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Abstract
The aim of this study was to improve the ethanol production from pomegranate peels (PPs). Therefore, the effect of enzymatic
hydrolysis and different pretreatments on ethanol production by yeasts was examined. There were three different enzyme
concentrations (3.6, 7.2, 14.4 FPU/g substrate) tested for enzymatic hydrolysis, and four different PP media, such as WSPP
(whole slurry of PP), LFPP (liquid fraction of PP), WSFPP (washed solid fraction of PP) and N-WSFPP (non-washed solid
fraction of PP), were prepared. Bioethanol production was monitored for 96 h.Maximum ethanol concentrations were obtained at
WSPPmedium as 12.69 g/L, 14.35 g/L and 4.23 g/L in Saccharomyces cerevisiae,Kluyveromyces marxianus and Pichia stipitis,
respectively. On the other hand, the washing step of biomass increased the kinetic parameters dramatically and the highest
theoretical ethanol yields and YP/S values were obtained fromWSFPPmedium in all tested yeasts. Theoretical ethanol yields were
97.8%, 98.7% and 35.5% for S. cerevisiae,K.marxianus and P. stipitis, respectively.Qp values were observed as 0.98 g/L h, 0.99
g/L h and 0.04 g/L h for the same yeasts. The highest YP/S values were detected as 0.50 g/g for S. cerevisiae, 0.50 g/g for K.
marxianus and 0.30 g/g for P. stipitis in the washed pomegranate peel biomass.
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Introduction

In today’s world, global energy demand is met by non-
renewable energy sources, such as fossil fuels. However, fossil
fuels have somemajor disadvantages, such as a negative impact
on the environment. Growing population and increasing
industrialisation cause the depletion of fossil fuels, and these
fuels are also one of the main causes of greenhouse gas emis-
sions and climate change. By this context, it is necessary to
explore alternative energy sources such as biodiesel, bioethanol
and hydrogen (Zhang et al. 2016; Zabed et al. 2017; Anwar
Saeed et al. 2018). Renewable energy sources which are de-
rived from lignocellulosic biomass can help avoid climate
change or greenhouse gas emissions (Kharytonov et al.
2019). Ethanol can be produced from different feedstocks such

as edible crops (wheat, corn), lignocellulosic biomass (wheat
straw, rice straw) or photosynthetic microorganisms such as
microalgae or cyanobacteria. Edible crops are the source of
first-generation ethanol. Although it is easier to produce ethanol
from edible crops, the cost of rawmaterial and some ethical and
environmental concerns are major barriers for first-generation
ethanol production. Therefore, many types of research have
been focused on ethanol production from lignocellulosic bio-
mass. Lignocellulose represents the most underutilised and
cheap resource on Earth. It also has a low price and rich carbo-
hydrate content and does not compete with edible crops (Naik
et al. 2010; Djelal et al. 2017). Lignocellulose is composed of
cellulose, hemicellulose and lignin which is resistant to degra-
dation. Therefore, pretreatment is a crucial factor for the de-
composition of lignocellulose. For this reason to obtain fer-
mentable sugars, lignocellulosic biomass should be pretreated
(Van Dyk and Pletschke 2012; Tsegaye et al. 2018).
Pretreatment with dilute acid is generally considered as one of
the most effective methods. In dilute acid pretreatment, the
majority of the hemicellulose is degraded, and the cell wall
matrix is damaged. By this reason, accessibility to the cellulosic
structure by cellulase enzymes increases efficiently and this
cellulose can be hydrolysed by the cellulase enzymes (Vohra

Responsible editor: Ta Yeong Wu

* Sevgi Ertuğrul Karatay
sertugrul@ankara.edu.tr

1 Department of Biology, Faculty of Science, Ankara University,
Beşevler, 06100 Ankara, Turkey

https://doi.org/10.1007/s11356-019-06020-1
Environmental Science and Pollution Research (2019) 26:29366–29378

/Published online: 9     August 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s11356-019-06020-1&domain=pdf
mailto:sertugrul@ankara.edu.tr


et al. 2014). Enzymatic hydrolysis of lignocellulose after the
dilute acid pretreatment is a very effective way to obtain fer-
mentable sugars due to its high productivity rates. Moreover,
hydrolysis happens in mild conditions and it does not have
corrosion problems (Balat 2011). Furthermore, application of
the appropriate enzyme concentration reduces the overall cost
of the process and gives optimal results (Pessani et al. 2011).

