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Abstract
Antibiotic residues pose a threat to the health of aquatic organisms. The effects and accumulation of antibiotic ciprofloxacin (CIP)
in a floating macrophyte (Eichhornia crassipes) under hydroponic conditions were investigated. It was found that E. crassipes
exposure to CIP (< 1000 μg L−1) could maintain a stable photosynthesis efficiency. In response to CIP stress, catalase and
peroxidase activities of leaves were 7.24–37.51 nmol min−1 g−1 and 98.46–173.16 U g−1, respectively. The presence of CIP did
not inhibit the growth of the plant. After 14 days of exposure, tender leaves became white and withered, ascribed to the decline of
chlorophyll content and chlorophyll fluorescence parameters. The CIP concentrations, absorbed by E. crassipes, were highest in
the roots, followed by white aerial parts and green aerial parts at CIP concentrations of 100 and 1000 μg L−1. These findings
demonstrated that E. crassipes could absorb and tolerate CIP in a limited time-scale and imply an alternative solution for
phytoremediation in water bodies contaminated with antibiotics.
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Introduction

Antibiotics are extensively used to prevent infectious diseases
and as growth promoters in aquaculture and livestock farming
(Kummerer, 2009; Chuang et al. 2015). Most antibiotics are
poorly absorbed or metabolized by living organisms, and a
considerable fraction are discharged into the natural environ-
ment (Sarmah et al. 2006). Aquatic environments are especial-
ly prone to antibiotic pollution, and antibiotics are frequently
found in the oceans (Du et al. 2017), lakes (Xu et al. 2014),
wastewater (Yang et al. 2017a, b), and drinking water
(Odendaal et al. 2015). The concentrations of antibiotic in
aquatic ecosystems, including fish and shrimp farms, range

from μg L−1 to mg L−1 in water (Kümmerer 2009; Thuy
et al. 2011), and μg kg−1 to mg kg−1 in sediment (Thuy
et al. 2011; Xu et al. 2014). Antibiotic ciprofloxacin (CIP),
one of the most commonly used antibiotics, is frequent-
ly detected in aquatic environments, due to its high
stability and resistance to degradation (Maul et al.
2006; Picó and Andreu 2007). Its residues not only
pose a threat to living organisms but also accumulate
in their bodies (Jia et al. 2017; Song et al. 2017), and
the induced antibiotic resistance genes in contaminated
matrices harm human health (Yan et al. 2013; Yang et al.
2017a, b). Therefore, the effective removal of CIP deserves
to receive more attentions.

Recently, advanced technologies, including advanced oxi-
dative processes, activated carbon adsorption, and membrane
filtration, have been successfully applied with high removal
efficiencies (Elmolla and Chaudhuri 2010; Fu et al. 2017;
Sharma et al. 2017). However, they are not widely employed
in full-scale due to high cost and secondary pollution.
Phytoremediation is one of the most effective, low-cost, and
ecologically safe technologies available to remove antibiotics
in contaminated water via uptake, transformation, assimila-
tion, or degradation (Gujarathi et al. 2005; Michelini et al.
2012; Thuy et al. 2013; Dan et al. 2013). For example, it has
been shown that up to 99.5% sulfonamides can be removed by
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three kinds of Italian ryegrass (Lolium multiflorum Lam.),
including Dryan, Tachimasari, and Waseyutaka in swine
wastewater (Xian et al. 2010). Removal percentages of
73.1–74.8% for sulfamethoxazole by different plant spe-
cies were also observed in constructed wetlands (Liang et al.
2018). Therefore, antibiotics can be effectively removed via
phytoremediation.

Before using phytoremediation, it is necessary to as-
certain the antibiotic effects on aquatic plants during the
phytoremediation processes. Till date, only few studies
have reported that elevated CIP concentration found in
the surface water has adverse effects on the biomass of
Lemna minor at 499 μg L−1 (Ebert et al. 2011), and on
the chlorophyll fluorescence of Azolla filiculoides at
3.05 mg L−1 (Gomes et al. 2018). In order to find
suitable aquatic macrophytes for antibiotic removal of
contaminated water bodies, it is necessary to first clarify
the effects and accumulation processes of potential spe-
cies. Antibiotic toxicity can be reflected by the physio-
logical and biochemical responses of plants (Gomes et al.
2019), and in some cases, organic chemical pollutants not
only induce stress signals to plants but also inhibit their accu-
mulation (Susarla et al. 2002; Madikizela et al. 2018).
Therefore, phytotoxic studies are crucial in the assessment of
appropriateness of phytoremediation for specific plant
species.

