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Abstract
Ozone (O3) is an adverse environmental factor posing damage to ornamental plants. Thus, it is important to seek an
effective way of enhancing plant tolerance to O3-induced damage. Methyl jasmonate (MJ) and melatonin (MT) are plant
growth regulators (PGRs) involved in plant abiotic stress responses. In this study, compared with the control group of
plants without ozone, the influence of exogenous MJ (0, 10, 50, 100, and 150 μM) and MT (0, 0.1, 0.5, 2.5, and
12.5 μM) on the resistance of Malus crabapple ‘Hong Jiu’ was evaluated under O3 stress (100 ± 10 nL/L for 3 h). Our
data revealed that levels of MDA were significantly enhanced following O3 treatment compared with plants without O3.
O3 induced the activities of antioxidant enzymes and the accumulation of non-enzymatic antioxidants. While lower
malondialdehyde (MDA) content, greater activities of antioxidant enzymes, and higher levels of soluble protein and non-
enzymatic antioxidants were observed in PGRs-pretreated plants than in non-PGRs-pretreated plants under O3 stress.
Based on the above results and air pollution tolerance index (APTI), an exogenous supply of MJ and MT to Malus
crabapple ‘Hong Jiu’ seedlings was protective for O3-induced toxicity. The present study provides new insights into the
mechanisms of MJ and MT amelioration of O3-induced oxidative stress damages in Malus crabapple ‘Hong Jiu.’
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Abbreviations
ANOVA Analysis of variance
APTI Air pollution tolerance index
AsA Ascorbic acid
CAT Catalase

GSH Glutathione
H2O2 Hydrogen peroxide
MDA Malondialdehyde
MJ Methyl jasmonate
MT Melatonin
NBT Nitroblue tetrazolium
O2 Oxygen
O2

− Superoxide anion
O3 Ozone
OTC Open-top chamber
PGRs Plant growth regulators
POD Peroxidase
ROS Reactive oxygen species
RWC Relative water content
SD Standard deviation
SDAU Shandong Agricultural University
SE Standard error
SOD Superoxide dismutase
TBA 2-Thiobarbituric acid
TCH Total chlorophyll
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Introduction

Ozone (O3) is the major constituent of photochemical smog (a
combination of smoke and fog). Since it was first investigated,
it has become evident that O3 is by far the most important air
pollutant toxic to plants worldwide (Krupa et al. 2007). In
recent years, near-surface ozone pollution has become com-
mon in many cities of Europe, North America, Japan, and
China, with the increase of automobile exhaust emissions
and heavy industrial energy consumption. Current models
predict that ozone will recover from the effects of man-made
ozone-depleting gases (Secretariat 2011). Nearly one-quarter
of the earth’s surface is currently at risk from tropospheric
ozone in excess of 60 nL/L (Morgan et al. 2006; Zhang
et al. 2011). Unlike all other climatically important trace gases,
ozone is toxic, and increases in its concentration will result in
serious environmental damage (Fishman 1991). Generally,
exposure to O3 concentrations in excess of 60 nL/L for several
hours causes injury to ozone-sensitive plants (Smith et al.
2012), which is typically expressed as tiny purple-red, yellow,
or black spots (described as stipple) or sometimes as a general
even discoloration, reddening, or bronzing (Wang and Chen
1985; Lie et al. 2014a; Wan et al. 2014). Therefore, studying
the impact of future concentrations of near-surface O3 on
plants is a focus of scholars in China and abroad (Gaucher
et al. 2006; Wang et al. 2011, 2016a).

