ENVIRONMENTAL TOXICOLOGY AND BIOGEOCHEMISTRY OF ECOSYSTEMS

N_2O profiles in the enhanced CANON process via long-term N_2H_4 addition: minimized N_2O production and the influence of exogenous N_2H_4 on N_2O sources

Pengying Xiao¹ · Shuo Ai¹ · Jing Zhou¹ · Xiaojing Luo¹ · Baowen Kang¹ · Li Feng² · Tiantao Zhao¹

Received: 14 July 2019 / Accepted: 10 September 2019 / Published online: 20 November 2019 Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract

Production of the greenhouse gas nitrous oxide (N₂O) from the completely autotrophic nitrogen removal over nitrite (CANON) process is of growing concern. In this study, the effect of added hydrazine (N₂H₄) on N₂O production during the CANON process was investigated. Long-term trace N₂H₄ addition minimized N₂O production ($0.018\% \pm 0.013\%$ per unit total nitrogen removed) and maintaining high nitrogen removal capacity of CANON process (nitrogen removal rate and TN removal efficiency was 450 ± 60 mg N/L/day and 71 ± 8%, respectively). Ammonium oxidizing bacteria (AOB) was the main N₂O producer. AOB activity inhibition by N₂H₄ decreased N₂O production during aeration, and the N₂H₄ concentration was negatively correlated with N₂O production rate in NH₄⁺ oxidation via AOB, whereas N₂O production was facilitated under anaerobic conditions because hydroxylamine (NH₂OH) production was accelerated due to anammox bacteria (AnAOB) activity strengthen via N₂H₄. Added N₂H₄ completely degraded in the initial aeration phases of the CANON SBR, during which some N₂H₄ intensified anammox for total nitrogen removal to eliminate N₂O production from nitrifier denitrification (ND) by anammox-associated, while the remaining N₂H₄ competed with NH₂OH for hydroxylamine oxidoreductase (HAO) in AOB to inhibit intermediates formation that result in N₂O production via NH₂OH oxidation (HO) pathway, consequently decreasing total N₂O production.

Keywords Completely autotrophic nitrogen removal over nitrite $\cdot N_2H_4 \cdot Nitrous \text{ oxide } \cdot NH_2OH \text{ oxidation } \cdot Nitrifier denitrification \cdot Anammox$

Introduction

The completely autotrophic nitrogen removal over nitrite (CANON) (Sliekers et al. 2002) process combines nitritation and anaerobic ammonium (NH_4^+) oxidization (anammox)

Pengying Xiao and Shuo Ai contributed to the work equally and should be regarded as co-first authors.

Responsible editor: Bingcai Pan

Pengying Xiao xiaopengying36@cqut.edu.cn

⊠ Tiantao Zhao zhaott@cqut.edu.cn

- ¹ College of Chemistry and Chemical Engineering, Chongqing University of Technology, No. 69 Hongguang Avenue, Chongqing 400054, Banan District, People's Republic of China
- ² Chongqing Academy of Environmental Science, Chongqing 400054, People's Republic of China

into a single process, in which aerobic ammonium oxidizing bacteria (AOB) partially oxidize NH₄⁺ to nitrite (NO₂⁻), while anammox bacteria (AnAOB) convert the resulting NO₂⁻ and any remaining NH_4^+ into nitrogen gas (N₂). The CANON process is a cost-effective and energy-efficient alternative to the conventional nitrogen removal process because of its reduced oxygen and carbon source demands (Sliekers et al. 2002; De Clippeleir et al. 2013; Joss et al. 2009), and it has been applied in full-scale wastewater treatment projects (Joss et al. 2009, 2011; Vázguez-Padín et al. 2009). Nitrous oxide (N_2O) is easily produced as an intermediate from incomplete nitrification and denitrification (Rassamee et al. 2011). Because N₂O is an ozone-depleting agent (Ravishankara et al. 2009) and a potent greenhouse gas with a global warming potential (GWP100) of 298 (IPCC 2011), N₂O produced by the CANON process is a subject of concern. Many researchers have assessed N2O production and emission using different types of CANON reactors (Sliekers et al. 2002; Kampschreur et al. 2008, 2009a; Okabe et al. 2011; Xiao et al. 2014; Wang et al. 2017; Blum et al. 2018). These studies show that, irrespective of the operation mode or process conditions, controlling N₂O production and/or emissions during aerobic periods based on nitrification by AOB is advantageous because of reductions in the total N₂O emission from the system (Wunderlin et al. 2013a). A better understanding of the biological turnover processes of nitrogen compounds during N₂O production via aeration, as well as reactor operation parameters that can be adjusted to reduce N₂O production, is needed to improve process sustainability.

Hydroxylamine (NH₂OH) oxidation (HO) and nitrifier denitrification (ND) driven by AOB are the main biological pathways for N₂O production during aeration in the CANON process (Wunderlin et al. 2012, 2013a, b; Harris et al. 2015; Pocquet et al. 2016; Ali et al. 2016). The concentrations of NH_4^+ , NO_2^- and dissolved oxygen (DO) in the reactor have direct effects on the two pathways by which N₂O is produced (Xiao et al. 2014; Schreiber et al. 2012; Peng et al. 2015, 2016). N₂O production by ND is favored at high NO₂⁻ concentrations and low DO concentrations (Wunderlin et al. 2012; Harris et al. 2015; Peng et al. 2015), whereas high NH₄⁺ concentrations and a high NH₄⁺ removal rate favor N₂O production by HO (Wunderlin et al. 2013a, b). When the NH₄⁺ or DO concentrations in the reactor are elevated beyond a threshold, N2O production by ND is enhanced and becomes the dominant source of N2O. Moreover, N2O production via HO is a relatively unimportant source of N₂O in CANON reactors under all conditions (Harris et al. 2015). Although N₂O is not a side-product of AnAOB metabolism (Kartal et al. 2011), AnAOB play an important role in N₂O production by providing NH₂OH as an electron donor for AOB, which reduce NO_2^- by ND in the CANON process (Xiao et al. 2014), and the existence of an unclear N₂O production pathway associated with anammox metabolism merits further study (Harris et al. 2015; Ali et al. 2016). Until recently, distinguishing the contributions of the HO, ND- and anammox-associated pathways to N₂O production during the CANON process has been difficult, and N2O production has been regarded as either a single or synergistic effect of those pathways, depending on the specific operational state of the process.