The floating macrophyte E. crassipes possesses most of the
characteristics required for application in phytoremediation,
including high production of renewable energy and spread
root apparatus (Rezania et al. 2015; Guna et al. 2017). In
this study, the possibility of employing E. crassipes in
phytoremediation for CIP removal was investigated. Its
tolerance to CIP was explored, reflected via chlorophyll
content, chlorophyll fluorescence parameter, antioxidative
enzymes, and root activity. Additionally, the bioaccumula-
tion and translocation of CIP in E. crassipes were evalu-
ated. These findings will provide a deep understanding and
alternative solutions with phytoremediation in antibiotic-
contaminated water bodies.

Materials and methods

Chemicals

Ciprofloxacin (98%, pure grade, CAS No.86393-32-0) was
used in this study (Shanghai Macklin Biochemistry Co., Ltd,
China). Acetonitrile and methanol (HPLC grade) was obtain-
ed from Tedia Company (Fairfield, OH, USA). All other re-
agents are of analytical reagent grade. Milli-Q water was pur-
chased from a Milli-Q water gradient system (Millipore,
Bedford, MA, USA).

Experimental design and setup

The experiment was carried out in the Experimental Platform
for Ecological Remediation at Nanjing Normal University (32°
6′ 27 N, 118° 54′ 19″ E), inside a glass greenhouse with abun-
dant supply of light. E. crassipes was transplanted from an
uncontaminated pond located in the campus of Nanjing
Normal University. Prior to the experiment, ciprofloxacin was
not detected in the plants that were cultured for 1 week in 1/2
modified Hoagland nutrient solution for acclimatization. The
composition of nutrient solution (mg L−1) is as follows:
MgSO4·7H2O, 490; KNO3, 510; Ca(NO3)2·4H2O, 1180;
KH2PO4, 140; Fe-citrate, 0.02; MnCl2·4H2O, 1.81; ZnSO4·
7H2O, 0.22; CuSO4·5H2O, 0.08; HBO3, 2.86; and H2MoO·
4H2O, 0.09. The pH of nutrient solution was adjusted to 6.0
with 0.05 mol L−1 HCl. E. crassipes was washed thoroughly
with tap water followed by deionized water, before being trans-
ferred to plastic barrel (0.58 m height × 0.5 m diameter) filled
with 100 L of water at pH 6.71. They were of approximately
equal weights: 75.17 g of fresh plants with average root length
16.87 cm and leaf width 9.38 cm was planted in each pot. Each
plastic barrel contained three plants, constituting three replicates
and irrigated with per liter of 1/2 Hoagland nutrient solution.
The surface of each container was covered with silver paper to
prevent photochemical degradation of antibiotics: a complete
randomized block design in triplicate with three barrels along
with the concentrations of CIP at 0 (control), 10, 100, and
1000 μg L−1. During the experiment, the average water tem-
perature was 25.1 °C, and the photoperiod was 12 h. Deionized
water was added to balance water volume. Chlorophyll content,
chlorophyll fluorescence parameter, superoxide dismutase
(SOD), catalase (CAT), and peroxidase (POD) were measured
on the 7th and 14th day. CIP distributions in both aerial parts
and roots of the plants on the 14th day were measured and
compared. In addition, the aerial parts were divided into green
and white parts to evaluate their differences.

Physiological parameters of E. crassipes

Chlorophyll contents (Chl a, Chl b, and total Chl) of leaves
were measured according to the method of Huang et al.
(2004). Plant leaves were weighed to 0.1 g, cut into chips,
and incubated in 80% (v/v) aqueous acetone for 24 h in dark.
Absorbance of solution was measured using spectrophotometer
(UV-2500, Shimadzu, Japan) at 663 and 645 nm, and the total
chlorophyll content was calculated. Chlorophyll fluorescence
parameters were measured using a plant efficiency analyzer
(Hansatech Co., UK). All the parameters including baseline
(F0), maximum (Fm), photochemical efficiency of photosystem
II (Fv/Fm), and potential photochemical efficiency (Fv/F0) were
measured after 20min of dark adaptation. SOD, POD, andCAT
activities were measured according to Xu et al. (2010). Plant
root activity was analyzed by the triphenyl tetrazolium chloride
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(TTC) method Li (2000). Roots were weighed to 0.5 g and
placed into tubes filled with 5 mL of 0.4% TTC and 5 mL of
phosphate buffer (0.06 mol l−1, pH 7.0). The tubes were incu-
bated at 37 °C for 3 h. The chemical reaction was stopped with
the addition of 2mL of 1mol L−1 sulfuric acid in the tubes. This
step was followed by extraction with triphenyl formazan (TPF).
The roots were then transferred to a mortar and ground with a
pestle. Fourmilliliters of ethylacetate and little amount of quartz
sand were added to the mortar. After grinding, the extraction
was deposited at room temperature for half an hour. The liquid
phase was put in the test tube. Ethylacetate was added up to 10
mL, and optical density was recorded using a UV-VIS record-
ing spectrophotometer at 485 nm. The optical density was used
to calculate equivalent TPF concentrations that determined the
root activity for each of the fresh root mass, and the root activity
was expressed in μg (TPF) g−1(FM) h−1.

