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Abstract
Bioelectrochemical systems (BESs) including microbial electrolysis cells (MECs) and microbial fuel cells (MFCs) are promising
for hexavalent chromium [Cr(VI)] reduction and total chromium (Cr) removal from wastewater. This study assessed the perfor-
mance of simple, inexpensive, and continuous flow BESs with neither cathode catalyst nor proton exchange membrane for
Cr(VI) reduction and total Cr removal. The effect of bioreactor configuration and wastewater feed mode on the performance of
the BESs was investigated. Biological Cr(VI) reduction in the MEC followed a first-order kinetics with a rate constant of 0.103
d−1, significantly higher than that of the control (0.033 d−1). For comparison, the first-order reduction rate constants in the MFCs
with the Cr(VI) fed to the anodic and the cathodic zones were 0.072 and 0.064 d−1, respectively. The BESs improved total Cr
removal through coprecipitating Cr(III) and phosphors as evidenced from the scanning electronmicroscopy energy-dispersive X-
ray spectroscopy analysis. The total Cr removal efficiencies in the control, MFCs, and MEC were 26.1%, 56.7%, and 66.2%,
respectively. Only 25.1% to 26.7% of total Cr was present intracellularly in the BESs (both MFCs and MEC), whereas 31.8% ±
1.4% and 38.0% ± 0.9% of total Cr in the anodic and cathodic zones of the control were present intracellularly. Overall, the BESs
demonstrated a great potential to reduce Cr(VI) and remove total Cr with the MEC having the fastest Cr(VI) reduction and most
efficient total Cr removal. Furthermore, the BESs significantly reduced the intracellular total Cr content.
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Introduction

Chromium (Cr) is widely used in industries including
electroplating, alloys manufacturing, tanning, and wood pro-

cessing. Trivalent chromium [Cr(III)] is generally insoluble in
ambient water and less toxic, whereas hexavalent chromium
[Cr(VI)] is highly soluble and carcinogenic (Eary and Rai
1987, Hosseini and Belador 2009, Ishibashi et al. 1990,
Mandiwana et al. 2007, Rai et al. 1989). Existing Cr removal
techniques heavily rely on physicochemical processes such as
adsorption and/or coprecipitation (Liu et al. 2014, Mohan and
Pittman Jr 2006, Qin et al. 2005, Wu et al. 2018), reduction
(e.g., by zero-valent iron) (Buerge and Hug 1997, Xu et al.
2018, Zhou et al. 2018), electrocoagulation (Al-Shannag et al.
2015, Cheballah et al. 2015, Lu et al. 2016), and electrolysis
(Rutigliano et al. 2008). On the other hand, biological Cr(VI)
reduction with the formation of Cr(III) precipitates is a prom-
ising alternative to remove Cr from wastewater (Chen and
Hao 1998, Gupta et al. 2017, Habibul et al. 2016, Huang
et al. 2015, Song et al. 2016, Wang et al. 2017).
Microorganisms such as Shewanella oneidensis can reduce
Cr(VI) and other mobile heavy metal species (Han et al.
2016, Lovley et al. 1991, Tebo and Obraztsova 1998). In situ
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Cr remediation with a wide range of bacteria is therefore fea-
sible (Liu et al. 2002, Schmieman et al. 1998), during which
bacterial consortia including sulfate-reducing bacteria (SRB)
and denitrifiers reduce Cr(VI) at Cr concentrations up to
70 mg L−1 under anaerobic conditions (Arias and Tebo
2003, Vainshtein et al. 2003). In bioreactors, Cr(VI) can be
reduced at 80 mg L−1 without significantly inhibiting reactor
performance (Vaiopoulou and Gikas 2012). Microbial reduc-
tion of Cr(VI) followed by Cr(III) coprecipitation is therefore
promis ing, which could be fur ther improved in
bioelectrochemical systems (BESs) through enhanced
electron-transferring (Li et al. 2018, Nancharaiah et al. 2015,
Tandukar et al. 2009).