In dilute acid pretreatment, some inhibitory compounds can
be released to the medium (Palmqvist and Hahn-Hägerdal
2000). To remove these inhibitory compounds, pretreated bio-
mass might be washedwith water in order to eliminate the toxic
materials; however, during the washing step, the concentration
of soluble sugars decreases due to washing with water (Kumar
et al. 2009a; Shi et al. 2009; Fernandes et al. 2015). On the
other hand, during the acid pretreatment, a significant amount
of fermentable sugars from cellulose and hemicellulose are
generally released to the liquid fraction from the pretreated
biomass slurry. In order to reduce the cost operation and utilise
all of the sugars, hydrolysis of whole slurry (solid and liquid
fractions together) is more desirable (Jung et al. 2013).

Pomegranates (Punica granatum) have gained much atten-
tion in recent years because of their antimicrobial, anticancer,
antiviral and antioxidant properties. (Lansky and Newman
2007; Yasoubi et al. 2007; Johanningsmeier and Harris
2011; Rosas-Burgos et al. 2017). Besides these features,
pomegranate peels have a considerable amount of fermentable
sugars (Hasnaoui et al. 2014; Zhu et al. 2015). Therefore,
pomegranate peels (PPs) were considered as the raw material
for ethanol production in this study.

In our previous study, we showed that the PP is a suitable
material for ethanol production and 5.58 g/L ethanol was ob-
tained by S. cerevisiae (Demiray et al. 2018). In this study, we
increased the ethanol production of S. cerevisiae to 12.69 g/L.
Moreover, it was shown that our laboratory isolate K.
marxianus, which is better than S. cerevisiae for bioethanol
production, produced 14.35 g/L ethanol.

In this study, we have examined the effects of 4 differently
pretreated PP media (washed solid PP, non-washed solid PP,
whole slurry of PP and liquid fraction of PP) and 3 different
cellulase loadings (3.6, 7.2 and 14.4 FPU/g substrate) on the
ethanol production during a 96-h incubation period.
Saccharomyces cerevisiae, Kluyveromyces marxianus and
Pichia stipitis were used in these experiments. To our knowl-
edge, this is the first paper which reports a high amount of
bioethanol such as 14.35 g/L from PP via enzymatic hydrolysis.

Materials and methods

Raw material, microorganisms and media

PPs were supplied as stated in our previous study. S. cerevisiae
and K. marxianus were obtained from Ankara University

Culture Collection. P. stipitis was supplied from the NNRL
Culture Collection. Fermentation media were prepared as in
our previous study (Demiray et al. 2018). The yeast cells
which have been pre-cultured 24 h were inoculated to the
fermentation medium as 5% (v/v).

Pretreatment of PP

For pretreatment of PP, 1% H2SO4 (v/v) was added to 100 g/L
PP (w/v) and autoclaved immediately at 121 °C for 15min. To
determine the effect of different pretreated media of PP to the
enzymatic hydrolysis, the whole slurry of PP (WSPP/liquid
and solid fractions together), the liquid fraction of PP (LFPP),
washed solid fraction of PP (WSFPP) and a non-washed solid
fraction (N-WSFPP) were prepared. The liquid fraction of PP
(LFPP) was filtered through Whatman No. 1 paper and liquid
filtrate was used for enzymatic hydrolysis. The washed solid
fraction of PP (WSFPP) was washed with tap water until it
reached a neutral pH value. The non-washed solid fraction of
PP (N-WSFPP) was also prepared. N-WSFPPwas not washed
in tap water and it was directly used in enzymatic hydrolysis
and fermentation experiments.

Enzymatic hydrolysis

After the pretreatment step, the pH of the pretreated PP medi-
umwas adjusted to 4.8 in the presence of 50mM citrate buffer
(Chen et al. 2012). There were 4 different PP media (WSPP,
LFPP, WSFPP and N-WSFPP) used on enzymatic hydrolysis.
All enzymatic hydrolysis was performed in 250-mL
Erlenmeyer flasks with a working volume of 100 mL.
CellicCTec2 is a commercial cellulase and was supplied from
Novozymes, Denmark. There were 3 different enzyme con-
centrations (3.6, 7.2, 14.4 FPU/g substrate) tested. The exper-
iments were carried out in a 50 °C water bath with a shaker
apparatus at 100 rpm for 72 h. In order to stop the enzymatic
hydrolysis, all PP media were boiled in a 100 °C water bath
for 10 min. Filter paperase unit (FPU) activity of the enzyme
was found to be 121 FPU/mL.