Antibiotic analysis of plant samples

High-performance liquid chromatography (HPLC) was used to
analyze the CIP concentrations of plant samples. The aerial
parts and roots of plants were frozen at − 18 °C, and then
freeze-dried for 72 h and finally weighed to 1.0 g and ground
with a sterile pestle. Plant samples were added into centrifuge
tubes with 20 mL Na2 EDTA-Mellvaine buffer (pH = 3.0). The
tubes were shaken using vortex generator for 30 s, sonicated for
10 min, and centrifuged at 8000 r min−1 for 10 min. The ex-
traction process of each sample was repeated three times in a
constant volume of Milli-Q water up to 200 mL. The samples
of 200 mL were extracted using Waters Oasis HLB extraction
cartridge (500 mg, Waters, Milford, MA). The extraction car-
tridge was sequentially pre-conditioned with 6.0 mL methanol,
6.0 mL Milli-Q water, and 6.0 mL 10 mM L−1 Na2 EDTA-

Mellvaine buffer (pH = 3.0). The extraction rate was 5 mL
min−1. Subsequently, the cartridge was rinsed with 10 mL
Milli-Q water and the cartridge was eluted with 6.0 mL meth-
anol. Finally, the target fraction was dissolved in 40%methanol
solution to make the volume up to 1.0 mL. The target antibi-
otics were analyzed using AgilentTM 1100 series HPLC
equipped with DAD operated at a wavelength of 278 nm and
a Zorbax 300SB-C18 column (4.6 mm × 150 mm, 5 μm). The
mobile phase used acetonitrile and 0.025 mol L−1 phosphoric
acid solution (15:85, v/v) at the flow rate of 1.0 mL min−1. The
column oven temperature was set at 30 °C, and the injection
volume was 20 μL. Quantification of target analyte was based
on external calibration curves, and correlation coefficients (R2)
of the calibration curves used were 0.999. The recovery effi-
ciencies were 74.8%. Limits of quantification (LOQ) of the
antibiotics were calculated with signal/noise ratios of 10.
LOQ of the samples were 35.5 ng L−1. Bioconcentration factors
were calculated using the formula:

leaf bioconcentration factors LCFð Þ
¼ Cl=Cw; root bioconcentration factors RCFð Þ ¼ Cr=Cw

where Cl and Cr are average CIP concentrations in the aerial
parts and roots of Eichhornia crassipes, respectively, and Cw is
the CIP concentration in the water.

Statistical analysis

Data was analyzed using the SPSS package (version 19.0).
One-way ANOVAwas used to test the significant differences
between treatments. The mean values of different treatments
were compared with LSD test at the significance level of 0.05.
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Results and discussion

Influence of CIP on leaf physiological characteristics

Measurement of chlorophyll

The chlorophyll content of plants, considered an indicator of
pollutant-induced plant stress, is an important parameter for
assessing photosynthetic activity (Huang et al. 2004). The total
chlorophyll content on the 7th day under CIP treatments of 0,
10, 100, and 1000μg L−1 was 3.37, 3.88, 3.36, and 3.06mg g−1,
respectively (Fig. 1). The test results indicate that the total chlo-
rophyll content was found to be increased under relatively low
antibiotic concentrations, whereas high antibiotic concentrations
reduced the total chlorophyll content due to the hormesis of CIP
(Wan et al. 2014). According to Zhou et al., it was found that
chlorophyll biosynthesis is promoted at low concentrations of
antibiotics by affecting the nucleic acid and protein content in
cells, and that antibiotics reduce chlorophyllase activity, which
disturbed chlorophyll degradation, and increases chlorophyll
content. The increased chlorophyll content in cells can serve
as a protective mechanism to scavenge the accumulated reactive
oxygen species in chloroplasts (Kasahara et al. 2002). However,
on the 14th day, chlorophyll a and b as well as total chlorophyll
content were significantly reduced. The results obtained showed
that, in treated plants, antibiotics cause the tender leaves to turn
from green to white in color. The effect of antibiotics on chlo-
rophyll content was dependent upon the exposure time of anti-
biotics. It attributed the inhibition of CIP to chloroplast-specific
enzyme activity: fluoroquinolone antibioticsmediate their action
as quinone site inhibitors in photosystem II, which is a key
enzyme in photosynthetic electron transport (Wall et al. 2004;
Evansroberts et al. 2011).