BESs including microbial fuel cells (MFCs) and microbial
electrolysis cells (MECs) facilitate the reduction of electron
acceptors such as Cr(VI) on the cathode and the oxidization of
organic matter on the anode (Gupta et al. 2017, Habibul et al.
2016, Huang et al. 2015, Song et al. 2016). Therefore, BESs
not only convert organic matter into energy (e.g., electricity)
but also reduce, remove, and/or recover heavy metals, radio-
nuclides, and recalcitrant chemicals (Gregory and Lovley
2005, Huang et al. 2011b, Nancharaiah et al. 2015, Wang
et al. 2015, Wang and Ren 2014). Equation 1 shows the re-
duction of Cr(VI) on the cathode in BESs (Pandit et al. 2011):

Cr2O7
2− þ 14Hþ þ 6e−→Cr2O3 þ 4H2O

þ 6Hþ→2Cr3þ þ 7H2O ð1Þ

MFCs promote microbial Cr(VI) reduction (Li et al. 2008,
Wang et al. 2008). For instance, the cathode of an MFC facil-
itated Cr(VI) reduction at pH 7, suggesting the involvement of
Cr reducing bacteria (Tandukar et al. 2009) and/or electro-
chemically active exoelectrogens (Huang et al. 2010, Liu
et al. 2011). Coupled with an adaptive procedure, an MFC
reduced Cr(VI) at 1.24 mg L−1 h−1 (Huang et al. 2015). In
another MFC with aluminum/nickel nanoparticle–dispersed
carbon nanofiber electrode, Cr(VI) at an initial concentration
of 100 mg L−1 was completely removed at a high Cr(VI)
reduction rate of 2.13 mg L−1 h−1 (Gupta et al. 2017). MECs
also facilitate Cr(VI) reduction. For example, an MEC at an
external potential of −300 mV promoted the formation of
biocathode and resulted in promising Cr(VI) reduction
(Huang et al. 2011a).

The BESs for Cr(VI) reduction in previous studies are often
operated in a batch mode; however, wastewater treatment fa-
cilities for field use is operated under a continuous mode.
Previous research also used small BES volumes to determine
Cr(VI) reduction and total Cr removal efficiency, whereas the
performance of large, inexpensive BESs is still poorly evalu-
ated. More importantly, the fate of Cr and its removal mech-
anisms in the BESs are not well understood. This study, there-
fore, aimed to assess the efficiency of simple, large bench-

scale, and continuous flow BESs in reducing Cr(VI) and
removing total Cr. To better understand the Cr removal mech-
anisms, this study also determined Cr partitioning within bac-
terial cells (i.e., intracellular vs. extracellular total Cr), distri-
bution in the biomass, and deposition on electrodes.

Materials and methods

Design and operation of BESs

Four identical bioreactors were constructed using window
pane glass (Fig. 1). Each bioreactor had an effective working
volume of 3.4 L, and was divided into three zones using plas-
tic baffles suspended 1 cm above the bottom: an anodic zone
(far left), a cathodic zone (middle), and an internal settling
zone (far right). The anodic, cathodic, and settling zones had
effective working volumes of 1.4, 1.4, and 0.6 L, respectively.
The BESs were covered with Plexiglas plates and run in one
of the following configurations:

& Control operated under open-circuit conditions
& MFC with Cr(VI) fed to the anodic zone
& MFC with Cr(VI) fed to the cathodic zone
& MEC with Cr(VI) fed to the anodic zone

Two anodes and two cathodes were used in each configu-
ration bywrapping carbon fiber/graphite cloth (Plantraco Ltd.,
Saskatoon, Canada) (plain weave checkerboard pattern with a
surface density of 0.08 kg m−2 and a resistivity of 10−5 Ω m)
(Gajaraj and Hu 2014) over reticulated vitreous carbon (ERG,
Oakland, CA) (8 pores per centimeter with a specific surface
area of 114m2m−3). Each electrode had dimensions of 5 × 5 ×
1.3 cm, a net volume of 130 cm3, and a surface area of 148
cm2. The anode and cathode were positioned approximately
5 cm apart, across the separating baffle plate. The electrodes in
the MFCs were connected across a 1000 Ω resistor. In the
MEC, a 10 Ω resistor was connected in series with the power
supply, and a fixed voltage of 300 mV was applied to the
circuit by connecting a potentiostat (model 3645A, Circuit
Specialists, Inc., AZ). The voltage of the MEC was measured
across the resistor.