Fermentation assays

Fermentation media were incubated at 30 °C for 96 h for all
yeasts at pH 4.8 with a 100-rpm agitation speed. Sugar con-
sumption and ethanol production were monitored during the
incubation.

Analytical methods

Samples were centrifuged at 10,000 rpm for 10 min. The
supernatant was filtered with a 0.45-μm pore size filter.
Ethanol concentration was detected with a Shimadzu/GC-
2010 gas chromatography system equipped with a flame
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ionisation detector (FID) and 0.25 mm i.d. RTX-Wax column.
GC analysis was performed according to Wistara et al. (2016)
with modifications. These modifications were as follows: The
injection port and flame ionisation detector temperatures were
held at 140 and 160 °C, the initial column temperature was 50
°C and the column temperature was increased to 150 °C with-
in 19 min. Column flow was 1.86 mL/min.

For determining the sugar profile of PP, an HPLC analysis
Shimadzu system with a BioRad Aminex HPX-87P column
and refractive index detector (RID) was used. Before the anal-
ysis, 2 mL PP hydrolysate was centrifuged at 10,000 rpm for
10 min. All samples and standards were filtered through
0.45-μm pore size filter. Column oven temperature was held
at 80 °C and filtered deionised water was used as a mobile
phase. Total flow was adjusted to 0.6 mL/min. Samples and
standards were analysed for 30 min (Saha et al. 2019).

Total reducing sugar content was determined according to
the DNS method (Miller 1959). The FPU/mL of the cellulose
was determined according to Adney and Baker (2008).

The theoretical ethanol yield was calculated according to
Eq. (1) presented below (Kim and Lee 2005):

Theoretical Ethanol Yield (%):

ethanol gð Þ
initial sugar gð Þ � 0:511

� 100 ð1Þ

Ethanol productivity (Qp) was determined according to Eq.
(2), as described elsewhere (Roca and Olsson 2003).

Qp :
g=L ethanol

h
ð2Þ

In this equation “g/L ethanol” is the maximum ethanol
concentrations obtained from each microorganism at the spe-
cific time point. On the other hand, “h” refers to the time point
where the highest ethanol is present.

The ethanol yield (YP/S) was calculated according to Eq. (3)
(Günan Yücel and Aksu 2015) below:

YP=S
g max ethanol

g consumed reducing sugar
ð3Þ

In Eq. (3) “g max ethanol” is the maximum ethanol amount
obtained from microorganisms and “g consumed reducing
sugar” shows the amount of consumed sugar concentration,
when the highest amount of ethanol is detected in
microorganisms.

Statistical analysis

Statistical analysis was performed at the level of the p value (<
0.05) and on SPSS 20.0 program to determine the significance
of the difference of tested groups. Univariate analysis was
performed in order to determine the effect of enzyme dosage

and PP medium to the ethanol and sugar concentration.
Standard errors and error bars that are presented in the tables
and figures were calculated respectively and all experiments
were performed as triplicate.

Results and discussion

The effect of enzymatic hydrolysis

Before the enzymatic hydrolysis, the PP was pretreated with
1% H2SO4 (v/v). Different kinds of fermentable sugars were
determined after acid pretreatment. The data in Table 1 depicts
that the most abundant sugar of the PP was glucose as 37.9%.
Xylose, cellobiose, arabinose and fructose percentages were
found as 17.6%, 16.7%, 14.9% and 12.9%, respectively.
Sugar profiles of PP were determined in previous reports.
For instance, Talekar et al. (2018) found the glucose, xylose
and arabinose concentration of the pomegranate peels as
18.66, 4.17 and 1.65 g/L, respectively. To determine the effi-
ciency of different pretreatment methods, 4 different fermen-
tation media were prepared and 3 different enzyme concentra-
tions were applied to these media. In all groups, initial PP
loading was 100 g/L, and 1% H2SO4 was used for pretreat-
ment. The data in Table 2 compares the initial sugar concen-
trations of the media which were hydrolysed with different
enzyme concentrations from 0 to 14.4 FPU/g substrate. It
can be concluded that higher enzyme loading caused higher
reducing sugar concentrations. In the literature, there are sim-
ilar studies which report that the whole slurry hydrolysis is
favourable for sugar releasing from the biomass. For instance,
Jung et al. (2014) pretreated the whole slurry of empty fruit
bunches with maleic acid and enzyme. Researchers found that
usage of the whole slurry increased the sugar concentration in
the fermentation medium significantly. In our current study,
the sugar concentrations of LFPP, WSFPP and N-WSFPP
were lower than those of WSPP as expected.