The focus of aeration strategies, especially during $\rm NH_4^+$ oxidation, is to mitigate N₂O emission. In an earlier study, optimization of the DO concentration and dynamic co-optimization of DO and pH were found to be effective methods of controlling N₂O production (Kampschreur et al. 2009a, b). Nevertheless, a single change in either of these operating conditions did not significantly reduce the amount of N₂O emission from the CANON process (Weissenbacher et al. 2011). Later, the NO₂⁻ concentration and NH₂OH oxidation activity were both found to be positively correlated with N₂O production (Okabe et al. 2011; Wunderlin et al. 2012). Maintaining a low concentration of dissolved NO₂⁻ and a low level of NH₂OH oxidation activity are key

requirements for minimizing N₂O production during the CANON process (Wunderlin et al. 2013a). Aerobic NH₄⁺ oxidation activity influences NH2OH oxidation and the NO₂⁻ concentration (Xiao et al. 2014; Wunderlin et al. 2013a, b). Increasing the frequency of aeration cycling to stimulate aerobic NH4⁺ oxidation activity significantly minimizes N₂O production while maintaining maximum liquid phase nitrogen removal efficiency (Domingo-Félez et al. 2014). However, operating conditions are very difficult to control during frequent aeration cycling because long-term adjustments and fine control of the process (Domingo-Félez et al. 2014) are required. Maintaining a low rate of NH₄⁺ oxidation has become the central focus of strategies aimed at reducing N₂O production from the CANON process. Taken together, the previous study has shown that, although a low NH₄⁺ oxidation rate can negatively influence denitrification activity, high-frequency intermittent aeration with short cycle times, low volumetric N loading, and maintaining an extremely low NH₄⁺ oxidation rate are effective strategies for reducing N₂O emission by the CANON process (Blum et al. 2018). Methods of rapidly and efficiently minimizing N₂O production and emissions while maintaining the stability and performance of the CANON process are an important research focus.

The role of hydrazine (N₂H₄) as an intermediate product in anammox (Kartal et al. 2011) has received a significant attention. The addition of N₂H₄ to a CANON reactor can simultaneously enhance the total nitrogen (TN) removal performance and reactor stability (Yao et al. 2013; Xiao et al. 2015). However, the development of an improved "green" CANON process with a reduced environmental impact is hindered by a lack of knowledge regarding the effect of N₂H₄ on N₂O production. In the present work, a lab-scale CANON granular sequencing batch reactor (SBR) with alternating oxygen-limited/anaerobic conditions was implemented to study the effect of exogenous N2H4 on N2O production. The influence of exogenous N2H4 on sources of N2O was investigated using batch experiments, and the mechanism of N₂O reduction was studied during one cycle of SBR operation. The results of this study provide a strategy for tracing the effects of added N₂H₄ in a CANON reactor to rapidly achieve minimal N₂O production while maintaining stable and effective nitrogen removal.

Materials and methods

Operation of the CANON SBR

A continuously running CANON SBR with enriched granular sludge was utilized in this study. A schematic diagram of the CANON SBR, as well as its working volume, operating parameters, and components, with related concentrations of synthetic wastewater and the method of long-term N_2H_4 (4 mg/L) addition was reported by Xiao et al. (2014, 2015).

Batch tests

Batch tests were conducted to investigate the influence of exogenous N_2H_4 (in the form of $N_2H_4 \times H_2SO_4$) on sources of N_2O in the CANON process. How the batch tests are prepared and conducted has been reported by Xiao et al. (2014) .The experimental conditions are shown in Table 1.

Under oxygen-limited conditions, batch tests A and B focused on the influence of exogenous N2H4 on N2O production in the CANON process. Different concentrations of N₂H₄ were added in batch tests C, D, and E (with methanol added to inhibit AnAOB activity) to investigate the effect of exogenous N₂H₄ on N₂O production during aerobic NH₄⁺ oxidation. Batch tests H, I, and J were conducted to distinguish the contributions of HO and ND during aerobic NH₄⁺ oxidation. Allylthiourea (ATU) and methanol were added in batch tests H and I to impede oxidation of NH₄⁺ to form NH₂OH (Xiao et al. 2014). Diethyldithiocarbamate (DDC), an inhibitor of copper-containing nitrite reductase (NirK), was added in batch test I to block reduction of NO2⁻ to form N2O by the ND pathway (Ravishankara et al. 2009). It has been reported that a small amount of N2O may be formed from chemical oxidation of NH₂OH (Shapleigh and Payne 1985). Therefore, batch test J (aerobic conditions without sludge) was designed to investigate N₂O production via chemical oxidation of NH₂OH in the CANON process. Batch tests K and L were conducted to investigate the influence of the addition of a trace amount of N₂H₄ on N₂O production under anaerobic

conditions. Batch tests F, G, and M were conducted to investigate the production of N_2O via heterotrophic denitrification (HD).

Granular sludge taken from the CANON SBR was washed three times with nutrient solution before the batch tests. The concentrations of trace elements and NaHCO3 in the batch tests were consistent with those observed in the operation of the CANON SBR. Mineral medium and inhibitors were added into 500-mL batch reactors according to the experimental conditions shown in Table 1. Initial concentrations of NH4⁺-N, $\mathrm{NO_2}^-\mathrm{-N},\,\mathrm{NH_2OH}\mathrm{-N},\,\mathrm{and}\,\,\mathrm{N_2H_4}\mathrm{-N}$ were measured. DO was measured with a DO meter (BANTE820, Shanghai Bant Instrument Company, China). A gas flow meter (95 mL air/ min) was used to control the aeration rate and maintain the DO level at 0.35 ± 0.05 mg/L under oxygen-limited conditions. The batch reactors were flushed with nitrogen gas (99.99%) at 30 mL N₂/min to create anaerobic conditions in batch tests K, L, and M. The pH was measured using a pH electrode (HI991002, Hanna Instruments, Italy) and adjusted to 7.8 by adding 1 mol/L HCl and 1 mol/L NaOH. The temperature of the batch reactors was maintained at 31 ± 1 °C using a water bath.