The leaf is the main medium for ozone to enter plant
tissue and is therefore the first sensor of plant ozone stress
(Lie et al. 2014b). As a strong oxidant, O3 enters the leaf
tissue through stomata and is converted to reactive oxygen
species (ROS) (Xie et al. 2009). The production of ROS is
considered the main cause of the serious effect of O3 on the
normal growth and development of plants. Supplementation
of O3-exposed plants with exogenous substances can alle-
viate oxidative stress–induced damage through reduced lip-
id peroxidation and enhancement of antioxidant defense
systems (Zheng et al. 2006; Xie et al. 2009). For instance,
melatonin (MT) is a crucial molecule involved in plant abi-
otic stress responses, and previous work supports a role for
MT as a free radical scavenger (Reiter et al. 2000; Galano
et al. 2011), directly scavenging ROS in cellular compart-
ments and thereby mitigating oxidative stress in plants
(Reiter et al. 2015; Ding et al. 2017). Methyl jasmonate
(MJ) is another phytohormone identified as a vital cellular
regulator that mediates diverse developmental processes
and defense responses against biotic and abiotic stresses
(Cheong and Choi 2003). Studies have shown the effects
of MJ on oxygen-scavenging enzyme activities and mem-
brane lipid composition (Wang 1999; Ali et al. 2006).
Moreover, MJ and MT protect plants against a variety of
environmental stresses, such as cold, heat, salinity, and
drought (Yang et al. 2011; Zou et al. 2011; Liu et al. 2016;
Gao et al. 2017b; Yang et al. 2017).

Malus crabapple ‘Hong Jiu’ is an ornamental plant of the
Malus genus (Rosaceae), which was independently bred by
Professor Shen Xiang from Shandong Agricultural
University. It is horticulturally important and planted for the
brilliant autumn and winter colors of its fruits. Thus, exploring
MJ- and MT-mediated O3 tolerance in Malus crabapple
‘Hong Jiu’ is of practical significance. The objectives of the
present work were to determine the potential effects ofMJ and
MT on O3 damage to Malus crabapple ‘Hong Jiu’ and to
investigate the possible physiological mechanisms of MJ-
and MT-mediated responses to O3 stress in Malus crabapple
‘Hong Jiu.’

Material and methods

Plant material, stress exposure, and chamber
description

TheMalus crabapple ‘Hong Jiu’ from Shandong Agricultural
University (SDAU) in Tai’an was chosen as the experimental
material. The seeds of Malus crabapple ‘Hong Jiu’ with the
same germination were selected to be sown in plastic pots
filled with matrix and vermiculite (2/1 v/v) and cultured in
the greenhouse of Shandong Agricultural University until
plants were 6 months old with 10–12 expanded leaves.

We have done two separate experiments on plants with
good growth and relatively consistent growth characters from
May to June 2017. The highest monthly average temperature
was recorded in May (29 °C) and June (31 °C), while the
lowest monthly average temperature was recorded in May
(16 °C) and June (20 °C). The average monthly relative hu-
midity during the study period was found to be 52.6% in May
and 59.8% in June (provided by the office of Tai’an meteoro-
logical department).

The one with various concentrations of MJ (0, 10, 50, 100,
and 150 μM)were applied to seedling leaves, and the other one
with MT concentrations (0, 0.1, 0.5, 2.5, and 12.5 μM) were
applied, with 0μMdistilledwater between them.After 15 days,
all specimens were exposed to O3 of 100 ± 10 nL/L for 3 h
(9:00–12:00 a.m) in an open-top chamber (OTC) at the
Forestry College’s experimental station at SDAU (Gong et al.
2017). Malus crabapple ‘Hong Jiu’ seedlings grown without
MJ or MT treatment under no ozone stress were used as con-
trols. There were nine pots (6 plants per pot) with similar
growth conditions per treatment arranged in a complete ran-
domized design and the experiment was conducted three times.