The lowest initial reducing sugar concentrations before the
enzymatic hydrolysis of theWSPP, LFPP and N-WSFPPwere
found as 19.71, 14.42 and 6.53 g/L hexose and 15.82, 11.63
and 5.37 g/L pentose, respectively. Furthermore, the lowest
sugar concentrations were obtained from WSFPP for all the

Table 1 Sugar
composition of PP (1%
H2SO4, 121 °C at 15
min, 100 g/L PP, pH 5)

Type of sugar (%)

Fructose 12.9

Glucose 37.9

Arabinose 14.9

Xylose 17.6

Cellobiose 16.7
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tested enzyme concentrations. These lower sugar concentra-
tions may be related to the washing steps of the biomass.
However, initial sugar concentrations were increased from
1.49 to 23.45 g/L with the 14.4 FPU/g substrate and this value
is nearly the same when N-WSFPP was used (Table 2).
Similarly, in a study, Pocan et al. (2018) found the reducing
sugar concentrations of the pomegranate peel about 20 g/L
when they hydrolysed the pomegranate peels with 13.5
FPU/g biogazyme cellulase.

The highest reducing sugar concentrations were detected
when WSPP was hydrolysed with 14.4 FPU/g substrate as
36.34 g/L hexose and 29.01 g/L pentose at the end of 72 h.
It is because WSPP contains both fermentable sugars from
liquid and solid residues of PP. Therefore, higher sugar con-
centrations were obtained in all tested enzyme amounts for

WSPP. These results are coherent with the literature about
enzymatic hydrolysis of the lignocellulosic biomass
(Josefsson 2013).

Some similar reports about pretreatment of the ligno-
cellulosic wastes showed that washed and unwashed
biomass give similar sugar profiles. For example, Lu
et al. (2010) investigated ethanol production from corn
stover on high solid concentrations. Researchers found
that the glucose amounts of washed and unwashed corn
stovers were nearly the same (about 30 g/L) at the end of
the enzymatic hydrolysis when they used 100 g/L corn
stover in the presence of 20 FPU/g substrate cellulase
enzyme. Furthermore, Tutt et al. (2012) found that the
glucose concentrations of the washed and unwashed
wheat straw biomass pretreated with sulfuric acid were

Table 2 Initial sugar
concentrations before and after
72-h enzymatic hydrolysis (100 g/
L PP loading, pH 4.8, 100 rpm, 50
°C, hydrolysis time 72 h)

Enzyme loading
(FPU/g substrate)

WSPP LFPP WSFPP N-WSFPP

Initial reducing hexose concentration (g/L)

0 19.71 ± 3.4a 14.42 ± 2.6b 1.49 ± 0.2c 6.53 ± 1.0d

3.6 27.96 ± 2.5e 17.42 ± 0.1f 9.72 ± 1.3g 19.1 ± 2.4h

7.2 31.55 ± 1.1i 21.35 ± 1.5j 14.92 ± 2.1k 21.58 ± 1.3j

14.4 36.34 ± 0.2m 27.61 ± 2.7n 23.45 ± 0.2o 23.46 ± 0.4o

Initial reducing pentose concentration (g/L)

0 15.82 ± 2.7a 11.63 ± 2.1b 1.37 ± 0.2c 5.37 ± 0.8d

3.6 22.37 ± 2.0e 14.01 ± 0.1f 7.9 ± 1.1g 15.34 ± 1.9f

7.2 25.22 ± 0.8h 17.12 ± 1.2i 12.02 ± 1.7j 17.3 ± 1.0i

14.4 29.01 ± 0.2k 22.08 ± 2.1l 18.59 ± 0.1m 18.6 ± 0.3m

Different letters in superscript within the same row indicate the significant differences with respect to different
sugar concentrations statistically (p ≤ 0.05)

Table 3 Bioethanol
concentrations of S. cerevisiae, K.
marxianus and P. stipitis in
different pretreated PP media
(100 g/L PP loading, pH 4.8, 100
rpm)

Pretreatment conditions Enzyme loading
(FPU/g substrate)