The BESs were seeded with activated sludge from the
Columbia Regional Wastewater Treatment Plant (Columbia,
MO), operated at 23 ± 1 °C, and continuously fed with syn-
thetic wastewater at a flow rate of 1.9 L d−1, resulting in a 1.5-
d hydraulic retention time (HRT). The synthetic wastewater
was prepared following previous studies (Gajaraj and Hu
2014, Liang and Hu 2012). The concentrations of COD (glu-
cose as the main source), NH4

+-N, and total phosphorus (TP)
of the synthetic wastewater were 500, 20, and 6 mg L−1, re-
spectively. The synthetic wastewater also contained 44 mg
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L−1 of MgSO4, 15 mg L−1 of CaCl2·2H2O, 2 mg L−1 of FeCl2·
4H2O, 3.4 mg L−1 of MnSO4·H2O, 1.2 mg L−1 of
(NH4)6Mo7O24·4H2O, 0.8 mg L−1 of CuSO4, and 1.8 mg
L−1 of Zn(NO3)2·H2O. The influent was fed into the anodic
zone, and the effluent left the bioreactor from the settling zone
(Fig. 1). Magnetic stirrers ensured complete mixing of the
mixed liquor in the anodic and cathodic zones. The mixed
liquor returned to the cathodic zone from the settling zone
via internal recirculation. Sludge was wasted from the settling
zone to maintain a biomass concentration of approximately
2500 mg COD L−1 and an average solids retention time
(SRT) of 10 d.

The BESs were operated for 25 d (day 0 to 25) before
dosing the Cr(VI) feed stock at a fixed flow rate of 20 mL
d−1. The Cr(VI) feed stock concentration gradually increased
from 100 to 1000mg L−1, resulting in influent nominal Cr(VI)
concentration increased from 1 to 10 mg L−1. The MEC was
operated as an MFC for the first 15 d (day 0 to 15) before
applying the external potential (300 mV).

Voltage generated by the MFCs was monitored across
the 1000 Ω resistor at 1 Hz with a LabView software
(National Instruments, TX), and the voltage readings
were averaged every 24 h. A silver/silver chloride elec-
trode was used to measure the individual electrode po-
tentials. The coulombic efficiency (ηc) for a continuous

flow, steady-state BES is the ratio of electrons for cur-
rent flow to the maximum electron production (Logan
et al. 2006) (Eq. 2).

ηc¼
M ⋅I

F⋅b⋅q⋅CODΔ
ð2Þ

where M is the molecular weight of Cr2O7
2− (2.16 ×

105 mg mol−1), I is the current (A), F is the Faraday
constant (96,485.33 C mol−1), b is the number of elec-
trons exchanged per mole of Cr2O7

2−reduced (6), q is
the flow rate of the influent (L s−1), and CODΔ is the
difference between the influent and effluent COD (mg
L−1).

Bacterial activity measurement

Because Cr(VI) is more toxic and soluble than Cr(III) (Jin
et al. 2016, Vaiopoulou and Gikas 2012, Villaescusa et al.
1997), it is necessary to determine the change in bacterial
activity while Cr(VI) is reduced. This study monitored the
change in specific oxygen uptake rate (SOUR) of the sludge
to assess the impact of Cr(VI) on bacterial activity. The SOUR
was measured biweekly in duplicate following a previous pro-
tocol (Hu et al. 2002, Zhang et al. 2014).

Fig. 1 A schematic of the continuous flow BESs for Cr(VI) reduction and total Cr removal.
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Scanning electron microscopy (SEM)

The morphology and elemental composition of biofilms
formed on the electrodes were analyzed by SEM coupled with
energy-dispersive spectroscopy (EDS) (FEI Quanta 600 FEG
Extended Vacuum SEM-EDS) after sample preparation at the
University of Missouri (Columbia, MO). Sample preparation
for microscopic analysis followed a previous protocol
(Bozzola and Russell 1999, Zhang et al. 2019) with modifi-
cations. Briefly, sections of the electrodes from each bioreac-
tor were cut and suspended overnight at 4 °C in a 0.1 M
sodium cacodylate buffer (pH 7.5) containing 2% glutaralde-
hyde and 2% paraformaldehyde for primary fixation. The
samples were rinsed three times by soaking for 5 min in a
0.1 M sodium cacodylate buffer and subsequently submerged
in a 0.1 M sodium cacodylate buffer containing 2% osmium
tetroxide for secondary fixation. The samples were then
microwaved at 120 W (60 s off, 80 s on, 180 s off, and 40 s
on), rinsed three times with the 0.1 M sodium cacodylate
buffer and three times with deionized water, and dehydrated
by passing through a series of solutions with increasing etha-
nol concentrations (20%, 50%, 70%, 90%, and 3 × 100%).
The samples were finally prepared by CO2 critical point de-
hydration before the SEM analysis.