Measurement of chlorophyll fluorescence parameters

Physiological responses in photosynthesis metabolism of
E. crassipes were seen to be modulated with CIP, where it is
known to inhibit photosynthesis (Wall et al. 2004), the chlo-
rophyll fluorescence kinetics of plants were monitored to eval-
uate the effects of antibiotics on photosynthesis metabolism.
The Fm values, an indicator of the total amount of plastoqui-
nones, showed not significant difference between the control
and CIP treatments on the 7th day (Table 1), indicating that
plastoquinone biosynthesis is not a target of antibiotics at the
initial cultivation. However, after 14 days of exposure, there
was a decrease inFv/Fm, representingmaximal photochemical
efficiency of PS II and PS II integrity (Walter et al. 2003), in
E. crassipes upon CIP with long exposure time. This indicated
that maximal PS II photochemical yield was disturbed and
CIP had deleterious effects on its integrity (Gomes et al.
2017). All these observations demonstrated that E. crassipes
cannot tolerate with longer exposure to CIP. Ta
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Resistance to antioxidant enzymes

Photosynthetic organisms counteract antibiotic toxicity in-
duced by accumulated reactive oxygen species in cells by
changing their antioxidative enzymes’ defense system
(Xiong et al. 2017). SOD is viewed as the first line of defense
against reactive oxygen species damage. It catalyzes the
dismutation of the superoxide radicals to H2O2 and O2, keep-
ing low the levels of superoxide radicals in cells. Herein, the
SOD activities on the 7th day were found to be lower than the
control, 20.81, 42.39, and 46.1 U g−1 under CIP concentra-
tions of 10, 100, and 1000 μg L−1, respectively (Fig. 2a). It
was found to decline along with the increasing antibiotic con-
centrations, in agreement with previous observations of
Phragmites australis exposed to CIP (Liu et al. 2013). But
there was no significant difference between treatments, since
the binding of fluoroquinolones probably induced structural
change in SOD instead of its activity (Cao et al. 2015).
However, the SOD activities on exposure to CIP on the 14th
day were found to be significantly lower than those on the 7th
day due to the oxidative stress by CIP with exposure time
(Carreras et al. 2004; Xu et al. 2010; Talla and Veerareddy
2011). CAT is an enzyme that decompose H2O2 into H2O and
O2 (Gomes et al. 2017). In this study, CATactivities increased

along with CIP concentrations at the beginning of cultivation
(Fig. 2b), which attributed to the better acclimation of plants.
However, after 14 days of exposure, CAT was found to be
lower on the 7the day. CAT is a photosensitizer, and it is likely
inactive in white leaf cells because of the fewer photosynthetic
pigments (Smirnoff 1995). POD activities gradually increased
with CIP concentrations during cultivation (Fig. 2c). After 14
days of exposure, they were significantly higher than those on
the 7th day with their values of 21.55, 258.73, and 251.02 U
g−1 under CIP concentrations 10, 100, and 1000 μg L−1, re-
spectively. Due to the spatial distribution of POD at cytosol,
vacuole, and extra-cellular components of plant tissues (Liu
et al. 2013), POD activities increased to keep the balance of
H2O2, produced by the action of SOD on superoxide radicals
and the generation of OH via a Haber-Weiss reaction during
the process of photorespiration. Therefore, the different SOD,
CAT, and POD activities may be related to the potential en-
zyme toxicity of CIP to antioxidative enzymes.

Response of root activity to CIP

Root activity is regarded as an indicator to assess the
growth of plant roots (Liu et al. 2013). When compared with
the control, the root activity with 10 μg L−1 of CIP was
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significantly higher (Fig. 3), while it decreased by 77.58 and
177.71μg g−1 at 100 and 1000μg L−1. Similar to other studies
(Li et al. 2011; Liu et al. 2013), root activity declined with
high antibiotic concentrations, because antibiotics influenced
folic acid synthesis and catalyzed ATP-dependent DNA
supercoiling to prevent the growth of new cells in plant roots
(Wall et al. 2004; Aristilde et al. 2014). However, the division
of cells in maize roots was not disrupted by CIP (Gomes et al.
2019) due to the difference of different plant species.

