
RESEARCH ARTICLE

A novel approach for assessing watershed susceptibility using
weighted overlay and analytical hierarchy process (AHP)
methodology: a case study in Eagle Creek Watershed, USA

Fadhil K. Jabbar1,2 & Katherine Grote1
& Robert E. Tucker1

Received: 28 January 2019 /Accepted: 29 August 2019
# The Author(s) 2019

Abstract
Watershed vulnerability and the characterization of potential risk are important inputs for decision support tools in assessing
watershed health. Most previous studies have focused on the assessment of the environmental risk using physicochemical
properties of surface water and mathematical models to predict the health of a watershed. Here, we present a new methodology
for evaluating watershed vulnerability using the analytic hierarchy process (AHP) and weighted overlay analysis. The new
methodology provides an inexpensive approach for assessing areas that need more investigation based on known factors such
hydrogeological, geological, and climate parameters without the need for site-specific physicochemical data. The proposed
method was implemented using six main factors that influence water quality: land use, soil type, precipitation, slope, depth to
groundwater, and bedrock type. Vulnerability was predicted for ten sub-watersheds within the Eagle Creek Watershed in Indiana
using publicly available data input into geographic information system. Combination of watershed susceptibility assessment and
GIS spatial analysis tools was used to produce the maps that show the susceptible zones within a watershed. A comparison of the
resulting vulnerability estimates showed the expected significant positive correlations with measurements of nitrate, phosphate,
temperature, and electrical conductivity. Likewise, the vulnerability estimates negatively correlated with dissolved oxygen and
E. coli. Furthermore, the validation of the proposed approach revealed that the areas predicted to have high vulnerability did have
lower water quality indices; the results showed a high negative correlation (r2 = 0.77, p < 0.05) between water quality index
(WQI) and vulnerability which strongly suggests this method can be used successfully to assess a watershed’s susceptibility.
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Introduction

Water quality degradation from multiple sources of contami-
nation has become a critical global issue (USEPA 2016; FAO
2017). Many water bodies across the USA are classified as
impaired. Studies show that about 85% of streams and rivers
and 80% of lakes and reservoirs are affected by nonpoint

source (NPS) pollution (USEPA 2016), which can be attribut-
ed to sources such as agriculture and urbanization (Rowny and
Stewart 2012; Liu et al. 2014; Ji et al. 2017). Agriculture can
cause water quality degradation due to excess nutrients
through fertilizers and manure (Kourgialas et al. 2017;
Jabbar and Grote 2019) and runoff from pesticides and herbi-
cides (Cruzeiro et al. 2015), as well as increasing turbidity
level due to sedimentation and soil erosion (Zhang and
Huang 2014). Numerous studies recorded the negative im-
pacts of some agricultural practices on water quality (Dupas
et al. 2015; Fournier et al. 2017). Likewise, urbanization af-
fects the water quality through sediment, oils, and solid wastes
washed from hard surfaces, bacteria, and input of nutrients
from failing septic systems and wastewater (USEPA 2008;
Walters et al. 2011; Zhao et al. 2015; Strangway et al. 2017).

Assessment of watershed susceptibility to contamination is
an important step for decision making for sustainable
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environmental protection. As well as anthropogenic inputs,
some features of the landscape or geologic conditions may
make the watersheds more vulnerable to degradation. The
vulnerability can be described as the level to which a system
or system components are presumed to be impaired due to
exposure to a potential risk or stress. Quantifying the vulner-
ability of watersheds to NPS pollution is important for recog-
nizing which watersheds are most at risk of impairment and
determining where changes in land use/land cover (LULC)
might improve water quality conditions (USEPA 2008).
Changes in land use, along with soil attributes, combined with
topography, climate, hydrology, and other landscape variables
are the most important factors contributing to a watershed’s
quality (Bansal et al. 2014; Neupane and Kumar 2015; Fan
and Shibata 2015; Serpa et al. 2017), so the watershed vulner-
ability assessment should be adaptable to potential changes.
Hydrologists and environmental scientists are becoming in-
creasingly aware and focused on the importance of identifying
and quantifying risks to evaluate watershed’s health by using a
convenient statistical technique and risk indicators. Therefore,
the use of an appropriate model for watershed assessment that
includes the variables listed above and can be modified as
these variables change could be essential for evaluating con-
tinuous spatial and temporal distribution variations in water-
shed information. Some of these models are discussed in the
following paragraph.

A number of methods have been developed to assess a
watershed’s susceptibility to contamination using integrated
watershed models and criteria evaluation methods (Sahoo
et al. 2016; Ahn and Kim 2017; Kanakoudis et al. 2017).
For example, the method for vulnerability mapping conducted
by Tran et al. (2012) used the self-/peer-appraisal method and
50 variables collected by the US Environmental Protection
Agency’s (EPA) Regional Vulnerability Program for 141 wa-
tersheds to map watershed vulnerability in the Northeast of the
USA. In another study, geostatistical applications were used to
assess the vulnerability of watersheds to chloride contamina-
tion in urban streams for seven sites within four watersheds in
the Greater Toronto area (Betts et al. 2014). Simha et al.
(2017) applied vulnerability assessment as a quantitative tech-
nique in the island of Lesvos in Greece, where a set of 25
indicators was used to identify the influence of strategic man-
agement on the vulnerability indices. Moreover, the US EPA
has developed different approaches and tools to assess water-
shed susceptibility to surface water pollution. One of the best
known of these tools is theWRASTICmethod, which is based
on seven parameters that affect the potential for pollution in-
cluding presence of wastewater (W), recreational activities
(R), agricultural activities (A), size of the watershed (S), trans-
portation avenues (T), industrial activities (I), and the amount
of vegetative ground cover (C) (USEPA 2000).