Sampling and analysis

Batch test samples (10 mL) were taken from the reactors every hour using syringes. According to previously reported protocols (APHA 1998), NH_4^+ -N, NO_2^- -N, and chemical oxygen demand (COD) were analyzed using colorimetric methods, whereas nitrate (NO_3^-) was measured spectrophotometrically. Mixed liquor suspended solids (MLSS) and mixed liquor

conditions	Batch tests	NH4 ⁺ -N (mg N/L)	NO ₂ ⁻ -N (mg N/L)	NH ₂ OH (mg N/L)	N ₂ H ₄ (mg N/L)	ATU (mg/L)	CH ₃ OH (mM)	DDC (mM)	Remarks
	A B	87.23 85.90		/	/ 3.2	/	/	/	Oxygen-limited conditions
	С	83.24	/	/	/	/	10	/	
	D	85.31	/	/	3.04	/	10	/	
	Е	87.08	/	/	7.16	/	10	/	
	F	/	67.4	/	/	/	/	/	
	G		67.66	/	/	/	10	/	
	Н	/	/	82.08	/	20	10	/	
	Ι	/	/	83.43	/	20	10	10	
	J	/	/	84.24	/	/	/	/	Without sludge, aerobic conditions
	K	66.09	62.47	/	/	/	/	/	Anaerobic conditions
	L M	70.52	62.51 62.19	/	3.02 /	/ /	/ 10	/ /	

volatile suspended solids (MLVSS) were measured using standard methods (2540). The NH₂OH concentration was measured using a spectrophotometric method as previously described (Frear and Burrell 1955). The N₂H₄ concentration was measured using a spectrophotometric method as previously described (Watt and Chrisp 1952), and the interference of NO₂⁻ was eliminated by the addition of 0.5% sulfamic acid (George et al. 2008). Total N₂O, consisting of the N₂O in the emission gas and the N₂O dissolved in the mixed liquid, was analyzed in triplicate using gas chromatography (2010-plus, Shimadzu Scientific Instruments, Japan). The experimental conditions for the GC measurements and the methods used for measurement and calculation of the total concentration and production rate of N₂O-N were described (Xiao et al. 2014).

Results

CANON SBR performance and N₂O production

The N₂O production and nitrogen removal performance of the CANON SBR used in this study (with N₂H₄ addition) from days 505 to 525 are shown in Fig. 1.

From days 505 to 509, the total nitrogen removal rate (NRR) and TN removal efficiency of the reactor gradually increased (Fig. 1 panel a). In contrast, from days 505 to 509, the average N₂O production rate sharply decreased from 0.20 to 0.064 mg N/L/day (Fig. 1 panel b). The NRR and TN removal efficiencies reached 450 \pm 60 mg N/L/day and 71 \pm 8% (average value from days 509 to 525), respectively, which were nearly equal to the results (420 \pm 40 mg N/L/day and 72 \pm 9%, respectively) previously reported for the reactor (Xiao et al. 2015). From days 509 to 525, the average N₂O production rate was relatively low (0.066 \pm 0.047 mg N/L/day) and represented only approximately 0.018 \pm 0.013% of the NRR.

Batch tests

The nitrogen conversion and N_2O average production rates of the batch tests are shown in Table 2.

Under oxygen-limited conditions

In batch test A (without N_2H_4 addition), the NRR was 213.30 mg N/g VSS/day, and the average N_2O production rate (0.078 mg N/g VSS/day) was only 0.037% of the NRR. With the addition of 3.2 mg N/L N_2H_4 in batch test B, the NRR increased slightly to 286.86 mg N/g VSS/day, whereas the average N_2O production rate decreased to 0.032 mg N/g VSS/day, which was only 0.012% of the NRR and 41% of that in batch test A.

In batch test C, with methanol added to inhibit AnAOB activity and without the addition of N2H4, the NRR and average N₂O production rate were 24.85 mg N/g VSS/day and 0.06 mg N/g VSS/day, respectively, which were 11.7% and 76.9%, respectively, of the values measured in batch test A. In batch test D, with the addition of 3.04 mg N/L N_2H_4 , the TN removal and average N₂O production rate decreased to 19.09 mg N/g VSS/day and 0.02 mg N/g VSS/day, respectively. The average N₂O production rate of batch test D was 33% of that of batch test C, whereas it was 62.5% of that of batch test B. In batch test E, with the addition of 7.16 mg N/L N_2H_4 , the NRR decreased to 9.59 mg N/g VSS/day, and the average N₂O production rate was lower than the detection limit. In batch tests C, D, and E, N₂O production decreased in parallel with the added concentrations of N_2H_4 during aerobic NH_4^+ oxidation. The conversion rates at different concentrations of N_2H_4 in batch tests D and E were nearly equivalent, which indicated that the maximum aerobic degradation rate of N₂H₄ was reached when approximately 3 mg N/L N2H4 was added to the reactor. It has been reported that N₂H₄ might have the

Fig. 1 Operation performance (panel a) and N₂O production (panel b) of the CANON SBR with N₂H₄ addition (days 505 to 525)

Experiments condi	tions Numbe	rs NH4 ⁺⁻ N ^c Removal rate (mgN/gVSS/ day)	NH2OH° Removal rate (mg N/gVSS/day)	NO2 ⁻ -N ^c Removal rate (mg N/g VSS/day)	NO ₃ ⁻ -N ^c Removal rate (mgN/gVSS/ day)	N2O average Production rate (mgN/gVSS/day)	TN ^a Removal rate (mgN/gVSS/ day)	N_2H_4 Removal rate (mgN/gVSS/ day)	N ₂ O production rate/NRR (%)
Oxygen limited	A	– 231.17 ^b		+ 3.13 ^b	+ 14.64	+ 0.078	- 213.30		0.037
)	В	- 286.86	/	+ 5.49	+ 9.53	+ 0.032	-273.60	p/	0.012
	C	-167.74	/	+ 124.93	+ 18.88	+ 0.060	- 24.85	/	0.24
	D	-105.75	/	+ 81.79	+ 13.82	+ 0.020	- 19.09	-2.23	0.10
	Е	-63.41	/	+ 47.62	+ 5.52	0 +	- 9.59	- 2.35	0
	Ч	/	/	- 38.99	+ 38.74		/	/	/
	ŋ	/	/	-30.11	+30.11		/	/	/
	Н	/	- 175.68	+ 147.65	+ 8.97	+ 0.074	-18.84	/	0.39
	Ι	/	-170.10	+ 147.63	+ 4.5	+ 0.046	- 17.89	/	0.26
Aerobic without sl	Indge J	/	/	/	/		/	/	0
Anaerobic	К	-142.36	/	-165.97	+ 3.17	+ 0.024	-305.06	/	0.008
	Γ	-143.46	/	-182.34	+ 3.02	+ 0.094	- 322.67	þ	0.029
	Μ	/	/	/	/	/	/	/	0
^a TN is consisted c	f NH4 ⁺ -N, N	O ₂ ⁻ -N and NO ₃ ⁻ -N	, , , , , , , , , , , , , , , , , , ,	-					
^c The conversion of It	tilencal value	N NO - N NO - V	and - meanlitenn N' NH OH N' H	oval.	ماء مله منامنيام	actions fitting from the second	immetal manifes (m	itontacon contracti	DOL IN MI (Doo
The conversion 1	ate of NH4 -	N, NU ₂ -N, NU ₃ -	N , NH2UH, N2H4, 6.4	and IN was got V	ia dividing the slop	oe of linear fitting from the exper	imental results (m	easured concentration	ons) by MLVSS,