Accumulation and translocation of CIP in E. crassipes

The level of CIP accumulated in E. crassipes was closely
related to its concentrations. The residues in roots were 2.46,
32.79, and 1050.68 μg g−1 under CIP treatments of 10, 100,
and 1000 μg L−1, respectively (Table 2). CIP migrated from
the roots to aerial parts through transpiration (Dettenmaier
et al. 2008). The maximal concentrations of CIP in the green
and white aerial parts were 8.34 and 84.24 μg g−1, respective-
ly. CIP accumulated the most in roots, the primary point of
contact with CIP, through physicochemical absorption and
biological uptake. CIP concentrations in the aerial parts were
less than the roots, since antibiotics might be degraded via

photolysis in the aerial parts receiving enough light
(Babić et al. 2013).

Bioconcentration factors, reflecting the bioaccumulation of
organic compounds in the organisms, are more important than
concentrations in plant tissues when evaluating the
phytoremediation potential of a given species (Starkov and
Fiskum 2001; Azanu et al. 2016). The bioconcentration fac-
tors of E. crassipes followed the order of RCF > LCF (white)
> LCF (green) with 100 and 1000 μg L−1 of CIP. In
E. crassipes, LCF of green and white aerial parts decreased
with the increasing CIP concentrations, as opposed to RCF.
The trend of LCF indicated a diminishing efficiency of uptake
and accumulation due to physiological changes occurring at
these chemical levels (Starkov and Fiskum 2001; Gomes et al.
2013). RCFwas lower than LCF (green and white) with 10μg
L−1 of CIP, possibly related to the low biological activities of
plants induced by the high CIP concentrations. Therefore, the
high migration rate generally occurred at low CIP
concentration.

The absorption of pharmaceutical products by aquatic
plants has been well reported (Malakootian et al. 2015;
Gomes et al. 2017) and has motivated investigations for using
plants as potential green technologies that could purify aquatic
environments. Generally, in natural aquatic environments, an-
tibiotic concentrations are relatively low. The floating macro-
phyte E. crassipes can take up antibiotics from contaminated
waters for a relatively longer period of time. However, under
high antibiotic concentrations, e.g., wastewater treatment
plants effluents, hospital sewage water, or pharmaceutical
manufactures effluents, the growth of E. crassipes and the
antibiotic absorption are time-limited; thus, further manage-
ment of harvest is necessary for the restoration of antibiotic-
contaminated waters.

Conclusions

Antibiotic CIP–contaminated water did not affect the growth
and survival of E. crassipes at the initial stage, as evidenced
with the monitoring of chlorophyll content, chlorophyll fluo-
rescence parameter, and antioxidative enzymes. However,
there were morphological changes being observed during
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Table 2 Accumulation and translocation of CIP in Eichhornia crassipes

Treatment
concentrations (μg L−1)

Aerial parts (green)
(μg g−1)

ACF Aerial parts (white)
(μg g−1)

ACF Root (μg g−1) RCF

CIP Control
10
100
1000

ND
5.94 ± 1.81a

8.25 ± 2.85a

8.34 ± 2.56a

–
0.59 ± 0.18
0.08 ± 0.02
0.008 ± 0.00

ND
10.49 ± 1.45a

25.59 ± 9.19a

84.24 ± 1.38b

–
1.04 ± 0.14
0.25 ± 0.09
0.08 ± 0.00

ND
2.46 ± 0.36a

32.79 ± 4.20a

1050.68 ± 55.65b

–
0.24 ± 0.03
0.32 ± 0.04
1.05 ± 0.05

Bars denote standard errors (n = 6). The a and b denote the significant differences among different treatments based on LSD (p ≤ 0.05).
ND stands for not detected
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tender leaves gradually turned white after long exposure to
CIP, caused by the decrease of photosynthetic pigments and
antioxidative enzyme activities. In addition, CIP was absorbed
with E. crassipes in a dose-response scenario. The initial ele-
vated external concentrations stimulated the antibiotic absorp-
tion by E. crassipes. The roots, instead of leaves, were found
to be the main CIP absorber. The time-scale regulation of
E. crassipes must therefore needs be considered for the
phytoremediation of antibiotic-polluted waters.
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(No.2017ZX07203-003), and the National Natural Science Foundation
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