Chemical analysis

Sludge volume index (SVI) and concentrations of NH4
+-N,

NO3
−-N, NO2

−-N, COD, orthophosphate (ascorbic acid meth-
od), Cr(VI) (1,5-diphenylcarbazide method), and biomass
were measured twice a week according to the Standard
Methods (APHA 2012). To differentiate the intracellular and
extracellular total Cr, sludge samples were repeatedly washed
using a trace metal cleaning reagent as described previously
(Tovar-Sanchez et al. 2003). The wash liquid and the sludge
were digested following a method described elsewhere
(Zhang et al. 2014) and then analyzed for the concentrations
of extracellular and intracellular total Cr, respectively, with a
graphite furnace atomic absorption spectrophotometry (Buck
Scientific, Inc., Norwalk, CT). For each sampling time and
location (e.g., the influent and the effluent), two representative
samples were taken for chemical analysis. The COD concen-
tration of each sample was measured once, whereas the other
wastewater constituents of each sample were determined
twice (duplicate measurement).

Statistical analysis

Analysis of variance (ANOVA) was applied to determine
whether the means of data sets (for COD, single measurement
for each of the duplicate samples; for other constituents, du-
plicate measurements for each of the duplicate samples) are

statistically significantly different. The significance level was
0.05.

Results and discussion

Bioelectrochemical performance of the BESs

The three BESs attained a voltage of approximately 0.15 V 10
d after sludge seeding (Fig. 2). Following the dosing of Cr(VI)
started on day 25 with increasing concentrations, the voltage
of the MFCs increased to 0.33 ± 0.08 V with an average
current of 0.34 mA and a power of 0.12 mW. Given the anode
surface area of approximately 0.01 m2, the continuous flow
MFCs yielded current and power density of 33.6 mAm−2 and
11.2 ± 0.5 mW m−2, respectively, when treating wastewater
containing less than 10 mg L−1 of Cr(VI). This power density
was lower than a previous report (i.e., 55 mWm−2) (Tandukar
et al. 2009). The low power generation could be attributed to
several reasons. First, the synthetic wastewater had a higher
resistance (approximately 1 mS cm−1) than in other studies
where high salt concentrations and buffer strengths were used
(Rozendal et al. 2008). In addition, the electrode spacing (≥ 5
cm) and the BES effective working volume (3.4 L) were con-
siderably large, decreasing power generation (Cheng et al.
2006), whereas previous studies obtained high power densi-
ties with smal bioreactors (volumes less than 0.5 L) (Tandukar
et al. 2009). Furthermore, over-potentials and ohmic losses
due to resistance to flow of electrons and ions resulted in lower
voltages. As a result, the coulombic efficiencies of the MFCs
were only 13.3%.

Total Cr removal efficiency

The influent Cr(VI) concentrations peaked at 10 mg L−1 75 d
after BES setup (Fig. 3). The difference between influent and
effluent Cr(VI) concentration was negligible at the beginning
of Cr(VI) dosing (from day 25) due to the time required for
sludge acclimation. Starting from day 41 (16 d after Cr(VI)
dosing), the BESs began to reduce Cr(VI), resulting in lower
effluent Cr(VI) concentrations.