37192

^d Concentrations of added N₂H₄ in batch tests B (under oxygen-limited conditions) and L (under anaerobic conditions) completely decreased in the first 1 h

capacity to impact the growth of AOB (Choi et al. 2013), and AOB can degrade N_2H_4 (Yao et al. 2013) .Therefore, the half-saturation coefficient of N_2H_4 in aerobic NH_4^+ oxidation was likely less than 3 mg N/L, which was lower than that previously reported for anammox (10.42 mg N/L) (Yao et al. 2015).

On the basis of the results of batch tests A and C without N_2H_4 addition, the contributions of AOB and AnAOB to the total N_2O production were determined to be 76.9% and 23.1%, respectively. When a similar concentration of exogenous N_2H_4 was added in batch tests B and D, the contributions of AOB and AnAOB to total N_2O production were 62.5% and 38.5%, respectively. These results demonstrate that exogenous N_2H_4 slightly increased the contribution of AnAOB to total N_2O production during aeration.

In the presence of only NO_2^- in batch test F, very little TN was removed, and only a small amount of NO_3^- was produced by nitrite oxidization bacteria (NOB). With the addition of NO_2^- and methanol together in batch test G, very little TN was removed and only slight variation in COD was observed, while only a small amount of NO_3^- was produced (Fig. 2). N₂O production was not detected in batch test F or batch test G. These results indicate that HD did not contribute to nitrogen removal and N₂O production under oxygen-limited conditions.

In the presence of NH₂OH only, no significant change in the concentration of NH₂OH or N₂O was observed after 4 h of continuous aeration under aerobic conditions without sludge in batch test J. Therefore, the N₂O production pathway from NH₂OH chemical oxidation in the CANON process could be ignored. With the addition of 20 mg/L ATU to inhibit NH₄⁺ oxidation and 10 mM methanol to restrict AnAOB activity in batch test H, the NH₂OH removal rate was 175.68 mg N/g VSS/day, and the average N₂O production rate was 0.074 mg N/g VSS/day, which was greater than that of batch test C. With the addition of 20 mg/L ATU, 10 mM methanol, and 10 mM DDC in batch test I, the NH₂OH removal rate marginally decreased to 170.10 mg N/g VSS/day, while the average N₂O production rate was 0.046 mg N/g VSS/day, which was 62.1% of that of batch test H. In batch test I, NirK activity was restrained by DDC to block N₂O formation from NO₂⁻ reduction by ND. HO and ND are pathways for N₂O production in the CANON process under oxygen-limited conditions. The contributions of HO and ND to total N₂O production during aeration were 62.1% and 37.9%, respectively.

Under anaerobic conditions

In batch test K without N_2H_4 addition, the NRR was 305.06 mg N/g VSS/day and the N₂O average production rate was 0.024 mg N/g VSS/day, which was 0.008% of the NRR. With the addition of N_2H_4 in batch test L, the NRR slightly increased to 322.67 mg N/g VSS/day, and the average N₂O production rate was 0.094 mg N/g VSS/day, which was 0.029% of the NRR and 3.9 times that of batch test K. Exogenous N_2H_4 effectively increased N₂O production via anammox under anaerobic conditions in the CANON process.

With the addition of both NO_2^- and methanol in batch test M, very little COD variation or nitrogen removal was observed, and no N_2O production was detected (Fig. 2). These results demonstrate that HD was still not observable under anaerobic conditions.

Dynamic N₂O production in one cycle of the CANON SBR operation

The dynamic concentration profiles during one cycle of CANON SBR operation (day 518) are illustrated in Fig. 3. NH_4^+ -N decreased, whereas NO_3^- -N production by NOB increased slightly at the beginning of the aeration phase and then

Fig. 2 COD variation with methanol addition in batch tests F, G, and M

Fig. 3 N₂O production and nitrogen removal in one cycle of CANON SBR operation

remained unchanged. Exogenous N_2H_4 decreased during the first hour of the cycle. In aeration phase I (0–1 h, shown in Fig. 3), NO_2^- gradually accumulated during the first half hour, after which the amount of NO_2^- decreased. The N_2O concentration and average production rate peaked at 0.84 mg N_2O -N/L and 0.15 mg N_2O -N/L/day during the first half hour and then decreased. During aeration phase II (1–2.5 h, shown in Fig. 3), the NO_2^- concentration rapidly increased, and peak NO_2^- concentration occurred at 1.25 h. The N_2O concentration and average production rate slightly increased in aeration phase II. In anaerobic phase III (2.5–4 h, shown in Fig. 3), the NO_2^- concentration rapidly decreased, and the N_2O concentration and average production rate decreased (to 0.009 mg N/L/day) at the end of the anaerobic period.

Discussion

Minimized N_2O production with long-term N_2H_4 addition

Information regarding N₂O production observed in various studies during autotrophic nitrogen removal over nitrite is summarized in Table 3. In this study, the enhanced lab-scale CANON granular system with exogenous N₂H₄ was maintained stable, high-rate nitrogen removal performance as previously reported (Rassamee et al. 2011). The average N₂O production rate was 0.066 \pm 0.047 mg N/L/day, which accounted for only 0.018% \pm 0.013% of the NRR, which was a minimal contribution in comparison with the corresponding results from other reactors (Table 3).