Modern geographical information system (GIS) tools are a
powerful method for gathering, managing, and manipulating

spatial analysis data. In addition, GIS can provide a more
consistent environment for displaying the input datasets and
the results have achieved by a model, which is more useful in
a decision-making process. The external models which linked
to GIS data provide a manageable way for combining and
evaluating parameters such as slope, land use/land cover,
and soil types (Wondrade et al. 2013; Yu et al. 2016).

One method of evaluating natural systems such as water-
sheds is to use multiple-criteria decision-making (MCDM)
techniques. One of the most widely used MCDM techniques
is the analytic hierarchy process (AHP) (Saaty 1980). This
approach has many steps, including assigning the hierarchical
structure, specifying and ranking the relative weights for both
the criteria and sub-criteria, determining the weights of each
substitute, and measuring the final score (Saaty 2008;
Moeinaddini et al. 2010). Using GIS and AHP has been prov-
en effective in analyzing natural hazards such as landslides
and floods (Gamper et al. 2006; Fernández and Lutz 2010)
and environmental studies (Ying et al. 2007; Rahman et al.
2014). The GIS-based and analytic hierarchy process has been
applied by Koc-San et al. (2013) to choose a suitable site for
an astronomical observatory. The same technique was used in
Konya, Turkey, by Uyan (2013) to select the best site for solar
farms. Likewise, Anane et al. (2012) applied this approach in
the Nabeul-Hammamet region (Tunisia) to find suitable sites
for irrigation with reclaimed water. Dong et al. (2013) used
remote sensing, GIS, and AHP models to assess a habitat
suitable for water birds in the West Songnen Plain in China.

In this research, we propose a new watershed susceptibility
assessment method to evaluate watershed susceptibility to
pollution using GIS and AHP methods. Six main factors have
suggested in this study, which include land use/land cover, soil
type, average annual precipitation, slope, depth to groundwa-
ter, and bedrock type. The general assumptions that were con-
sidered in this study of watershed vulnerability assessment are
based on the response of watersheds to different contamina-
tion impacts and how the six factors work together to affect
watershed health. This approach uses different databases to
predict the NPS pollution in a watershed without field and
lab work, which is a useful first approximation of vulnerability
with minimal cost and time commitments.

Study area

The Eagle Creek Watershed (ECW) is located in Central
Indiana. The watershed is in the northern portion of the
Upper White River Watershed that lies within the
Mississippi River Basin (Fig. 1) and is a hydrologic unit code
14 (HUC14) level watershed. The drainage area is about
459 km2, and there are 10 sub-watersheds within the ECW
varying in size from 26.9 to 70.7 km2 (Table 1). The ECW
includes three main branches: School branch, Fishback Creek,
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and Eagle Creek branch, which flow into the Eagle Creek
Reservoir. The Eagle Creek Reservoir is the main source of
drinking water for Indianapolis. These branches are fed by
eight main tributaries: Dixon Branch, Finley Creek, Kreager
Ditch, Mounts Run, Jackson Run, Woodruff Branch, Little
Eagle Branch, and Long Branch. The average flow distribu-
tion for the three major branches is around 2.85 m3/s for Eagle
Creek and contributing about 80% of the water to the reser-
voir, while the average flow distributions for both Fishback
Creek and School Branch are 1.1 m3/s and 0.5 m3/s,

respectively, which contributes about 20% of water to the
reservoir (Tedesco et al. 2005).

The primary land use in the ECW is agriculture with ap-
proximately 56%, and 38% of the watersheds covered with
urban land use, mostly in the southeast part of the watershed.
The substantial majority of the remaining is either forested
land or is grassland (USGS, National Hydrography Dataset).
Precipitation is characterized by long-duration and moderate-
intensity storms during the cooler months, and short-duration,
high-intensity storms in the late spring and summer months.