An open-top chamber should provide more natural con-
ditions than a closed chamber (Heagle et al. 1973). Here,
the chamber (Fig. 1) consisted of an outer steel frame
covered with polyethylene plastic film and an inner aera-
tion pipe and was open to the atmosphere at the top.
Oxygen (O2) in the oxygen tank entered the ozone
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generator (SK-CFG-10P, Sankang, China), which pro-
duced O3 to be output to the pipe. The O3 was blown into
the chamber by a fan (SF2-2, Shenli, China). An ozone
detector (DR70C-O3, Wosaite, China) in the chamber
monitored the O3 concentration in real time and transmit-
ted data to a computer for observation and storage
through the universal USB/RS-485/422 converter UT-
890. A rotor flow meter in the ozone generator was used
to adjust the O2 flow, and thereby control the concentra-
tion of O3 in the chamber.

Malondialdehyde content analysis

Lipid peroxidation was determined by calculating the rate of
malondialdehyde (MDA), according to Heath and Packer
(1968) who used the 2-thiobarbituric acid (TBA) as substrate.
The absorbance was measured at 532 nm using a UV/VIS
spectrophotometer (UV-2450, Shimadzu, Japan; the same as
below). The value for nonspecific absorbance at 600 nm was
subtracted.

Soluble protein content analysis

A total of 0.5 g of frozen leaves was used to determine protein
content according to the Bradford method (Kruger 1994). The
Bradford assay relies on the binding of the dye Coomassie
Blue G250 to protein.

Antioxidant enzyme activity assays

Catalase (CAT) activity was spectrophotometrically measured
by analyzing the decomposition of hydrogen peroxide (H2O2)
at 240 nm for at least 3 min (Aeobi 1974). Assays of peroxi-
dase (POD) activity were carried out using guaiacol as the
hydrogen donor (Putter 1978). Superoxide dismutase (SOD)
activity was determined by measuring nitroblue tetrazolium
(NBT) reduction by the superoxide anion (O2

−) according to
Beauchamp and Fridovich (1971).

Determination of glutathione and ascorbic acid
content

Glutathione (GSH) content was measured by an enzymatic
cycling assay method as described by Griffith (1980). A sim-
ple and sensitive procedure for the spectrophotometric deter-
mination of AsA was used as described by Besada (1987),
which involved the formation of ferroin.

Air pollution tolerance index

APTI is an index used to quantify the tolerance of plants to air
pollutants (Pandey et al. 2016), (Singh and Rao 1983). It is
mainly based on four parameters, namely AsA, leaf extract

pH, total chlorophyll (TCH), and relative water content
(RWC). The AsA content of leaf samples was determined
using the above method. TCH content was determined follow-
ing the spectrophotometric method of Arnon (1949), and leaf
extract pH was recorded with a glass electrode pH meter (SX-
620, Sanxin, China) according to Pandey et al. (2015a, b). The
RWC percentage was calculated using the fresh weight, turgid
weight, and dry weight of leaf samples according to Sen and
Bhandari (1978). Finally, APTI was calculated by the follow-
ing mathematical expression (Singh and Rao 1983):

APTI ¼ A T þ Pð Þ þ R½ �=10
where A is the AsA content in mg/g, T is the TCH inmg/g, P is
the leaf extract pH, and R is the RWC in percentage.

Gradation and classification of APTI

Plant species can be divided into four different tolerance
groups (Liu et al. 1983; Zhang et al. 2016) by comparing the
APTI value of each target species with the mean APTI value
of all studied species together with its standard deviation (SD).
Accordingly, a species can be classified as tolerant (T) if its
APTI is higher than the mean APTI plus SD, as moderately
tolerant (MT) if its APTI value is between the mean APTI and
mean APTI plus SD, as intermediate (I) if its APTI value is
between the mean APTI minus SD and mean APTI, and as
sensitive (S) if its APTI value is lower than the mean APTI
minus SD.

Data analysis

Each experiment was repeated at least three times. Values are
expressed as means ± standard error (SE). The data were sta-
tistically analyzed using SPSS v. 22.0 and comparisons were
performed using a one-way analysis of variance (ANOVA)
together with Duncan’s test for independent samples. In all
cases, the confidence coefficient was set at P < 0.05.