During the start-up period, the MEC performed the best
with effluent Cr(VI) concentration started to decrease from
day 60 as compared with day 69 in the MFCs and day 74 in
the control (Fig. 3). Biological Cr(VI) reduction in the BESs
followed a first-order kinetics. The Cr(VI) reduction rate con-
stant in theMECwas 0.103 d−1. TheMFCs with Cr(VI) fed to
the anodic and the cathodic zones had comparable Cr(VI)
reduction rate constants of 0.072 and 0.064 d−1, respectively
(p = 0.29, ANOVA). The control took more than 110 d to
achieve complete Cr(VI) reduction with a much smaller re-
duction rate constant of 0.033 d−1.
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Total Cr removal mechanisms

The high Cr(VI) reduction rate in the BESs was due to the
unique bioelectrochemical reactions on the electrodes where
exoelectrogens delivered electrons to the anode and eventual-
ly to the cathode via an external circuit. This electron delivery
facilitated microbial reduction of Cr(VI) (electron acceptor).
The posed voltage in the MEC accelerated the growth of mi-
croorganisms which efficiently produced currents/electrons
that were absent in abiotic controls (Huang et al. 2011a).
Those additional electrons caused faster and more complete
microbial Cr(VI) reduction in combination with abiotic elec-
trochemical reduction of Cr(VI). The MFCs worked the same
as the MEC except that the electrons were self-generated by
the anode.

At the influent total Cr concentration of 10 mg L−1, the
MEC had the lowest effluent total Cr concentration with an
overall removal efficiency of 66.2% ± 2.7%. Total Cr concen-
trations between the effluents of the two MFCs were not sig-
nificantly different (p = 0.82, ANOVA), which had an overall
removal efficiency of 56.7% ± 2.5%. For comparison, despite
a complete reduction of Cr(VI), the control had the lowest
total Cr removal efficiency (26.1% ± 1.3%).

Total Cr was removed from the wastewater in all bioreac-
tors, but its partitioning within bacteria and distribution in
sludge remained to be explored. Intracellular and extracellular
total Cr concentrations were, therefore, determined (Fig. 4).
The intracellular and extracellular ratios of total Cr in the
biomass for all BESs were not significantly different (p =
0.20 and 0.61 for the anodic and cathodic zones, respectively,

Fig. 3 Cr(VI) and total Cr
concentrations in the influent and
effluent of the BESs. Cr(VI):
influent (black circle), effluent of
the control (black down-pointing
triangle), effluent of the MFC
with Cr(VI) fed to the anodic zone
(black square), effluent of the
MFC with Cr(VI) fed in the ca-
thodic zone (black diamond), and
effluent of the MEC (black up-
pointing triangle). Total Cr: influ-
ent (white circle), effluent of the
control (white down-pointing tri-
angle), effluent of the MFC with
Cr(VI) fed to the anodic zone
(white square), effluent of the
MFC with Cr(VI) fed to the ca-
thodic zone (white diamond), and
effluent of the MEC (white down-
pointing triangle).

Fig. 2 Voltage (white and black
circles) and current (white and
black triangles) outputs from the
MFCs. Open and close symbols
depict the MFCs with Cr(VI) fed
to the anodic and the cathodic
zones, respectively.
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ANOVA), suggesting similarities in BES assisted Cr(VI) re-
duction and/or total Cr removal mechanisms. The intracellular
Cr fraction averaged 26.7% ± 0.1% and 25.1% ± 0.6% for the
anodic and cathodic zones for the BESs, respectively (Fig. 4).
For comparison, the control showed a significantly higher (p =
0.035, ANOVA) intracellular total Cr accumulation with the
fractions of 31.8% ± 1.4% and 38.0% ± 0.9% in the anodic
and cathodic zones, respectively. These results suggest a joint
Cr removal mechanism including Cr(VI) reduction (Song
et al. 2016) via the carbon fiber/graphite cloth electrodes and
Cr(III) precipitation in the BESs.

Cr precipitation in the biofilms on the electrodes was
ident i f ied through SEM-EDS analys is (Fig . 5) .
Significant Cr deposited with phosphors on the electrodes
as also reported in the literature (Huang et al. 2011a), sug-
gesting the formation of Cr-phosphors coprecipitates and/
or complexes. In contrast, on the electrodes of the control,
the predominant elements were aluminum and sulfur with-
out significant signal of Cr. These results along with the
effluent Cr(VI) and total Cr concentrations indicate that,
although Cr(VI) was reduced in the control with no
bioelectrochemical functions, it was not captured as
coprecipitates by the biofilms on the electrodes. In the
BESs, however, the presence of exoelectrogens and their
ability to bioelectrochemically reduce Cr(VI) resulted in a
higher extracellular Cr accumulation (Fig. 5). The Cr(III)
reduced from Cr(VI) could easily react with phosphors to
form Cr-phosphors coprecipitates and/or complexes on the
electrodes at neutral pH and be removed from the aqueous
phase.