Fig. 1 The location of the Eagle
Creek Watershed
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The average annual precipitation for the Eagle Creek
Watershed is 1050 mm (Tedesco et al. 2005). According to
the Midwestern Regional Climate Center (MRCC 2016), the
lowest rainfall occurs in February, with an average of 59.7mm
and the highest rainfall occurs in May with an average of
115.5 mm. The watershed topography is relatively flat, with
slopes less than 3%, especially in the agricultural areas.
Steeper slopes are found adjacent to rivers and streams. Soils
in the upper portion of the watershed consist of thin loess over
loamy glacial till. These soils are classified as deep and poorly
drained, but in the northwest part of the watershed, soils are
poorly drained to well drained, while downstream areas are
dominated by soils that are generally classified as deep and
well drained to slightly poorly drained; soils were formed in a
thin layer of silt and resulting from underlying glacial till (Hall
1999). The bedrock units of the Eagle Creek Watershed are
generally characterized by brown, fine-grained dolomite and
dolomitic limestone in the far northeastern part of the water-
shed, and sandy dolomitic limestone to brown sandy dolo-
mite, but the southwest part is characterized by the gray, shal-
ey fossiliferous limestone. The southern part of the watershed
is dominated by brownish-black shale, greenish-gray shale, in
addition to small amounts of dolomite and dolomitic quartz
sandstone (Shaver et al. 1986; Gray et al. 1987).

Materials and methods

GIS data processing

Remote sensing data were used to create thematic maps for the
proposed study area (Fig. 2). The general topographic survey-
ing and mapping of the landscape features within the ECW
were derived from a digital elevation model (DEM) has reso-
lution (30 m) to investigate the important watershed charac-
teristics, such as elevation variations and the slope of the land
surface. The National Hydrography Dataset (NHD) and
Watershed Boundary Dataset (WBD), which are managed

by the USGS, were applied to calculate some watershed char-
acteristics such as soil type, depth to groundwater, bedrock
type, hydrologic units, catchment areas, and related features,
including rivers and streams (USGS 2016). The National
Land Cover Database 2011 (Homer 2015), which includes
15 LULC categories, was used for this study. Some of the
LULC categories were combined to be more meaningful in
this study. All categories labeled “developed” were aggregat-
ed into one class “urban”, and all categories labeled “forest”
were aggregated into one class. Similarly, “wetland” catego-
ries were aggregated. GIS-based methods were applied to an-
alyze the datasets and to determine the average values of pa-
rameters for each sub-watershed. The Parameter-elevation
Regressions on Independent Slopes Model (PRISM) has been
adopted to derive the average annual precipitation raster for
the climatological data period 1961–1990 (Daly 1996).

Water quality data

A statistical description of the water quality parameters which
were measured by the Indiana Department of Environmental
Management, Indiana Water Quality Atlas, (https://www.in.
gov/idem/nps/pages/iwqa/index.html) is shown in Fig. 3. This
figure shows that significant differences in water quality
measurements occurred between sub-watersheds. Samples
were collected from eight river stations which were treated as
independent watersheds. Temperature and pH showed
relatively little variation and are the most constant parameters
within the study area. Dissolved oxygen (DO) showed a rela-
tively slight variation for many sub-watersheds but was signif-
icantly higher in the Eagle Creek River at the Grande Avenue,
School Branch, and Fall Creek stations. Electrical conductivity
(EC) showed more significant variation between watersheds
where the minimum value was observed between 160 and
640 μs/cm and the maximum value was between 523 and
1405 μs/cm. Results of turbidity reveal relatively little differ-
ences between all sub-watersheds, except the highest turbidity
value was observed in the School Branch watershed (about 90

Table 1 Sub-watersheds and their drainage area in the Eagle Creek Watershed

Sub-watershed name River or stream Station name Drainage area (km2)

Dixon Branch-Eagle Creek Eagle Creek Eagle Creek 42.5

Mounts Run Mounts Run Mounts Run 41.2

Finley Creek-Eagle Creek Finley Creek Finley Creek 26.9

Lion Creek-Little Eagle Branch Little Eagle Branch Little Eagle Branch 40.6

Jackson Run-Eagle Creek Jackson Run 48.5

Fishback Creek Fishback Creek Fishback Creek 54.0

Irishman Run-Eagle Creek Irishman Run 48.5

Eagle Creek Reservoir-Eagle Creek School Branch School Branch at Brownsburg 51.0

Little Eagle Creek Little Eagle Creek Fall Creek at 30th St. 70.7

Ristow Branch-Eagle Creek Eagle Creek Grande Avenue 35.1
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NTU). The measurements of Escherichia coli (E. coli), phos-
phate, and nitrate showed significant differences between sub-
watersheds, where E. coliwas somewhat higher in the southern
part of the study area. Phosphate and nitrate concentrations are
comparatively higher in northern sub-watersheds, where agri-
cultural land is the most dominant land use.

Methodology of watershed susceptibility
assessment

Analytical hierarchy process evaluation model

The AHP is an effective multicriteria decision-making tool that
can be used to set a systematic approach for evaluating and inte-
grating the impacts of different factors, which include some levels
for qualitative and quantitative information (Saaty 1990). The

AHP method can reduce problems between factors such as inter-
relationship and overlapping. The relative weight for each factor
considered in this study was estimated using the methods of AHP
and pairwise comparison matrix. The comparative scale (Saaty
1980) is a common methodology typically performed to analyze
the comparison between various factors. The relative importance
is measured between two factors based on a scale from 1 to 9,
where 1 indicates the two factors are equally important while 9
reflects that one factor is much more important than another
(Table 2). The consistency ratio (CR) was computed to check
the differences between the pairwise comparisons and the reliabil-
ity of themeasuredweights. The consistency ratio should be < 0.1
to be accepted; otherwise, it is important to check subjective judg-
ments and recalculate the weights (Saaty and Vargas 2001).

