6. Figures 7 and 8
show the boxplots and the violin plots for measured and cal-
culated Epan (mm) values using the SVR, RSM, MLPNN, and
SVR_RSMmodels for all stations. For the violin plot, the two
lines with black and red color display the mean and the medi-
an values of Epan. Figure 9 presents a Taylor diagram plot
calculated against the measured data at the six climatic sta-
tions. In the diagram, the accuracy of the four best models was
compared during the validation phase using the correlation
coefficient and the standard deviation. In the diagram, the
measured values are plotted using a red circle along the X-axis.
At all stations, SVR_RSM performs better than the three other
models, clear evidence that proposed hybrid model improves
the accuracy of the standard SVR model. The statistics for
SVR, MLPNN, and RSM models varied generally from one
climatic station to another, though one of the models has a
lower standard deviation or has a higher coefficient of corre-
lation. In each station, the differences between the three
models (RSM, SVR, and MLPNN) are much smaller than
the differences between the three and the SVR_RSM.
Consequently, the improvement in SVR_RSM model
throughout the use of the hybrid approach is further demon-
strated in Fig. 9.

Conclusion

This study investigated the utility of using the response sur-
face model (RSM) for calibrating the original support vector
regression (SVR) in order to obtain a new hybrid model
(SVR_RSM), applied for modeling monthly pan evaporation.
Different scenarios based on several input combinations have
demonstrated that the hybrid SVR_RSM model performs
overwhelmingly better than the RSM, SVR, and the
MLPNN models. One of the most important conclusions of
the present study is that, the proposed hybrid model provides
an effective and practical approach to estimate Epan using only
fewer input variables. For example, the SVR_RSM model
with only the Tmax and Tmin, coupled with the periodicity
exhibited high accuracy with R, NSE, and d values of 0.989,
0.970, and 0.992 during the validation phase. Superiority of
the SVR_RSM for predicting Epan was evident at the all six
climatic stations. In addition, the MLPNN, RSM, and SVR

models provided relatively different results, and the accuracy
varied from one station to another depending on the input
variables. Furthermore, inclusions of the periodicity to the
input variables contribute to an improvement of the models
performances, except at Chaffia station for which the perfor-
mances was decreased. The results of the study were encour-
aging, but need to be extended to other stations.
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