Results

MJ and MT effects on MDA content in Malus
crabapple ‘Hong Jiu’ under O3 stress

One of the detrimental effects of ozone stress on plants is O3-
induced oxidative damage to cell membranes. MDA levels
were quantified in the leaf tissue of Malus crabapple ‘Hong
Jiu’ to investigate the level of lipid peroxidation and oxidative
damage in response to O3 stress and whether MJ and MT
maintained cell membrane stability under O3 stress. MDA
were substantially increased in O3-treated plants compared
with those in control plants, while MJ and MT pretreatment
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significantly reduced the content of MDA inMalus crabapple
‘Hong Jiu’ under O3 stress (Fig. 2). As shown in Fig. 2a, O3

significantly increased MDA content in leaves by 133.89%
for Malus crabapple ‘Hong Jiu,’ compared with the control.
Addition of 100 or 150 μM MJ resulted in lower MDA con-
tent than 0 μM MJ, with decreases of 55.03% and 48.49%,
respectively. The lowest MDA content was observed under
2.5 μM MT, with a decrease of 38.23% (Fig. 2b) compared
with 0 μMMT. These results suggest that MJ andMT reduces
oxidative stress and maintains cell membrane integrity.

MJ andMT effects on soluble protein content inMalus
crabapple ‘Hong Jiu under O3 stress

Overall, the accumulation of soluble protein was concomitant
with increased MJ and MT concentrations in stressed Malus
crabapple ‘Hong Jiu’ plants compared with control plants
(Fig. 3). Specifically, when the concentrations of MJ and
MT were increased to 150 μM and 2.5 μM, respectively, the
soluble protein content was significantly enhanced (P < 0.05)
and was 97.83% and 35.63% higher, respectively, than in
0 μM, indicating that tolerance to O3 stress was increased.

MJ and MT effects on antioxidant enzyme activities
in Malus crabapple ‘Hong Jiu’ under O3 stress

To further study the roles of MJ and MT in the possible alle-
viation of O3-induced oxidative stress, we examined the ac-
tivities of three key antioxidant enzymes in Malus crabapple
‘Hong Jiu’ leaves. Under O3 stress, the activities of antioxi-
dant enzymes were significantly induced compared with non-
stressed plants. Application of exogenous MJ and MT further
enhanced enzyme activities accumulation inMalus crabapple
‘Hong Jiu’ with O3 treatment. Compared with CK, the activ-
ities of CAT, POD, and SOD under 0 μM MJ with O3 treat-
ment were significantly increased by 85.00%, 50.00%, and
50.60%, respectively. Compared with 0 μMMJ, the activities
of CAT, POD, and SOD under 150 μM were significantly
increased by 51.35%, 70.83%, and 38.88%, respectively
(P < 0.05; Fig. 4a–c). Among theMT treatments, the activities
of CAT, POD, and SOD were significantly increased by
90.43%, 95.65%, and 28.87% under 2.5 μM MT compared
with 0 μM (P < 0.05; Fig. 4d–f). This result indicated that MJ
and MT alleviated O3 toxicity by increasing antioxidant en-
zyme activities in plant tissues.

MJ and MT effects on GSH and AsA contents inMalus
crabapple ‘Hong Jiu’ under O3 stress

Figure 5 illustrates a significant stimulation of GSH and AsA
contents following O3 treatment in MJ- and MT-pretreated
plants. O3 significantly increased GSH content in leaves by
38.60% for Malus crabapple ‘Hong Jiu’ compared with the

control, and the GSH content was highest under 150 μM MJ
and was significantly increased by 94.12% compared with
0 μM, while the AsA content under 10–150 μM MJ was
significantly increased by 16.54–35.20% compared with
0 μM (Fig. 5a, b; P < 0.05). The maximum increase in GSH
content was observed under 2.5 μMMT (64.89% higher than
0 μM). Similar results were also observed for AsA content,
with an increase of 12.10% (Fig. 5c, d; P < 0.05).