In current research, the decision-making problem structure
was created and includes numbers that are symbolized by m
and n. The values for both aij (i = 1, 2, 3…, m) and (j = 1, 2,

Fig. 2 Thematic maps of the layers proposed for watershed susceptibility assessment method
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3..., n) are applied to find the performance values of matrix of
ith and jth. The values of comparison criteria are utilized to fill
out the upper diagonal of the matrix, while the lower triangu-
lar of the matrix is filled with the reciprocal values of the upper

diagonal. In pairwise comparison matrix A, the element aij of
the matrix is identified as the relative importance of the alter-
natives ith and jth with consideration to criterion A as shown
below where aji is the reciprocal values of aij.

Fig. 3 Boxplots showing the range of variations from minimum to maximum and the typical value (median) of water quality parameters

Table 2 Judgments scale and definitions for the pairwise comparison

Qualitative definition Explanation Intensity of importance

Equal importance Two activities contribute equally to the objective 1

Weak 2

Moderate importance Experience and judgments slightly favor one activity over another 3

Moderate plus 4

Strong importance Experience and judgment strongly favor one activity over another 5

Strong plus 6

Very strong or demonstrated importance An activity is favored very strongly over another and dominance
is demonstrated in practice

7

Very, very strong 8

Extreme importance The evidence favoring one activity over another is of the highest
possible order of affirmation

9
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The comparison matrix for any problem can be represented
by the following decision matrix:

A ¼
1 a12 ⋯ a1n

1=a12 1 a23 a2n
⋯ 1=a23 ⋯ ⋯

1=a1n 1=a2n ⋯ 1

0
BB@

1
CCA ð1Þ

where aj; I, j = 1, 2,……, n is the element of row i and column
j of the matrix and equal to the number of alternatives.

The eigenvector was calculated for each row by using Eq.
(2):

Egi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a11 � a12 � a13 �⋯� a1nn

p ð2Þ
where,Egi = eigenvector for the row i; n = number of elements
in row i.

The priority vector (Pri) was identified by normalizing the
eigenvalues to 1 using the equation below:

Pri ¼ Egi= ∑
n

k¼1
Egk

� �
ð3Þ

The lambda max (λmax) can be calculated from the sum-
mation of the results of multiplication of the priority vector
and the summation of the column of the inverse matrix as
shown below:

λmax ¼ ∑
n

j¼1
W j � ∑

m

i¼1
aij

� �
ð4Þ

where aij = the sum of criteria in each column;Wi = the value
of assigned weights for each criterion that is compatible with
the priority vector in the decision matrix, where the values
i = 1, 2, … m, and j = 1, 2, … n.

The consistency ratio (CR) was calculated by using the
following equation:

CR ¼ CI

RI
ð5Þ

where CI is the consistency index can be determined accord-
ing to the equation:

CI ¼ λmax−n
n−1

ð6Þ

where n is the size of the matrix.
RI represents the random index that refers to the consisten-

cy of the pairwise comparison matrix which is randomly gen-
erated. It is obtained as the average of the random consistency
index, which was computed by Saaty (1980) using a sample of
500 matrixes randomly generated. In the current study, weight
scores for factors are obtained based on the AHP model
(Table 3). A similar approach was applied to obtain rating

values for individual sub-criteria used for watershed suscepti-
bility assessment.

To calculate the watershed susceptibility values of the
study area, the weighted overlay analysis was applied based
on the following equation:

WS ¼ ∑
n

j¼1
W j � Cij ð7Þ

where WS is the watershed susceptibility for area i, Wj is the
relative importance weight of criterion,Cij is the grading value
of area i under criterion j, and n is the total number of criteria.

In this study, the assessment of a watershed’s susceptibility
was the main objective for using the decision hierarchy. The
process of hierarchy structure in the decision problem in-
volves two steps. The first step has been classified into six
factors: land use, soil type, precipitation, slope, depth to
groundwater, and bedrock type. The second step includes 46
sub-categories used to evaluate the watershed’s health. For
this study, according to the judgment of experts and literature
reviews in this field (Eimers et al. 2000; Lopez et al. 2008;
Xiaodan et al. 2010; Furniss et al. 2013; USEPA 2013; Shao
et al. 2016; Siqueira et al. 2017), in addition to the data avail-
able and required for the study area, each factor was catego-
rized into classes (sub-category). Then, each sub-category was
specified for a suitability rating value. After creating these
factors, the maps which are required for each layer were ob-
tained as a shapefile (vector) or raster. Shapefile maps were
then converted to raster maps to be more useful in
reclassifying sub-categories based on the new rating, as illus-
trated in (Fig. 4). To prepare each category and sub-category, a
number of steps were implemented using ArcGIS 10.5 soft-
ware (i.e., overlay, convert, reclassify, and raster calculator).
Output watershed susceptibility map is carried out by calcu-
lating the weighted overlay of the land uses/land cover, soil
type, average annual precipitation, slope, depth to groundwa-
ter, and bedrock type.