Wastewater treatment performance

At an average influent COD concentration of 512 mg L−1, all
BESs demonstrated a COD removal of 82% with no statisti-
cally significant difference (p = 0.24, ANOVA) (Fig. 6). The
incremental dosing of Cr(VI) did not significantly hinder
COD removal. Given the easily biodegradable nature of glu-
cose, the relatively low COD removal efficiency was attribut-
ed to the non-aerated operation. This non-aeration practice
was used to facilitate Cr(VI) reduction by avoiding competi-
tion for electrons between Cr(VI) and oxygen.

The bioreactors were initially fed with wastewater contain-
ing 20.9 ± 0.7 mg L−1 of NH4

+-N. For the first 25 d of the
operation, the effluent NH4

+-N concentration was 8.4 ±
0.3 mg L−1, suggesting nearly 60% of NH4

+-N removal
(Fig. 7). Following Cr(VI) dosing, the effluent NH4

+-N con-
centration slightly increased to 10.5 ± 0.2 mg L−1 for days 25
to 60, indicating nitrification inhibition. Consistently, the au-
totrophic SOUR decreased from 15.8 ± 2.4 mg O2 g

−1 VSS
h−1 at the beginning of the start-up period to 9.5 ± 2.6 mg O2

g−1 VSS h−1 for days 25 to 60. The influent NH4
+-N concen-

tration was, therefore, reduced to 10 mg L−1 from day 61.
Thereinafter, the autotrophic SOUR resumed to 14.6 ±
3.3 mg O2 g

−1 VSS h−1 in the following 30 d, and the effluent
NH4

+-N concentration dropped to nearly zero (Fig. 7), sug-
gesting biomass activity recovery and acclimatization. The
effluent NH4

+-N concentrations among the BESs were not
significantly different.

The inoculum sludge had significant residual NO3
−-N

(6.6 ± 0.6 mg L−1) and caused a temporary accumulation
of NO2

−-N (0.15 ± 0.03 mg L−1) at the beginning of the
start-up period (Fig. 7). However, nitrite and nitrate con-
centrations decreased steadily through continuous flow
operation, suggesting stable and efficient nitrification/
denitrification of the BESs despite no aeration. The aver-
age dissolved oxygen concentrations in the anodic, ca-
thodic, and settling zones were 0.08 ± 0.03, 0.65 ± 0.10,
and 0.38 ± 0.07 mg L−1, respectively. The primary source
of oxygen in the BESs was its dissolution in the settling
zone and diffusion via stirring in the cathodic zone. The
average effluent NO3

−-N concentration in the MEC was
statistically significantly lower than those in the MFCs (p
< 0.001, ANOVA). Furthermore, the BESs had much low-
er effluent NO3

−-N concentrations than the control (p <
0.001, ANOVA).

The enhanced NO3
−-N removal in the BESs was attributed

to the exoelectrogenic bacteria enriched on the electrodes that
reduced nitrate to nitrogen gas (Clauwaert et al. 2007, Virdis
et al. 2010). The MEC performed better than the MFCs in
reducing NO3

−-N and NO2
−-N due to the external electron

supply. Despite the high nitrate removal efficiency, NO3
−-N

in the BESs could still significantly reduce the coulombic
efficiency and Cr(VI) reduction rate due to the competition

Fig. 4 Distribution of extracellular (black) and intracellular (white) total
Cr in the sludge. (A) Control. (B) MFC with Cr(VI) fed to the anodic
zone. (C) MFC with Cr(VI) fed to the cathodic zone. (D) MEC.
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between Cr(VI) and nitrate for electrons (Sukkasem et al.
2008). Therefore, to avoid the accumulation of NO3

−-N, the
influent NH4

+-N concentration was reduced to 9.4 ± 0.3 mg

L–1 from day 61. The effluent NO3
−-N concentration dramat-

ically reduced to 0.07 ± 0.03 mg L−1 thereinafter (Fig. 7),
indicating complete denitrification.