APTI of stressed Malus crabapple ‘Hong Jiu’ plants
under different MJ and MT concentrations

The measured values of the four biochemical parameters and
the calculated APTIs for non-stressed and stressed Malus
crabapple ‘Hong Jiu’ plants with different MJ and MT con-
centrations are shown in Table 1. Among the four parameters
of APTI, AsA content was found to be highest under 150 μM
MJ (2.19 ± 0.03) and 2.5 μMMT (1.78 ± 0.02). Furthermore,
the activity of AsA is pH-controlled and thus the AsA content
of plants is generally greater at higher pH and smaller at lower
pH (Pandey et al. 2015a, b). Therefore, the highest pH levels
were recorded in the same MJ and MT treatments. O3 signif-
icantly decreased chlorophyll contents and RWC in leaves for
Malus crabapple ‘Hong Jiu,’ compared with plants without
the O3. In stressed plants with PGRs treatments, the highest
chlorophyll contents were found under 150 μM MJ (1.50 ±
0.07) and 2.5 μMMT (1.52 ± 0.06). RWC (in percentage) was
also highest under 150 μMMJ (82.79 ± 3.03) and 2.5 μMMT
(85.76 ± 1.42). Considering these measurements, for the MJ
treatments, the APTI values ranged from 7.88 ± 0.41 to 10.06
± 0.30 (Table 1A). The highest APTI value occurred under
150 μM MJ, while 10 μM MJ showed the lowest value. The
MJ treatments with APTI values above the mean (9.23) were
(listed from high to low) 150, CK, 100, 0and 50 μM. An
overall mean APTI value of 9.40 was obtained for the MT
treatments containing CK, with the highest value of 10.01 ±
0.14 at 2.5 μM MT and the lowest value of 8.89 ± 0.08 at
0 μM MT (Table 1B). Two MT treatments showed values
above the mean, CK, 2.5 and 12.5 μM, while the other treat-
ments showed lower values than the mean.

Gradation of APTI and tolerance assessment

Table 1 shows that the MJ and MT treatments induced
varying degrees of tolerance to O3 stress. The mean and
SD of APTI for the MJ treatments were 9.23 and 0.73,
while those for the MT treatments were 9.40 and 0.41.
Therefore, plants under 10 μM MJ and 0 μM MT were
classified as sensitive (S), while those under 0.1 and
0.5 μM MTwere classified as intermediate (I). The control
plants and those under 0, 50, and 100 μM MJ were classi-
fied as moderately tolerant (MT), as were plants under a
MT concentration of 12.5 μM. Plants under 150 μM MJ
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and 2.5 μM MT were classified as tolerant (T). Usually,
when plants are classified as T, they can be considered
tolerant to O3 stress.

Discussion

Among the various pollutants present in nature, O3 is one of
the major causative factors in free radical formation in plants,
limiting plant growth (Krishnaveni 2013; Gao et al. 2017a).
At present, the ground-level O3 concentration exceeds the
damage threshold (40 nL/L) of sensitive plants in many parts
of the world and causes visible damage to them (Feng et al.
2014; Jia 2016). O3 can enter plant tissues through the stomata
and induce oxidative stress damage by causing the formation
of ROS. ROS can react with lipids and proteins, causing mem-
brane damage and enzyme inactivation, and eventually de-
crease plant growth and biomass (Mittler 2002).

Thus, it is important to seek an effective way of enhancing
plant tolerance to O3-induced oxidative damage. MJ has been
shown to alter plant metabolism (Sun et al. 2017; Hou et al.
2017). Moreover, MJ has been recently demonstrated to pro-
tect plants against diverse abiotic stresses, such as cold, heat,
drought, salt, and heavy metal toxicity (Ji et al. 2009; Meng
et al. 2009; Yang et al. 2015). In addition, many studies have
shown that MT can not only regulate plant growth, but also
improve the resistance of plants to drought, salt damage,
heavy metals, UV radiation, high temperature, chilling injury,
and other stress (Wang et al. 2016a, b; Wu and Jia 2017; Gong
and Shi 2017). In the present study, we investigated the phys-
iological and metabolic effects of MJ and MT on Malus
crabapple ‘Hong Jiu’ under O3 stress.