Factors used for watershed susceptibility assessment

To assess the watershed susceptibility to pollution, six main
factors have been used in this study: land use, soil type, aver-
age annual precipitation, slope, depth to groundwater, and
bedrock type. The determination of factors, the development
of ratings for each, and the ranking of the weights were based
on a synthesis of previous studies which were conducted to
investigate possible factors and their impacts on the surface
water quality (Eimers et al. 2000; Lopez et al. 2008; Xiaodan
et al. 2010; Furniss et al. 2013; USEPA 2013; Shao et al. 2016;
Siqueira et al. 2017) aswell as evaluation of factors correlating
with environmental degradation in similar Midwestern water-
sheds (Hoorman et al. 2008; Jabbar and Grote 2019).
Virtually, all of these factors have been demonstrated to
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impact surface water quality and change essential chemical
properties of the water within the watershed. The general as-
sumptions were considered in the study of watershed

vulnerability based on the response of a watershed systemat-
ically to different contamination impacts and how the six fac-
tors working together can affect the watershed’s health.

Table 3 A pairwise comparison
matrix developed for assessing
the relative importance of criteria
for watershed susceptibility
assessment

Factor LULC ST BRT Slope AAP DTG Weights

LULC 1 3 4 5 3 2 0.36

Soil type (ST) 0.33 1 5 3 2 2 0.22

Bedrock type (BRT) 0.25 0.2 1 0.33 0.33 0.5 0.05

Slope 0.2 0.33 3 1 0.33 1 0.10

Average annual precipitation (AAP) 0.33 0.5 3 3 1 3 0.18

Depth to groundwater (DTG) 0.5 0.5 2 1 0.33 1 0.09

CR value = 0.02

Fig. 4 Thematic maps of the layers after rating for (a) land use/land cover, (b) average annual precipitation, (c) soil type, (d) slope%, (e) depth to
groundwater, and (f) bedrock type
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For each of the factors discussed below, the boundaries of
each sub-watershed were determined using the Watershed
Boundary Dataset, maintained by the USGS. These boundaries
were used for further GIS-based analysis on different data sets.
The origins of each data set and manipulations of these data sets
to obtain the desired parameters are described below.

Land use/land cover

Watershed health is susceptible to LULC. Therefore, LULC
has been regarded as one of the most important factors having
an effect on water quality (Mouri et al. 2011; Yu et al. 2016;
Ding et al. 2016). LULC can impact surface water quality as
point source and nonpoint source pollution. Generally, agri-
cultural land use is the main provenance of NPS pollution,
particularly nitrogen (N) and phosphorus (P), on surface water
quality (Hoorman et al. 2008; McCarthy and Johnson 2009).
Urban lands are also reported to have considerable effects on
surface water quality because of the significant load of con-
taminants from the point and nonpoint sources (Mallin et al.
2008). The contamination from nutrients, organic matter, and
bacteria originates mainly from waste produced by municipal
wastewater treatment plants and undefined anthropogenic
sources (Glińska-Lewczuk et al. 2016). In this study, the
LULC (as determined from the National Land Cover
Database 2011 (Homer 2015)), has been divided into eight
classes based on their impact on watershed health, where ag-
riculture land uses that have a high impact were classified and
rated by a value of (10), while “water” land use class was
classified as the lowest rating (1) (Table 4).

Precipitation

Many studies have assumed that there is a direct relationship
between precipitation and increasing pollution levels in surface
water. Rapid precipitation can correspond to degradation inwater
quality of streams and rivers through surface runoff of pollutants
(Mallin et al. 2008;Whittemore 2012; Scott and Frost 2017). The
high rating of precipitation with watershed susceptibility is asso-
ciated with rainfall magnitude and intensity due to their impact
on sediment and nutrient loading. Therefore, the precipitation (as
obtained from theMidwestern Regional Climate Center (MRCC
2016)) was divided into ten classes, where the high rating (> 75
in) is represented by a value of (10), while the low precipitation
had a value of (1) (Table 4).

Slope

Slopes that receive rapid precipitation play a significant role in
affecting surface water quality (Chang et al. 2008; Qinqin
et al. 2015; Meierdiercks et al. 2017). With a steep slope, this
factor can increase the flow rate of a water body which can be
causing soil erosion and sedimentation and carrying different

kinds of pollutants like nutrients, pathogens, and pesticides to
nearby rivers (Aksoy and Kavvas 2005; Bracken and Croke
2007). The eroded soil particles can be carried to rivers, which
contribute to the level of total suspended solids and a decline
in the water quality. Moreover, high slopes have a significant
effect on the infiltration rate to groundwater, where the
amount of infiltration decreases with the increase in the slope
(Fox et al. 1997). Therefore, this study suggested six classes of
slope based on their impact on the amount of rainfall that
flows over the land surface as overland flow and reaches to
surface water or contributes to groundwater by infiltration.
Gentle slopes are represented by a value of (1), while steep
slopes are classified as having a high value (10) (Table 4),
because steep slopes can increase surface runoff that may
cause soil erosion and carries different types of pollutants.
The average slope for each sub-watershed was determined
using a digital elevation model (DEM) has resolution (30 m)
obtained from the National Hydrography Dataset (NHD) and
slope-calculating algorithms in ArcGIS.