S. cerevisiae K. marxianus P. stipitis

WSPP 3.6 9.85 ± 0.0* 9.55 ± 0.5* 1.6 ± 0.0**

7.2 11.08 ± 0.0* 10.89 ± 0.2* 2.46 ± 0.1**

14.4 12.69 ± 0.06* 14.35 ± 0.72** 4.23 ± 0.18***

LFPP 3.6 7.79 ± 0.3* 8.08 ± 0.4* 1.01 ± 0.1**

7.2 9.48 ± 0.0* 9.89 ± 0.0* 1.3 ± 0.0**

14.4 11.37 ± 0.35* 12.35 ± 0.18** 2.78 ± 0.0***

WSFPP 3.6 5.78 ± 0.1* 5.13 ± 0.1* 1.52 ± 0.0**

7.2 6.53 ± 0.2* 7.08 ± 0.0** 2.35 ± 0.1***

14.4 11.72 ± 0.38* 11.83 ± 0.18* 3.37 ± 0.1**

N-WSFPP 3.6 4.67 ± 0.4* 4.47 ± 0.0* 1.04 ± 0.0**

7.2 5.07 ± 0.0* 6.26 ± 0.0** 1.28 ± 0.2***

14.4 7.28 ± 0.0* 7.14 ± 0.1* 1.48 ± 0.1**

For all conditions, the maximum ethanol detection time was shown in the table. Different asterisks symbols (*, **
and ***) in superscript within the same row indicate the significant differences with respect to different ethanol
concentrations statistically (p ≤ 0.05)
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27.6 g/100 g (unwashed samples) and 26.7 g/100 g
(washed samples), respectively.

In our current study, the highest sugar amounts were ob-
tained at 14.4 FPU/g substrate which is the highest enzyme
concentration in all groups. Sugar and ethanol concentrations
increased with increasing enzyme loading. Similar
observations were reported previously. For instance, Narra
et al. (2015) investigated ethanol production from K.
marxianus. The authors tested 3 different enzyme loadings
(6, 9, 12 FPU/g substrate) at different time intervals. The

increase in enzyme amount did not cause a significant increase
in ethanol concentration in their study. In our study, the
highest sugar amounts were obtained at 14.4 FPU/g sub-
strate, which is the highest enzyme concentration in all
groups. Sugar and ethanol concentrations increased with
increasing enzyme loading. Jung et al. (2013) also found
that enzymatic digestibility of empty fruit bunches was as
maximum as 87.5% when they used maximum enzyme
concentrations such as 60 FPU + 30 CBU cellulase and
β-glucosidase, respectively.

Fig. 1 Ethanol and glucose
concentrations in fermentation
system with (a) S. cerevisiae, (b)
K. marxianus and (c) P. stipitis in
the presence of 14.4 FPU/g
substrate in the WSPP. Rectilineal
triangles, squares and circles are
sugar concentrations and dotted
lines with triangles, squares and
circles are the ethanol
concentrations. S. cerevisiae.
K.marxianus. P. stipitis (100

g/L initial PP loading, pH 4.8, 30
°C, 100-rpm agitation speed)

Environ Sci Pollut Res (2019) 26:29366–2937829370



Effect of different pretreatment methods on ethanol
production

Ethanol production in WSPP medium

Both liquid and solid fractions of PP were used in the WSPP
fermentation medium. In the presence of 3.6 FPU/g substrate
enzyme loading, S. cerevisiae, K. marxianus and P. stipitis
produced 9.85, 9.55 and 1.6 g/L ethanol, respectively
(Table 3). In 7.2 FPU/g substrate enzyme loading, these

amounts were 11.08, 10.89 and 2.46 g/L, respectively, for
the same yeasts. In all tested yeasts, the highest concentrations
of ethanol were detected when the enzyme loading was 14.4
FPU/g substrate. In these experiments, using the whole slurry
(solid and liquid residues together) resulted in the highest
sugar concentrations. As expected, higher sugar yields led to
higher ethanol concentrations. Ethanol concentrations were
12.69 and 14.35 g/L for S. cerevisiae and K. marxianus at
the end of the 24 h and 4.23 g/L for P. stipitis at the end of
the 72 h. It was also detected that after the 96-h fermentation

Fig. 2 Ethanol and glucose
concentrations in fermentation
system with (a) S. cerevisiae, (b)
K. marxianus and (c) P. stipitis in
the presence of 14.4 FPU/g
substrate in the LFPP. Rectilineal
triangles, squares and circles are
sugar concentrations and dotted
lines with triangles, squares and
circles are the ethanol
concentrations. S. cerevisiae.
K.marxianus. P. stipitis (100

g/L initial PP loading, pH 4.8, 30
°C, 100-rpm agitation speed)
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time, reducing sugars of the WSPP were almost depleted. The
results and literature comparison are summarised in Figs. 1
and 5 and Tables 2 and 5.