Cell membranes are susceptible to O3-induced oxidative
stress. MDA content is generally considered a reliable indicator
of cellular damage (Zhou et al. 2017). Dramatic increases in
MDA content was found inMalus crabapple ‘Hong Jiu’ under
O3 stress, suggesting severe lipid peroxidation and plasma
membrane injury. Treatment with MJ and MT at appropriate
concentrations, such as 150 μM MJ and 2.5 μM MT, could
partially reverse the deleterious effects brought about by O3

stress, as shown by lower MDA and higher protein contents
(Figs. 2 and 3). Yang et al. (2011) also observed that MJ appli-
cation decreased the MDA content in Phalaenopsis seedlings
under high temperature stress. MT treatment was observed to
have the same effect on MDA content by Ding et al. (2017).
Accumulation of ROS affects proteins. The functionality of
proteins can be affected by ROS through oxidation of amino
acid side chains or by secondary reactions with aldehydic prod-
ucts of lipid peroxidation. Both primary and secondary reac-
tions can introduce carbonyl groups into proteins, and the ap-
pearance of such groups is taken as evidence of oxidative stress
(Gonçalves et al. 2007; Ramakrishna and Rao 2012). In our
study, supplementation with MJ and MT completely reversed

the damage trend and increased the protein content in O3-
stressed seedlings, implying that cellular proteins were
protected from ROS-mediated oxidative damage. Consistent
with this, Zhao and Dai (2012) reported that the protein content
can reflect the resistance of a plant. The increase in protein
content we observed might indicate greater tolerance to stress
as proposed byMeng et al. (2016) and Zhu et al. (2017) in plant
leaves. Therefore, these are important indicators to assess O3

stress damage. The lowest MDA content and the highest solu-
ble protein content in Malus crabapple ‘Hong Jiu were ob-
served in plants treated with 150 μM MJ and 2.5 μM MT,
indicating that these are the optimal concentrations for treat-
ment with MJ and MT in our experiments.

To scavenge ROS and counter oxidative stress, plants
have evolved an efficient antioxidant defense system. O3

(100 ± 10 nL/L for 3 h) induced the activities of antioxi-
dant enzymes and the accumulation of non-enzymatic an-
tioxidants (Figs. 4 and 5). The results correspond with
Alscher et al. (2002) and Wu et al. (2011). However,
Zheng et al. (2005) reported that long-term or high-
intensity ozone stress destroys plant antioxidant defense
systems. Previous studies have established that MJ and
MT promote the activities of antioxidant enzymes and
the accumulation of non-enzymatic antioxidants to coun-
teract the harmful effects caused by various environmental
stresses (Wang 1999; Fan et al. 2015; Ding et al. 2017).
SOD constitutes the first line of defense against ROS in
plants, catalyzing the detoxification of O2

− to H2O2 and
O2 (Hu et al. 2016). In the present study, a significant
increase in SOD activity was observed in O3-stressed
seedlings with foliar application of MJ and MT, suggest-
ing SOD has an important role in removing O2

− induced
by oxidative stress (Fig. 4c, f). CAT and POD further
break down H2O2 to H2O and O2. Consistent with this,
the MJ and MT treatments dramatically stimulated the
activities of CAT and POD (Fig. 4a, b, d, e), implying
MJ and MT have a protective effect through efficient
scavenging of ROS. These results agree well with Ye
(2015), who reported that MJ increased the CAT, POD,
and SOD activities under high temperature stress in
Actinidia deliciosa. Similarly, Jiang et al. (2016) reported
that MT enhanced the levels of antioxidant enzymes under
stress in plant seedlings. Additionally, non-enzymatic an-
tioxidants, GSH and AsA, were substantially increased in
O3-stressed Malus crabapple ‘Hong Jiu’ with application
of MJ and MT (Fig. 5). Increased contents of GSH and
AsA have been reported to increase tolerance to stress
(Nagalakshmi and Prasad 2001; Mahalingam et al.
2006). Our results further support roles for MJ and MT
in improving the antioxidant capacity of plants under
stress conditions.