Depth to groundwater

Surface water and groundwater are connected through a wide
range of catchment processes (Dahl et al. 2007; Lehr et al.
2015). Geological factors contribute to groundwater quality,
mainly through the influence of chemical processes of water-
rock interaction. Therefore, there is a significant impact of
rock and soil components on the evolution of water quality
by changing the chemical and physical properties of water
(Varanka et al. 2014). During rainfall periods, much of the
water that flows into nearby rivers and streams comes from
shallow pathways through macropore flow in the soil zone,
when infiltration to the aquifer is a substantial quantity. The
water table will rise to the surface and seep from groundwater
into the river, where surface water mixes with groundwater in
the hyporheic zone (Lautz and Siegel 2006). The depth to
groundwater was classified for eight classes where the shallow
groundwater was classified as having a high rating (10), but
the deep groundwater was identified as a low rating (1)
(Table 4). The depth to groundwater for each watershed was
determined by using maps generated by the National
Hydrography Dataset (USGS) and calculating the average
depth to groundwater for each sub-watershed using GIS tools.

Bedrock type

Water quality is typically greatly affected by different types of
geologic materials, such as sedimentary, igneous, metamor-
phic rocks, and glacial deposits. Long-term geochemical in-
teraction (rock–water) due to different chemical processes can
occur between groundwater and aquifer materials (Oelkers
and Schott 2009; Walter et al. 2017). When water flows
through fractured rock aquifers (e.g., limestone or dolomite),
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the chemical properties of groundwater can be significantly
changed because of the dissolution of some carbonate and
evaporite minerals in the aquifer. Therefore, the quality of
surface water can be affected by the exchange of water be-
tween rivers and shallow aquifers, especially in the alluvial
aquifer. Water can seep from a shallow aquifer into the adja-
cent river and river water flows into the shallow aquifers al-
ternately, depending on the oscillating of water table and river
stage. In our study, rock types have been classified for six
classes based on their resistance to weathering. The class of
metamorphic/igneous rocks was given a low value (1), as this
type of rock is normally very hard and resistant to weathering,
while limestone was given a high rating (10) (Table 4). The

bedrock type for each sub-watershed was determined using
the National Hydrography Dataset (USGS) and averaging
the values for each bedrock type based on the number of
pixels associated with each bedrock type within each sub-
watershed.

Soil type

Soil can be a source of soluble materials and suspended sed-
iments (Kerr 1995). In general, sediment is the water pollutant
which mostly affects surface water quality biologically, phys-
ically, and chemically (Rickson 2014). Bigger, heavier sedi-
ments like pebbles and sand settle first while smaller, lighter

Table 4 The relative weights and
rating scores of the factors and
sub-criteria used for watershed
susceptibility assessment

Factor Weighting Sub-criteria Rating

LULC 0.36 Agriculture 10
Urban 9
Grassland 7
Wetland 6
Forest 5
Barren land 4
Shrubland 3
Water 1

Soil type 0.22 Clay loam 10
Silty loam 8
Silty clay loam 7
Clay 6
Silt 5
Sandy loam 4
Peat 3
Sandy 2

Average annual precipitation (inch) 0.18 > 75 10
71–75 9
66–70 8
61–65 7
56–60 6
51–55 5
46–50 4
41–45 3
35–40 2
< 35 1

Slope (degree) 0.10 > 60 10
31–60 8
16–30 6
11–15 4
4–10 2
< 3 1

Depth to groundwater (feet) 0.09 < 5 10
5–10 8
11–15 6
16–20 5
21–25 4
26–50 3
51–100 2
> 100 1

Bedrock type (depth (0–50 ft)) 0.05 Limestone 10
Dolomite 9
Shale 7
Claystone 5
Sandstone 3
Metamorphic/igneous 1
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sediment particles like silt and clay can stay for a long time,
increasing water turbidity. Furthermore, many types of soluble
salts in the soil can affect water quality by increasing electrical
conductivity (EC) (Chhabra 1996). A high clay content will
increase EC due to the high cation-exchange capacity (CEC)
of clay minerals. Soil types have been classified for eight soil
classes based on their impact on water quality. The sandy type
of soil was given a low value (1), while clay loam was classi-
fied and given a value of (10) (Table 4), since this soil type can
affect water quality by increasing turbidity and salinity. The
soil type for each sub-watershed was determined using the
National Hydrography Dataset (USGS) and averaging the
values for each soil type based on the number of pixels asso-
ciated with each soil type within each sub-watershed.

Results and discussion

The watershed susceptibility assessment method uses some
features that have been weighted based on their contribution
in surface water contamination and calculates a vulnerability
index value for the area under consideration. The vulnerability
to pollution is ranked as follows: for values of 70–100, water-
shed vulnerability is very high; values of 50–70 is high vul-
nerability; values of 30–50 is moderate vulnerability; values
of 10–30 are low vulnerability; and values of 0–10 are very
low vulnerability to contamination. To implement the pro-
posed method, six main factors have been identified to evalu-
ate ten sub-watersheds within the ECW. Assessment units
ranked between 0 and 1 have low scores—indicating a very
low impact on water quality. High scores were assigned as
having a very high impact on water quality. Sub-categories
were rated between 1 and 10 where 1 refers to very low im-
pacts on water quality while high scores generally were rated
as having a very high impact.