It was also monitored that 3.6 and 7.2 FPU/g substrate
enzyme loadings resulted in the highest ethanol yields at the
end of 12 h in K. marxianus and S. cerevisiae. However, 14.4
FPU/g substrate enzyme loading gave the highest results at the
end of 24 h for K. marxianus and S. cerevisiae and 72 h for P.
stipitis. This may be due to the fact that yeasts have longer log
phase because there were higher sugar amounts than when the

WSPP was hydrolysed with 14.4 FPU/g substrate enzyme
rather than 3.6 and 7.2 FPU/g substrate. Our results are com-
parable with some other studies (Kumar et al. 2009b; Kim and
Ho 2014).

There are other reports that stated that the whole slurry
fermentation is beneficial for ethanol production. Tomás-
Pejó et al. (2008) compared the whole slurry ethanol fermen-
tation of wheat straw versus water insoluble solids (WIS) of
wheat straw. Authors detected that final sugar concentrations
of the WIS were 23.9 g/L glucose and 6.6 g/L xylose and in

Fig. 3 Ethanol and glucose
concentrations in fermentation
system with (a) S. cerevisiae, (b)
K. marxianus and (c) P. stipitis in
the presence of 14.4 FPU/g
substrate in the WSFPP.
Rectilineal triangles, squares and
circles are sugar concentrations
and dotted lines with triangles,
squares and circles are the ethanol
concentrations. S. cerevisiae.
K.marxianus. P. stipitis (100

g/L initial PP loading, pH 4.8, 30
°C, 100-rpm agitation speed)
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the case of the whole slurry, these amounts were 37.5 g/L
glucose and 20.7 g/L xylose, respectively.

Because WSPP medium contains both solid and liquid
fractions of PP, higher concentrations of fermentable
sugars were obtained. Higher sugar concentrations lead to
higher ethanol yields. Some previous works also indicated
that whole slurry fermentation caused higher ethanol
yields. For instance, in a study, bioethanol yield of the
whole slurry of the dilute acid–pretreated spruce was found

around 300 g/kg. On the other hand, when spruce biomass
was washed, it was detected that 36% of total sugars of the
slurry were excluded and ethanol yield was found as 210
g/kg at 30 °C (Xiros and Olsson 2014).

Ethanol production in LFPP medium

In these set of experiments, the only liquid fraction of acid
hydrolysed PPwas used in LFPP fermentation medium. In 3.6

Fig. 4 Ethanol and glucose
concentrations in fermentation
system with (a) S. cerevisiae, (b)
K. marxianus and (c) P. stipitis in
the presence of 14.4 FPU/g
substrate in the N-WSFPP.
Rectilineal triangles, squares and
circles are sugar concentrations
and dotted lines with triangles,
squares and circles are the ethanol
concentrations. S. cerevisiae.
K.marxianus. P. stipitis (100 g/
L initial PP loading, pH 4.8, 30
°C, 100-rpm agitation speed)
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FPU/g substrate enzyme loading, ethanol contents were 7.79
g/L, 8.08 g/L and 1.01 g/L. In the presence of 7.2 FPU/g
substrate enzyme loading, these amounts were 9.48 g/L,
9.89 g/L and 1.30 g/L. Similarly, the WSPP in 3.6 and 7.2
FPU/g substrate enzyme loadings gave the highest value at
12 h for S. cerevisiae and K.marxianus and 72 h for P. stipitis.
In the LFPP medium, the highest ethanol concentrations were
11.37 g/L, 12.35 g/L and 2.78 g/L for S. cerevisiae, K.

marxianus and P. stipitis in the presence of the 14.4 FPU/g
substrate enzyme. When the enzyme concentration increased
to 14.4 FPU/g substrate, the highest ethanol was detected at
24 h for S. cerevisiae and K. marxianus. In P. stipitis maxi-
mum, ethanol was detected at the end of 72 h when enzyme
loading was 14.4 FPU/g substrate (Table 3; Fig. 2). Petersen
et al. (2009) showed that the liquid fraction of the wheat straw
contains cellulose and hemicellulose after pretreatment.