Alternatively, with regard to aeration control strategies aimed at achieving minimal N₂O production (0.011% \pm 0.004% per unit NH₄⁺ removed) during autotrophic nitrogen

removal over nitrite, shorter cycle times (160 min), lower volumetric N loading (less than 100 mg NH₄⁺-N/L), and a low rate of aerobic NH₄⁺ oxidation (5 mg N/g VSS/h) (Blum et al. 2018) have been reported to effective. As shown in Table 2, the results obtained in the batch experiments in this study regarding N₂O production with the addition of trace N₂H₄ (0.011% per unit NH₄⁺removed) are in agreement with previously reported results from experiments conducted with a similar cycle time (240 min) and volumetric N loading (85.9 mg NH₄⁺-N/L), but with a higher NH₄⁺ oxidation rate (11.95 mgN/gVSS/h). Consequently, these results indicate that exogenous N₂H₄ minimized N₂O production by the CANON process while retaining stable, high-rate nitrogen removal performance.

Effect of N₂H₄ on N₂O production pathways

Under oxygen-limited conditions in the CANON system, HD had no impact on TN removal or N2O production in batch tests F and G. The activity level of heterotrophic bacteria was extremely low, as previously reported (Xiao et al. 2014). Whether anammox activity was inhibited or not (in batch tests A and C), the average N₂O production rates of batch tests B and D (with the same added N₂H₄ concentration) were reduced by 67% and 59%, respectively, in comparison with those of batch tests A and C (without N₂H₄ addition), respectively. Hydroxylamine oxidoreductase (HAO) plays a key role in production of NO and NO_2^- (Poughon et al. 2001), which play an important role in the HO and ND pathways of N₂O production by AOB (Wunderlin et al. 2012). N₂H₄ competes strongly with NH₂OH for HAO in AOB (Hollocher et al. 1981); therefore, the reduction in total N_2O production in the CANON process under oxygen-limited conditions was primarily caused by inhibition of AOB activity by exogenous
 Table 3
 Nitrous oxide production

 rates observed in various studies
 during autotrophic nitrogen

 removal over nitrite
 removal over nitrite

Type of reactor	NRR (mg N/L/day)	Ratio of N_2O production to NRR (%)	References
Full-scale N&A	1350	0.89	Joss et al. 2009
Full-scale N&A	1480	1.67	Kampschreur et al. 2009a
Full-scale N&A	1310	2.69	Castro-Barros et al. 2015
Pilot-scale N&A	470-1310	11.1–19.1	De Clippeleir et al. 2013
Lab-scale N&A	250-610	0.48–2.44	Yang et al. 2013
Lab-scale N&A	21	2.4	Hu et al. 2013
Lab-scale N&A	660	1.7–70	Domingo-Félez et al. 2014
Lab-scale N&A	400-600	1.35 ± 0.72	Ali et al. 2016
Lab-scale N&A	700–900	1.1 ± 0.5	Blum et al. 2018
Lab-scale CANON	110	0.11	Sliekers et al. 2002
Lab-scale CANON	480	0.41–1.53	Xiao et al. 2014
Lab-scale CANON	450 ± 60	0.018 ± 0.013	This study

 N_2H_4 , which likely influenced the HO and/or ND pathways of N_2O formation.

Moreover, the total N₂O production rate was reduced by 67% with inhibition of AnAOB activity, whereas it was reduced by 59% without inhibition of AnAOB activity, suggesting that the inhibitory effect of by N₂H₄ on N₂O production from AOB coexisting with AnAOB was less severe than its effect on N₂O production from AOB only. N₂H₄ significantly increases the specific growth rate (Yao et al. 2013) and abundance of AnAOB (Xiao et al. 2015), as well as specific anammox activity (Ma et al. 2018). Thus, exogenous N₂H₄ was likely utilized by AnAOB to accelerate anammox activity for TN removal during aeration, which weakened the inhibitory effect on N₂O formation from ND by AOB.

In this research, batch tests H, I, and J in the presence of NH₂OH under oxygen-limited conditions showed that N₂O is produced by the HO and ND pathways during aeration in the CANON process. The contributions of HO and ND to total N₂O production during aeration with inhibition of AnAOB activity were 62.1% and 37.9%, respectively. Similar results have been reported in a partial nitrification granular reactor in which the HO pathway accounted for 65% of total N₂O production (Rathnayake et al. 2013). These findings demonstrate that N2O production mechanisms are complex and could involve multiple N₂O production pathways in CANON process. The variation in the N₂O production rate in batch tests H and I is shown in Fig. 4. The N₂O production rate in batch test I, in which the ND pathway was inhibited, was lower than that of batch test H during the reaction. HO and ND were both involved in N₂O production, as NH₂OH was the sole electron donor. With the addition of methanol to inhibit AnAOB activity, the N₂O production rate in the presence of NH_4^+ (batch test C) was slower than that of NH₂OH (batch test H). When NH₂OH replaces NH₄⁺ as the only substrate, more electrons are released from NH₂OH oxidation to NO₂⁻ for the respiratory chain of AOB because of a lack of ammonia monooxygenase (AMO) activity (Chandran and Smets 2008).

Under anaerobic conditions, HD by heterotrophic bacteria (Ali et al. 2016; Li et al. 2017) and ND by AOB in the anammox process (Blum et al. 2018; Xiao et al. 2014) were primary pathways for N₂O production in the one-stage autotrophic nitrogen removal process. The results of batch tests K, L, and M showed that the contribution of heterotrophic bacteria to N₂O production in non-aerated conditions could be ignored. ND via AOB in the anammox process was primarily responsible for N₂O generation as previously reported, which NH₄⁺ had no impact on N₂O production, yet NH₂OH was the pivotal electron donor involved in the reduction of NO₂⁻ to N₂ and N₂O via ND in the anammox process (Xiao et al. 2014). N₂H₄ was synthesized from NH₄⁺ and NO by hydrazine synthase (HZS) (Kartal et al. 2011) and could convert to NH₂OH

Fig. 4 Variation in the N_2O production rate in the presence of $\rm NH_2OH$ only

by disproportionation during anammox metabolism (van der Star et al. 2008). The added N₂H₄ can be oxidized by AnAOB using hydrazine dehydrogenase (HDH) to release electrons (Yao et al. 2013, 2015, 2016), which are passed to HZS through the electron transport chain to facilitate N₂H₄ synthesis (Ma et al. 2018). In addition, the conversion of N_2H_4 to NH₂OH accelerated N₂O production because NH₂OH enhanced N₂O emission (Ritchie and Nicholas 1972). Furthermore, some other unknown pathways associated with anammox metabolism might be involved in N₂O production in the CANON process (Harris et al. 2015; Ali et al. 2016). The metabolic diversity of AnAOB (Kartal et al. 2011; Oshiki et al. 2016) suggests that different species could have different effects on N₂O production. The community structure of AnAOB in the CANON granular system enhanced by exogenous N₂H₄ has been reported (Xiao et al. 2015) to be approximately 85.75% Candidatus Scalindua and 14.25% Ca. Brocadia anammoxidans. The effects of N₂H₄ addition on the metabolism of AnAOB of different candidate genera (e.g., Ca. Scalindua), especially with regard to putative N₂O production pathway(s), merit further investigation.