The vulnerability evaluation of each watershed was used to
create maps showing relative vulnerabilities of sub-water-
sheds. The map of watershed susceptibility in Fig. 5 shows a
remarkable difference between the sub-watersheds in the vul-
nerability to pollution in the ECW. The upper part of the wa-
tershed, represented by Lion Creek and Finley Creek sub-wa-
tersheds, has been classified as likely to have very high vul-
nerability to potential contaminants. Similarly, the sub-
watersheds Dixon Branch, Mounts Run, and Jackson Run
are also identified as highly vulnerable to contamination based
on the average value of vulnerability. Thus, around 37.6 km2

(8%) of the total area of the ECW was classified as having a
very high vulnerability to contamination, and 284.5 km2

(57%) as a high vulnerability. The greatest area of contamina-
tion vulnerability is located in the north and middle of the
study area where agricultural land comprises nearly 85% of
total area within the northern sub-watershed. The low and

very low range of vulnerability occupies an area around
73.8 km2 (14%) and 7.3 km2 (1%), respectively.

The results showed that very high vulnerability zones were
located along the Little Eagle Creek, Finley Creek, Dixon
Branch, and Mounts Run Creek. Agriculture is the main land
use in this part of the study area, so the high vulnerability in
this area is partially caused by agricultural runoff. In addition,
the soil type could be another factor influencing water quality.
Silty clay loam was the most common type of soil around the
drainage channels in the northern part of the ECW. The
steepest slopes in this part of the study area are also located
near riverbanks. Therefore, the slope factor can increase both
the surface runoff rate and soil erosion, increasing the delivery
of sediments and pollutants to nearby streams (Tedesco et al.
2005). This process probably causes a deterioration of water
quality by increasing electrical conductivity due to the solu-
bility of the lime and soils that contain salts. Moreover, the
type of bedrock (limestone), which is close to the surface in
northern watersheds, can also lead to a declining water quality
by increasing the electrical conductivity of groundwater due to
the rock–water interaction in the aquifer (Walter et al. 2017).
Eventually, this may later influence surface water quality
through local exchange between streams and adjacent shallow
aquifers (Lautz and Siegel 2006). The electrical conductivity
of groundwater ranged between 500 and 1000 μs/cm in many
parts of the ECW. It is evident that the high values of salinity
which are observed in many study area streams are likely to be
a significant indication of surface water-groundwater
interaction.

The vulnerability of the watersheds in the southern part of
the study area was classified between medium and weak, es-
pecially in the adjacent portions of sub-watersheds along
School Branch, Eagle Creek at Grande Avenue, and Little
Creek at the 30th Street. Bacterial contamination (E. coli) is
the main source of degradation in water quality in the southern
part of the watershed, where the urban development is the
primary land use. The urban surface runoff can carry consid-
erable quantities of contaminants, including major nutrients
and bacteria to nearby streams (Tetzlaff et al. 2010;
McGrane et al. 2014). The high levels of E. coli that were
observed in the study area may explain the negative impact
of urban lands on water quality.

Validation and sensitivity analysis
of a developed method

The sensitivity of the new method of calculating vulnerability
was evaluated by comparing the vulnerability rating to differ-
ent water quality parameters. The correlation coefficients be-
tween water quality parameters and vulnerability results are
shown in Fig. 6. These results show that the relationship be-
tween water quality and vulnerability was a significant
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positive correlation with phosphates (r2 = 0.5, p = 0.04), ni-
trates (r2= 0.4, p = 0.03), and electrical conductivity (r2= 0.4,
p = 0.04). This indicates the vulnerability would increase with
increasing concentrations of these parameters, which have
been identified as the main parameters affecting water quality
in the study area. The correlation coefficients for dissolved
oxygen (r2 = 0.54, p = 0.036) and E. coli (r2 = 0.6,
p = 0.02) have shown a significant negative relationship with
vulnerability. This indicates the potential for water quality
degradation as a result of high concentration of bacteria and
low levels of dissolved oxygen in the southern part of the
study area. Generally, in most watersheds of this study area,
the E. coli levels were more than the acceptable limit, but the
highest level of these bacteria was observed in the southern
region which is dominated by urban development. However,
the negative relationship between E. coli and vulnerability
reflects the impact of land use type on water quality, where
E. coli and DO seems to be highly associated with urban land
use while N and P associated with agriculture land use.

To assess the water quality of streams and rivers in Eagle
Creek Watershed, the water quality index (WQI) (Eq. 8) was

applied based on the method which was developed by Cude
(2001). The WQI is according to the sub-index measurements
of water quality parameters that provide a summary of water
quality on a rating scale from (0) very poor–(100) excellent.