Fig. 5 Some GC spectra examples. (a) Ethanol chromatogram of K.marxianus in the presence ofWSPP hydrolysed with 14.4 FPU/g substrate enzyme.
(b) Ethanol chromatogram of 10 g/L ethanol standard
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Similar results have also been reported by Evcan and Tari
(2015) who obtained 8.74 g/L bioethanol from the liquid frac-
tion of the apple pomace.

Ethanol production in WSFPP and N-WSFPP media

In order to examine the effect of washing on ethanol produc-
tion from PP, solid residues of dilute acid–pretreated PP were
washed with water. It was observed that the washing step
significantly increased the ethanol amounts for 3 yeasts when
compared with non-washed PP. In these set of experiments,
the highest ethanol concentrations were detected at the end of
the 12-h fermentation time for S. cerevisiae and K.marxianus,
respectively. When WSPP was used, the highest ethanol con-
tent was detected at the end of the 24 h. These results revealed
that washing of the PP has accelerated the process efficiently.

According to the data stated in Table 3, ethanol concen-
trations of the washed solid fraction of PP were higher than
those of non-washed PP samples as 60.9%, 66% and 127%
for S. cerevisiae, K. marxianus and P. stipitis. It can be
clearly seen that the washing of PP had a positive effect
on ethanol production in all tested yeast strains. Figures 3
and 4 showed the ethanol production from WSFPP and N-
WSFPP in 3 yeasts after acid pretreatment and enzymatic
hydrolysis of PP. Although N-WSFPP had higher initial
reducing sugar concentrations than WSFPP before enzy-
matic hydrolysis, ethanol concentrations obtained from
N-WSFPP (unwashed samples) were lower than those
from washed samples (WSFPP) in all cases. The ethanol
content of the N-WSFPP was 7.28, 7.14 and 1.48 g/L in
14.4 FPU/g substrate enzyme loading for S. cerevisiae, K.
marxianus and P. stipitis, respectively (Fig. 5). This

Table 4 Kinetic parameters
defined for fermentation process
at different PP media (enzyme
loading 14.4 FPU/g substrate, PP
loading 100 g/L, pH 4.8, 100
rpm)

PP media

WSPP LFPP WSFPP N-
WSFPP

S. cerevisiae Qp, g/L h 0.52 0.47 0.98 0.60

YP/S, g/g 0.38 0.47 0.50 0.43

Theoretical yield, % 68.3 80.6 97.8 60.7

K. marxianus Qp, g/L h 0.59 0.51 0.99 0.59

YP/S, g/g 0.45 0.50 0.50 0.43

Theoretical yield, % 77.3 87.5 98.7 59.5

P. stipitis Qp, g/L h 0.05 0.03 0.04 0.02

YP/S, g/g 0.18 0.17 0.30 0.13

Theoretical yield, % 28.5 24.7 35.5 15.5

YP/S and theoretical ethanol yields were calculated according to hexose (glucose) concentration for S. cerevisiae
and K. marxianus. For P. stipitis pentose (xylose), concentration was calculated for the determination of the
kinetic parameters

Table 5 Comparison of the
bioethanol production from
different lignocellulosic materials

Lignocellulosic
material

Pretreatment method Microorganism Ethanol
yield

Reference

Pomegranate peel Dilute acid + enzymatic
hydrolysis

K. marxianus 14.3 g/L This study

Pomegranate peel Dilute acid S. cerevisiae 5.5 g/L (Demiray et al.
2018)

Pomegranate peel Dilute acid K. marxianus 7.2 g/L (Demiray et al.
2019)

Eichhornia
crassipes

Dilute acid + enzymatic
hydrolysis

S. cerevisiae + Z.
mobilis

13.6 g/L (Das et al. 2016)

Prosopis juliflora
wood

Acid + enzymatic hydrolysis P. stipitis 7.1 g/L (Gupta et al. 2009)