Potential biochemical mechanism of N₂O reduction

In the present study, exogenous N_2H_4 was completely degraded during aeration phase I (0–1 h, Fig. 3). NH_4^+ abundance rapidly decreased during this period, whereas the NO_2^- concentration increased in the initial 0.5 h, after which it decreased to a low concentration. This result was in good agreement with batch tests A, B, C, and D, which suggested that some of the added N_2H_4 was utilized by AnAOB to accelerate anammox activity during aeration.

The peak average N₂O production rate was reached during the initial 0.5 h of aeration (Fig. 3). This finding basically coincided with a previous report, in which the peak average N₂O production rate was reached in the initial 40 min (approximately 0.67 h) of the aeration period, and the HO pathway was the primary mechanism of N₂O production (Rathnayake et al. 2013). N₂O production by HO is favored at high NH₄⁺ concentrations and NH₄⁺ removal rates (Wunderlin et al. 2013a, b). Sudden fluctuations in the DO concentration, NH₄⁺ concentration, and pH during reactor start-up generally facilitate HO (Rathnayake et al. 2013). N₂O production by ND has been reported to be favored by a high NO₂⁻ concentration and a low DO concentration (Wunderlin et al. 2013a; Peng et al. 2015), as well as by elevating the NH_4^+ and DO concentrations in CANON reactors (Harris et al. 2015). Although NO₂⁻ accumulated in the initial 0.5 h, the concentration of NO_2^- was quite low, and it decreased rapidly in the latter part of aeration phase I. Decreasing the NH4⁺ concentration and maintaining low concentrations of NO2⁻ and DO in the initial 1 h of operation inhibited the formation of N_2O by the ND pathway. Hence, the HO pathway, in which N₂O is formed from intermediates (e.g., NOH or $N_2O_2H_2$) (Hollocher et al. 1981) of HAO via NH₂OH oxidation (Poughon et al. 2001), is more likely to dominate N₂O production in the first hour of SBR operation in the presence of exogenous N₂H₄, whereas N₂O produced via ND is relatively unimportant. Batch tests A, B, C, and D suggested that N₂H₄ could inhibit AOB activity to reduce total N₂O production in the CANON process under oxygen-limited conditions. As expected, the N₂O concentration and production rate were quite low (0.8 ppm and 0.15 mgN/L, respectively) even during a single cycle of SBR operation. Consequently, in addition to accelerating anammox activity, exogenous N₂H₄ competed with NH₂OH for HAO in AOB to inhibit the formation of intermediates and facilitate N₂O reduction by the HO pathway within the first hour of SBR operation.

During aeration phase II (1–2.5 h, Fig. 3), without N_2H_4 , the NH_4^+ concentration slowed decreased, but NO_2^- accumulated rapidly. Increasing the NO_2^- concentration and decreasing the NH_4^+ concentration with a low DO level in the reactor could facilitate NO_2^- reduction to increase the rate of N_2O production by the ND pathway (Harris et al. 2015; Peng et al. 2015). In addition, N_2O production by HO was gradually inhibited. Enhancement of the ND pathway and weakening of the HO pathway could slightly elevate N_2O production during aeration phase II. Therefore, after N_2H_4 degradation, the contribution of the ND pathway to N_2O production was comparable with that of the HO pathway in the latter aeration phase. This finding is similar to that reported for a PN granular reactor (Rathnayake et al. 2013).

Finally, in anaerobic phase III (2.5–4 h, Fig. 3), declining N_2O production due to low HD activity during the entire anaerobic phase of SBR operation showed that the ND pathway associated with anammox activity did not form N_2O , because exogenous N_2H_4 added during the aeration phase was completely degraded.

Conclusion

Exogenous N_2H_4 minimized N_2O production from the CANON SBR and retaining high nitrogen removal efficiency. N_2O production rate during aeration was mitigated because AOB activity inhibited by N_2H_4 , but N_2O production rate under anaerobic conditions was increased by accelerated NH_2OH production due to anammox activity enhanced by N_2H_4 . AOB was the main producer of N_2O during the enhanced CANON process. A potential biochemical mechanism of N_2O reduction in the CANON process enhanced by N_2H_4 could be explained as follows: added N_2H_4 completely degraded in the initial aeration period of the SBR to facilitate anammox activity, and meanwhile, compete with NH_2OH for HAO in AOB to inhibit intermediates forming of HO pathway to significantly reduce N_2O production. **Funding information** This research was financially supported by National Natural Science Foundation of China (41502328, 51708077), Science and Technology Funds of Chongqing Education Commission and (KJ1600905), and Chongqing Water Environment Basic Investigation and Technology Application Development (Huan Ke Zi NO. (04) 2018).