WQI ¼ ∑
n

i¼1
SIiWi ð8Þ

whereWQI isWater Quality Index, SI is sub-index i, andWi is
the weight given to sub-index i.

Based on the Water Quality Index results for all eight moni-
toring stations, it can be concluded that the Eagle Creek
Watershed ranged between poor and fair in water quality. All
water quality ratings within the northern sub-watershed were
poor water quality. This indicator showed fair water quality in
Fall Creek and Eagle Creek at Grande Avenue, all of which are
located in the southern part of the watershed. In general, E. coli,
nitrate, phosphate, and electrical conductivity are the most im-
portant parameters that influence surface water quality of these
eight sub-watersheds. As can be seen from Fig. 7, as regards the
comparison between the WQI and LULC, the surface water

Fig. 5 Watershed susceptibility
distribution map of the Eagle
Creek Watershed

Environ Sci Pollut Res (2019) 26:31981–3199731992



quality in the central and northern portion of the study area is
classified as poor quality probably because the vast majority of
land is agriculture. Conversely, the southern part of the study area
shows fair water quality, where the land uses are dominated by
urban land. The results ofWQIwhich have been described above
were adopted to emphasize the efficiency of the suggested meth-
od. As illustrated in Fig. 8, the correlation coefficients between
the WQI and watershed vulnerability showed a significant high
negative correlation (r2 = 0.77, p< 0.05). The results of WQI
reflect the conditions of water quality in the study area which
have been classified as very poor water quality (highly vulnera-
ble to pollution) in the northern sub-watersheds, while it rated as
moderate water quality (weak-moderate vulnerability) at the
southern sub-watersheds as shown in Fig. 9. These results pro-
vide considerable evidence for adopting this method to assess a
watershed’s susceptibility.

As a comparative study, Eimers et al. (2000) from the
USGS developed a method to evaluate the unsaturated
zone and watershed characteristics to predict potential
contamination for both public groundwater and surface
water supplies. This method was applied in North
Carolina to evaluate around 11,000 public groundwater
supply wells and around 245 public surface water loca-
tions. Some watershed characteristics were assigned based
on their contribution to the potential that water (with or
without pollutants) may reach a surface water supply
through overland flow paths or shallow sub-surface flow
paths. Factors identified for assessing unsaturated zone
vulnerability are vertical hydraulic conductivity, slope,
land cover, land use, average annual precipitation, and
groundwater contribution. They suggested using
statistical analysis of water quality measurements to

Fig. 6 The relationship between watershed vulnerability and water quality parameters for ECW
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refine and enhance factor weights and ratings, while in the
current study, weight and rating scores were assigned by
using the AHP model; additionally, statistical analysis was
applied to validate the proposed method. In a recent study
conducted by Arriagada et al. (2019) in the Andalién
River watershed, located in Mediterranean Chile, they
used a new method to evaluate the watershed vulnerabil-
ity index (WVI) depending on three sub-indices includes
environmental fragility, anthropogenic stressors, and
natural disturbances. The results of WVI revealed the
negative impacts of these stressors on watershed quality.
The application of statistical analysis of water quality
parameters was presented in the work of Arriagada et al.
(2019) and in the current paper, the statistical analysis was
applied along with WQI and the vulnerability levels to
emphasize the efficiency of the suggested method.

Conclusions

In this study, we identified the primary parameters affecting
watershed vulnerability and suggested new weighting factors
for each parameter using AHP analysis. The proposed method
was implemented using suitable six main factors (land uses,
soil type, precipitation, slope, depth to groundwater, and bed-
rock type) to evaluate the watershed susceptibility for 10 sub-
watersheds within the Eagle Creek Watershed, Indiana.
Combination of watershed vulnerability assessment and GIS
spatial analysis tools was used to produce the maps that show
the susceptible zones for watershed. Based on the results of
this method, accounting for around 37.6 km2 (8%) of the total
area of the watershed was classified as having a very high
vulnerability to contamination, and 284.5 km2 (57%) as hav-
ing a high vulnerability. The greatest portion of weakness is
located in the middle and north of the study area where agri-
cultural land takes up nearly 85% of the total area of northern
sub-watershed, while the vulnerability for the watersheds in
the southern part of the study area was classified between
medium and weak. Regression relationships were used to test
the effectiveness of this new method. The results demonstrat-
ed that the relationship between water quality and vulnerabil-
ity was a significant positive correlation with phosphates
(r2 = 0.5), nitrates (r2 = 0.4), and electrical conductivity
(r2 = 0.43). The values of dissolved oxygen (r2 = 0.54) and
E. coli (r2 = 0.6) have shown a significant negative relation-
ship with vulnerability. The correlation between the measured
water quality index and the predicted watershed vulnerability
for the method showed a high negative correlation (r2 = 0.77)
betweenWQI and vulnerability, indicating that the vulnerabil-
ity predictions are fairly accurate. This method could be used

Fig. 7 The relationship between land use/land cover (LULC) types and the WQI in the study area

Fig. 8 Comparison showing the relationship between watershed
vulnerability and WQI
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in other watersheds to more accurately assess watershed
susceptibility.
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