Bioreactor SEM Images EDS Spectra

Control

(Open Circuit)

BESs

Fig. 5 SEM-EDS analysis of the biofilms on the electrodes. BESs stand
for both MFCs and MEC. The SEM images and the EDS spectra show
the biofilm morphology and the biofilm elemental composition,
r e spec t ive ly. S i ze ba r s (1 μm) a re shown in the SEM

photomicrographs. The adjacent high peaks for phosphors and Cr of the
biofilms in the BESs (EDS spectra) indicate the formation of Cr(III)-
phosphors coprecipitates and/or complexes.

Fig. 6 COD concentrations in the
influent (black square) and
effluent of the BESs. Effluent:
control (black circle); MFC with
Cr(VI) fed to the anodic zone
(white circle); MFC with Cr(VI)
fed to the cathodic zone (black
down-pointing triangle); and
MEC (white up-pointing trian-
gle). Error bars represent the half
ranges of duplicate samples
(COD concentration was mea-
sured once for each of the dupli-
cate samples).
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Fig. 7 Nitrogen species
(ammonium, nitrate, and nitrite)
concentrations in the influent
(black square) and effluent of the
BESs. Effluent: control (black
circle); MFC with Cr(VI) fed to
the anodic zone (white circle);
MFC with Cr(VI) fed to the
cathodic zone (black down-
pointing triangle); and MEC
(white up-pointing triangle). Error
bars represent the standard devia-
tions of duplicate samples (nitro-
gen species concentration was
measured twice for each of the
duplicate samples).
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Implications and prospects of the BESs for Cr removal

BESs have showed their feasibility to reduce Cr(VI) and re-
move total Cr from wastewater mostly in small, batch systems
(Gupta et al. 2017, Habibul et al. 2016, Huang et al. 2015,
Song et al. 2016, Wang et al. 2017). This study demonstrated
the capability of large, continuous flow BESs with low-cost
electrodes for fast Cr(VI) reduction and improved total Cr
removal. Without any proton exchange membrane, our
BESs still effectively reduced Cr(VI) and removed total Cr
from wastewater, which is expected to detoxify Cr(VI).
Compared to the control and the MFCs, the MEC not only
demonstrated faster Cr(VI) reduction, but also exhibited a
much higher total Cr removal efficiency due to the external
power supply. Meanwhile, the reduced Cr coprecipitated with
phosphorus in the biomass/sludge can be easily recovered or
disposed of. Those added benefits could offset the financial
burden of using electrodes and maintaining the BESs. Further
research is needed to recover Cr from the sludge before final
disposal.

The MFCs demonstrated a maximum power density of
11.2 ± 0.5 mW m−2 and a low coulombic efficiency of
13.3%. This low coulombic efficiency can be attributed to
multiple factors such as the specific reactor configuration
(e.g., over-potentials caused by large reactor), the low-cost
electrodes, and the presence of competing electron acceptors
(e.g., nitrate). Further material and reactor configuration im-
provements are needed before BESs can be implemented for
Cr(VI) reduction and total Cr removal in full-scale wastewater
treatment facilities.

Conclusions

This study demonstrated the feasibility of simple, large,
cost-effective, continuous flow BESs with neither cathode
catalyst nor proton exchange membrane in reducing Cr(VI)
and removing total Cr from wastewater. The BESs promot-
ed Cr(VI) (electron acceptor) reduction on the cathode by
providing electrons and facilitated total Cr removal
through coprecipitation of Cr(III) and phosphors with the
biomass. The bioreactor configurations significantly af-
fected the performance of the BESs. Due to the external
power supply, the MEC was more efficient than the MFCs
in Cr(VI) reduction and total Cr removal. The first-order
Cr(VI) reduction rate constant for the MEC was 0.103 d−1,
higher than those of the MFCs (≤ 0.072 d−1). The MEC
also had a higher total Cr removal (66.2%) than the MFCs
(56.7%). For comparison, the control had a much lower
first-order Cr(VI) reduction rate constant (0.033 d−1) and
total Cr removal (26.1%). In summary, the MEC had the
fastest Cr(VI) reduction and highest total Cr removal. In

addition, biomass in the BESs had lower intracellular Cr
contents than the control.
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