References

- Ali M, Rathnayake RM, Zhang L, Ishii S, Kindaichi T, Satoh H, Toyoda S, Yoshida N, Okabe S (2016) Source identification of nitrous oxide emission pathways from a single-stage nitritation-anammox granular reactor. Water Res 102:147–157. https://doi.org/10.1016/j. watres.2016.06.034
- APHA (1998) Standard methods for examination of water and wastewater, 20th ed. American Public Health Association, Washington, DC. (No DOI Found)
- Blum JM, Jensen MM, Smets BF (2018) Nitrous oxide production in intermittently aerated partial nitritation-anammox reactor: oxic N₂O production dominates and relates with ammonia removal rate. Chem Eng J 335:458–466. https://doi.org/10.1016/j.cej.2017.10. 146
- Castro-Barros CM, Daelman MRJ, Mampaey KE, van Loosdrecht MCM, Volcke EIP (2015) Effect of aeration regime on N₂O emission from partial nitritation-anammox in a full-scale granular sludge reactor. Water Res 68:793–803. https://doi.org/10.1016/j.watres. 2014.10.056
- Chandran K, Smets BF (2008) Biokinetic characterization of the acceleration phase in autotrophic ammonia oxidation. Water Environ Res 80:732–739. https://doi.org/10.2175/106143008X296442
- Choi J, Jung S, Ahn YH (2013) Increased hydrazine during partial nitritation process in upflow air-lift reactor fed with supernatant of anaerobic digester effluent. Korean J Chem Eng 30:1235–1240. https://doi.org/10.1007/s11814-013-0041-8
- De Clippeleir H, Vlaeminck SE, De Wilde F, Daeninck K, Mosquera M, Boeckx P, Verstraete W, Boon N (2013) One-stage partial nitritation/ anammox at 15°Con pretreated sewage:feasibility demonstration at lab-scale. Appl Microbiol Biotechnol 97:10199–10210. https://doi. org/10.1007/s00253-013-4744-x
- Domingo-Félez C, Mutlu AG, Jensen MM, Smets BF (2014) Aeration strategies to mitigate nitrous oxide emissions from single-stage nitritation/anammox reactors. Environ Sci Technol 48:8679–8687. https://doi.org/10.1021/es501819n
- Frear DS, Burrell RC (1955) Spectrophotometric method for determining hydroxylamine reductase activity in higher plants. Anal Chem 27: 1664–1665. https://doi.org/10.1021/ac60106a054
- George M, Nagaraja KS, Balasubramanian N (2008) Spectrophotometric determination of hydrazine. Talanta 75:27–31. https://doi.org/10. 1016/j.talanta.2007.09.002
- Harris E, Joss A, Emmenegger L, Kipf M, Wolf B, Mohn J, Wunderlin P (2015) Isotopic evidence for nitrous oxide production pathways in a partial nitritation-anammox reactor. Water Res 83:258–270. https:// doi.org/10.1016/j.watres.2015.06.040
- Hollocher TC, Tate ME, Nicholas DJD (1981) Oxidation of ammonia by Nitrosomonas europaea: definite ¹⁸O-tracer evidence that hydroxylamine formation involves a monooxygenase. J Biol Chem 256: 10834–10836 (No DOI Found) http://www.jbc.org/content/256/21/ 10834.full.pdf
- Hu Z, Lotti T, De Kreuk M, Kleerebezem R, van Loosdrecht M, Kruit J, Mike MSM, Kartal B (2013) Nitrogen removal by a nitritationanammox bioreactor at low temperature. Appl Environ Microbiol 79:2807–2812. https://doi.org/10.1128/AEM.03987-12
- IPCC (2011) Climate Change 2001: The scientific basis. Contribution of Working Group I to the Third Assessment Report of the

Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York. https://doi.org/10. 1256/004316502320517344

- Joss A, Salzgeber D, Eugster J, König R, Rottermann K, Burger S, Fabijan P, Leumann S, Mohn J, Siegrist H (2009) Full-scale nitrogen removal fromdigester liquid with partial nitritation and anammox in one SBR. Environ Sci Technol 43:5301–5306. https://doi.org/10. 1021/es900107w
- Joss A, Derlon N, Cyprien C, Burger S, Szivak I, Traber J, Siegrist H, Morgenroth E (2011) Combined nitritation-anammox: advances in understanding process stability. Environ Sci Technol 45:9735–9742. https://doi.org/10.1021/es202181v
- Kampschreur MJ, van de Star WR, Wielders HA, Mulder JW, Jetten MS, van Loosdrecht MC (2008) Dynamics of nitric oxide and nitrous oxide emission during full-scale reject water treatment. Water Res 42:812–826. https://doi.org/10.1016/j.waters.2007.08.022
- Kampschreur MJ, Poldermans R, Kleerebezem R, van der Star WR, Haarhuis R, Abma WR, Jetten MS, van Loosdrecht MC (2009a) Emission of nitrous oxide and nitric oxide from a full-scale singlestage nitritation-anammox reactor. Water Sci Technol 60:3211– 3217. https://doi.org/10.2166/wst.2009.608
- Kampschreur MJ, Temmink H, Kleerebezem R, Jetten MSM, van Loosdrecht MCM (2009b) Nitrous oxide emission during wastewater treatment. Water Res 43:4093–4103. https://doi.org/10.1016/j. watres.2009.03.001
- Kartal B, Maalcke WJ, de Almeida NM, Cirpus I, Gloerich J, Geerts W, Op den Camp HJM, Harhangi HR, Janssen-Megens EM, Francoijs KJ, Stunnenberg HG, Keltjens JT, Jetten MSM, Strous M (2011) Molecular mechanism of anaerobic ammonium oxidation. Nature 479:127–130. https://doi.org/10.1038/nature10453
- Li K, Fang F, Wang H, Wang C, Chen Y, Guo J, Wang X, Jiang F (2017) Pathways of N removal and N₂O emission from a one-stage autotrophic N removal process under anaerobic conditions. Sci Rep-UK 7:42072 https://www.nature.com/ articles/srep42072
- Ma J, Yao H, Yu H, Zuo L, Li H, Ma J, Xu Y, Pei J, Li X (2018) Hydrazine addition enhances the nitrogen removal capacity in an anaerobic ammonium oxidation system through accelerating ammonium and nitrite degradation and reducing nitrate production. Chem Eng J 335:401–408. https://doi.org/10.1016/j.cej.2017.10.132
- Okabe S, Oshiki M, Takahashi Y, Satoh H (2011) NO emission from a partial nitrification–anammox process and identification of a key biological process of no emission from anammox granules. Water Res 45:6461–6470. https://doi.org/10.1016/j.watres.2011.09.040
- Oshiki M, Ali M, Shinyako-Hata K, Satoh H, Okabe S (2016) Hydroxylamine-dependent anaerobic ammonium oxidation (anammox) by "Candidatus Brocadia sinica". Environ Microbiol 18:3133–3143. https://doi.org/10.1111/1462-29200.13355
- Peng L, N J YL, Yuan Z (2015) The combined effect of dissolved oxygen and nitrite on N₂O production by ammonia oxidizing bacteria in an enriched nitrifying sludge. Water Res 73:29–36. https://doi.org/10. 1016/j.watres.2015.01.021
- Peng L, Liu Y, Ni BJ (2016) Nitrous oxide production in completely autotrophic nitrogen removal biofilm process: a simulation study. Chem Eng J 287:217–224. https://doi.org/10.1016/j.cej.2015.11. 026
- Pocquet M, Wu Z, Queinnec I, Spérandio M (2016) A two pathway model for N₂O emissions by ammonium oxidizing bacteria supported by the NO/N₂O variationl. Water Res 88:948–959. https://doi. org/10.1016/j.watres.2015.11.029
- Poughon LC, Dussap G, Gros JB (2001) Energy model and metabolic flux analysis for autotrophic nitrifiers. Biotechnol Bioeng 72:416– 433. https://doi.org/10.1002/1097-0290(20000220)72:4<416::AID-BIT1004>3.3.CO;2-4
- Rassamee V, Sattayatewa C, Pagilla K, Chandran K (2011) Effect of oxic and anoxic conditions on nitrous oxide emissions from nitrification