Oil palm frond Biological + enzymatic
hydrolysis

S. cerevisiae 13.7 g/L (Farah Amani et al.
2018)

Cotton gin trash Dilute acid + enzymatic
hydrolysis

S. cerevisiae 14.1 g/L (McIntosh et al.
2014)

Wheat straw Steam explosion + enzymatic
Hydrolysis

S. cerevisiae 10.5 g/L (Horn et al. 2011)
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situation may be related to the removal of inhibitory mate-
rials (Kumar et al. 2009a). Positive effects of the washing
step were also reported in the literature. In a study, ethanol
yields were found slightly higher in the two-step washed
spruce biomass in comparison with those in the one-step
non-washed biomass . I t was a lso repor ted tha t
hydroxymethylfurfural and furfural concentrations of the
washed biomass were 0.88 and 2.53 g/L, respectively.
However, in the non-washed biomass, these values were
found as 3.71 and 4.23 g/L, respectively (Söderström et al.
2004). In another study, Tomás-Pejó et al. (2009) detected
that yeasts were fully inhibited because of toxic com-
pounds when they used whole slurry of wheat straw. On
the other hand, 30.2 g/L ethanol was found from washed
wheat straw of 14% (w/v) as a substrate in their study.
Frederick et al. (2014) investigated the effect of washing
pretreated raw material on bioethanol production.
Researchers found the ethanol concentration of non-
washed biomass as 0.14 and 0.19 g/L for 2 different yeasts.
On the other hand, these values were observed as 1.36 and
1.43 g/L when washed biomass was used.

Comparison of the kinetic parameters

The highest Qp and theoretical ethanol yield of S. cerevisiae
were 0.98 g/L h and 97.8%, respectively, in the WSFPP me-
dium hydrolysed with 14.4 FPU/g substrate enzyme concen-
tration in this study (Table 4). Singh et al. (2014) reported the
Qp value and the theoretical ethanol yield of the rice husk
hydrolysate were 0.36 g/L h and 76.5%, respectively, when
they used S. cerevisiae for fermentation, which is lower than
our results. Furthermore, in another study, the Qp value of the
enzymatically hydrolysed sugarcane bagasse was detected as
0.77 g/L h for S. cerevisiae by Santos et al. (2012). Moreover,
Romaní et al. (2014) obtained 0.63 g/L h ethanol productivity
from S. cerevisiae when they used whole slurry of Eucalyptus
globulus wood.

For K. marxianus, maximum Qp and theoretical ethanol
yield values were also detected as 0.99 g/L h and 98.7% in
the WSFPP medium (Table 4), which are higher than what is
found in most of the reports in the literature. García-Aparicio
et al. (2011) reported the Qp of the enzymatically hydrolysed
10% barley straw as 0.63 g/L h at the end of the 24 h, in the
presence of the standard enzyme mixture with the SHF pro-
cess. Ballesteros et al. (2004) found the maximum theoretical
ethanol yield as 71.2% from 100 g/L poplar hydrolysed with
15 FPU/g substrate enzyme.

In this study, lower yields were observed for P. stipitis due
to its low ethanol production capacity and tolerance to various
factors (Song et al. 2019). For P. stipitis, the maximumQpwas
detected as 0.05 g/L h fromWSPP, and the highest theoretical
ethanol yield was obtained as 35.5%WSFPP (Table 4). These
results indicate that the washing of the biomass has positively

affected the kinetic parameters which is inconsistent with the
literature. For instance, Toquero and Bolado (2014) showed
that 45% theoretical ethanol yield is produced from washed
dilute acid–pretreated wheat straw in P. stipitis, whereas un-
washed samples’ theoretical ethanol yield was 39.5%.
Similarly, in this study, the washing step increased the theo-
retical ethanol yield of P. stipitis from 15.5 to 35.5% (Table 5).

Conclusions

In this study, we effectively hydrolysed pomegranate peels
enzymatically and evaluated them for ethanol production.
Using the whole slurry resulted in the highest reducing sugar
and ethanol concentrations. In our former study, we showed
that 5.58 g/L ethanol was obtained by S. cerevisiae in the
presence of 100 g/L PP. On the other hand, in the current
study, we have increased the ethanol production of S.
cerevisiae to 12.69 g/L. Moreover, it was shown that our lab-
oratory isolateK.marxianus, which is better than S. cerevisiae
for bioethanol production, produced 14.35 g/L ethanol.

It was also observed that S. cerevisiae and K. marxianus
have reached 97.8% and 98.7% of the theoretical ethanol yield
when WSFPP was used. However, theoretical ethanol yields
of N-WSFPP were lower such as 60.7% and 59.5% for the
mentioned yeasts. Thus, these results demonstrate that enzy-
matic hydrolysis and washing of PP increased the fermenta-
tion efficiency significantly.
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