To evaluate the susceptibility of Malus crabapple ‘Hong
Jiu’ plants under MJ and MT treatments to O3 stress, four
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parameters, namely AsA, TCH, RWC, and pH, were mea-
sured and used to calculate the APTI of each treatment.
Plants with a high index value are tolerant to air pollutants
and vice versa (Singh et al. 1991). The present study showed
that plants under the 150 μM MJ and 2.5 μM MT treatments
were tolerant to O3 stress, with the highest APTI values
(Table 1). The tolerance of plants to air pollutants varies with
these parameters (Ogunkunle et al. 2015; Pandey et al. 2015a,
b). AsA is an antioxidant involved in the defense against ROS
and thus affects the resistance to air pollution in plants (Pathak
et al. 2011). An increased level of AsA in leaves has been
reported to increase air pollution tolerance in plants (Mittler
2002; Suganthi. et al. 2013). Furthermore, higher leaf extract
pH levels indicate greater tolerance to air pollution (Singh and
Verma 2007; Pandey et al. 2015a, b). Similarly, higher TCH
content might increase tolerance to air pollutants in plants (Rai
and Panda 2014; Fan et al. 2015). The RWC of a leaf is
associated with protoplasmic permeability; thus, plants with
higher RWC values are probably more tolerant to air pollut-
ants (Singh et al. 1991). High RWCwithin the plant leaf helps
to maintain physiological balance under stress conditions such
as exposure to air pollution when transpiration rates usually
remain high.

On the basis of APTI, the tolerance levels of plants under
different MJ and MT treatments were classified into four
groups including tolerant (T), moderate tolerant (MT), inter-
mediate (I), and sensitive (S), using the formula described by
Liu et al. (1983). Our data show that plants under 150 μMMJ
and 2.5 μM MT were classified as T, suggesting they were
tolerant to O3 stress (Table 1). These results are consistent with
previous indexes and APTI values. The susceptibility levels of
Malus crabapple ‘Hong Jiu’ plants under MJ and MT treat-
ments to O3 stress, as indicated by their index values, com-
pared well with the physiological responses. Thus, APTI de-
termination provides a reliable method for screening sensitive
or tolerant plants under stress.

Conclusion

In conclusion, O3 (100 ± 10 nL/L for 3 h) induced oxida-
tive stress damage in Malus crabapple ‘Hong Jiu’ causing
membrane damage, inducing the activities of antioxidant
enzymes and the accumulation of non-enzymatic antioxi-
dants. Treatment with MJ and MT at appropriate concen-
trations can improve the tolerance of Malus crabapple
‘Hong Jiu’ to O3 stress. The optimal concentrations were
150 μM for MJ treatment and 2.5 μM for MT treatment.
Exogenous MJ and MT had a protective effect on lipid
peroxidation, protein oxidation, membrane integrity, and
the antioxidant defense system in Malus crabapple ‘Hong
Jiu’ and thus significantly alleviated O3-induced oxidative
stress damage. Moreover, 150 μM MJ had a greater effect

than 2.5 μM MT on tolerance to O3 stress in terms of
soluble protein content, SOD activity, accumulation of
non-enzymatic antioxidants, and APTI value. The focus
of future research should be to elucidate the mechanism
by which MJ and MT confer tolerance to O3 stress at the
cellular and molecular levels.
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