and denitrification processes. Biotechnol Bioeng 108:2036–2045. https://doi.org/10.1002/bit.23147

- Rathnayake RMLD, Song Y, Tumendelger A, Oshiki M, Ishii S, Satoh H, Toyoda S, Yoshida N, Okabe S (2013) Source identification of nitrous oxide on autotrophic partial nitrification in a granular sludge reactor. Water Res 47:7078–7086. https://doi.org/10.1016/j.watres. 2013.07.055
- Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N₂O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125. https://doi.org/10.1126/science.1176985
- Ritchie GAF, Nicholas DJ (1972) Identification of sources of nitrousoxide produced by oxidative and reductive processes in nitrosomonaseuropaea. Biochem J 126:1181–1191. https://doi.org/ 10.1042/bj1261181
- Schreiber F, Wunderlin P, Udert KM, Wells GF (2012) Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions, and novel technologies. Front Microbiol 3:1–24. https://doi.org/10.3389/fmicb.2012. 00372
- Shapleigh JP, Payne WJ (1985) Differentiation of *c*,*d*₁ cytochrome and copper nitrite reductase production in denitrifiers. FEMS Microbiol Lett 26:275–279. https://doi.org/10.1111/j.1574-6968.1985. tb01610.x
- Sliekers AO, Derwort N, Gomez JL, Strous M, Kuenen JG, Jetten MS (2002) Completely autotrophic nitrogen removal over nitrite in one single reactor. Water Res 36:2475–2482. https://doi.org/10.1016/ S0043-1354(01)00476-6
- van der Star WR, van de Graaf MJ, Kartal B, Picioreanu C, Jetten MSM, van Loosdrecht MCM (2008) Response of anaerobic ammoniumoxidizing bacteria to hydroxylamine. Appl Environ Microbiol 74: 4417–4426. https://doi.org/10.1128/AEM.00042-08
- Vázquez-Padín JR, Pozo MJ, Jarpa M, Figueroa M, Franco A, Mosquera-Corral A, Campos JL, Méndez R (2009) Treatment of anaerobic sludge digester effluents by the CANON process in an air pulsing SBR. J Hazard Mater 166:336–341. https://doi.org/10.1016/j. jhazmat.2008.11.055
- Wang X, Fang F, Chen Y, Guo J, Li K, Wang H (2017) N₂O microprofiles in biofilm from a one-stage autotrophic nitrogen removal system by microelectrode. Chemosphere 175:482–489. https://doi. org/10.1016/j.chemosphere.2017.02.026
- Watt GW, Chrisp JD (1952) A spectrophotometric method for the determination of hydrazine. Anal Chem 24:2006–2008. https://doi.org/ 10.1021/ac60072a044
- Weissenbacher N, De Clippeleir H, Boeckx P, Hell M, Chandran K, Murthy S, Wett B (2011) Control of N₂O-emissions from sidestream

treatment. Proc Water Environ Fed 18:236–248. https://doi.org/10. 2175/193864711802639255

- Wunderlin P, Mohn J, Joss A, Emmenegger Land Siegrist H (2012) Mechanisms of N_2O production in biological wastwater treatment under nitrifying and denitrifying conditions. Water Res 46:1027– 1037. https://doi.org/10.1016/j.watres.2011.11.080
- Wunderlin P, Siegrist H, Joss A (2013a) Online N₂O measurement: the next standard for controlling biological ammonia oxidation? Environ Sci Technol 47:9567–9768. https://doi.org/10.1021/ es402971p
- Wunderlin P, Lehmann MF, Siegrist H, Tuzson B, Joss A, Emmenegger L, Mohn J (2013b) Isotope signatures of N_2O in a mixed microbial population system: constraints on N_2O producing pathways in wastewater treatment. Environ Sci Technol 47:1339–1348. https://doi.org/10.1021/es303174x
- Xiao P, Cai Q, Zhang D, Yao Z, Lu P (2014) Characteristics of nitrogen removal and nitrous oxide production in canon process. J Chem Technol Biot 89:552–558. https://doi.org/10.1002/jctb.4153
- Xiao P, Lu P, Zhang D, Han X, Yang Q (2015) Effect of trace hydrazine addition on the functional bacterial community of a sequencing batch reactor performing completely autotrophic nitrogen removal over nitrite. Bioresour Technol 175:216–223. https://doi.org/10. 1016/j.biortech.2014.10.084
- Yang J, Trela J, Plaza E, Tjus K (2013) N₂O emissions from a one stage partialnitrification/anammox process in moving bed biofilm reactors. Water Sci Technol 68:144–152. https://doi.org/10.2166/wst. 2013.232
- Yao Z, Cai Q, Zhang D, Xiao P, Lu P (2013) The enhancement of completely autotrophic nitrogen removal over nitrite (CANON) by N₂H₄ addition. Bioresour Technol 146:591–596. https://doi.org/10. 1016/j.biortech.2013.07.121
- Yao Z, Lu P, Zhang D, Wan X, Li Y, Peng S (2015) Stoichiometry and kinetics of the anaerobic ammonium oxidation (anammox) with trace hydrazine addition. Bioresour Technol 198:70–76. https://doi. org/10.1016/j.biortech.2015.08.098
- Yao Z, Zhang D, Xiao P, Peng S, Lu P, Wan X, He Q (2016) Long-term addition of micro-amounts of hydrazine enhances nitrogen removal and reduces NO and NO₃⁻ production in a sbr performing anammox. J Chem Technol Biotechnol 91:514–521. https://doi.org/10.1002/jctb.4606

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.