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Abstract
For human health and safety, it is of great importance to develop innovativematerials with a vast capacity for powerful removal of
radioactive ions from aqueous solutions. Prussian blue functionalized sugarcane bagasse (PB-SCB) was successfully prepared
for the efficient elimination of radioactive cesium (137Cs) using a nontoxic, environmentally friendly, and costless method. The
prepared renewable material was characterized using different techniques to emphasize morphology, functional groups, crystal
structure, and the adsorption process. The adsorption of Cs(I) was better fitted to the pseudo-second-order model than pseudo-
first-order model which revealed a chemical adsorption mechanism. The experimental isotherm results were best illustrated by
the Freundlich model (R2 = 0.98). Besides, the obtained values for the thermodynamic parameters indicating that the adsorption
process was endothermic and spontaneous in nature. In addition to demonstrating high adsorption capacity for Cs ion removal
(56.7 mg/g at 30 °C), PB-SCB might consider being an efficient and cost-effective adsorbent for the decontamination of cesium,
where an estimated cost analysis revealed that the expenditure for the removal of 1000 mg/L cesium from alkaline radioactive
wastewater is likely to be US$0.12.
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Introduction

One of the most suspicious components of nuclear fallout and
radioactive liquid waste is the radioactive cesium and espe-
cially 137Cs due to its long half-life (30 years), high energy
gamma-ray emission, high water solubility (Calarese 2011),

and high transport abilities, which can be dissolved in soils
and finally ending to be absorbed by plants, animals, and
human (Ding and Kanatzidis 2010). In addition, its biological
behaviors analogous to that of K+ have been stated to be
responsible for many problems leading to cancer, genetic mu-
tation, genetic disorders, and others (Wang et al. 2019).
Moreover, the critical nuclear accidents occurred in 1986 in
Chernobyl (Russia) (Ming-hua et al. 1988), in 1987 inGoiania
(Brazil) (Oliveira et al. 1991), and in 2011 at the Fukushima
Daiichi nuclear power station (Manolopoulou et al. 2011),
caused a severe release of huge amounts of 137Cs which is a
very hazardous radionuclide from the environmental
standpoint.

Therefore, the decontamination of the radioactive species
from the environment and the decommissioning of the old
power plants (Neroda et al. 2014) are essential requirements
for the efficient management of liquid wastes in the nuclear
industry.

In this respect, numerous methods have been developed for
the removal of cesium from radioactive liquid waste, such as
chemical precipitation, evaporation, adsorption, membrane
separation, liquid-liquid extraction, ion exchange, and biolog-
ical methods (Attallah et al. 2009; Borai et al. 2008).

Highlights
• PB-SCB nano-adsorbent was facilely synthesized by a simple eco-
friendly method.
• PB-SCB exhibited a maximum adsorption capacity of 56.7 mg/g for Cs
removal from radioactive liquid waste.
• The Cs+ adsorption by PB-SCB was governed by both chemisorption
and physisorption mechanisms.
• PB-SCB demonstrated enhanced adsorption toward cesium in the pres-
ence of competing cations.
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According to various previous studies, Prussian blue
(PB) have the ability for the selective adsorption of the
alkali cations, particularly cesium ions (Sangvanich et al.
2010), in which PB is a dark-blue pigment, with the for-
mula Fe7(CN)18 and a crystal cage size similar to the
hydration radius of Cs+ (Thammawong et al. 2013). The
micro- or nano-size of PB ion-exchanger requires com-
plex filtration or centrifugation systems, and to improve
the practical application of it, it might be helpful to im-
mobilize the particles in or at the surface of a support
material (Vincent et al. 2014), as a binding matrix for
providing a mass transfer unit that can be applied for field
applications (Vincent et al. 2015). For example, PB parti-
cles were bound to the nonwoven fabric as a carrier
(Vipin et al. 2013). The PB particles were also embedded
in calcium/alginate beads (Mihara et al. 2016), in
polyarylacetylene resin (Yang et al. 2015), in chitosan
sponge (Parajuli et al. 2016), or in inorganic binders
(Kawamoto et al. 2012).

Agricultural waste materials are of special attention as
they are contained some of the natural polymers, includ-
ing cellulose (50%), polyoses (27%), and lignin (23%)
(Yu et al. 2017b). These polymers make them rich in
hydroxyl, phenolic, and carbonyl groups which are ex-
pected to interact with heavy metal ions (Li et al. 2017)
over a wide range of pH (up to 12) (Noor et al. 2017). Of
particular concern in agriculture wastes is the sugarcane
bagasse (SCB) (Bagasse is the fibrous residue left over
after squeezing sugarcane for its juice and as a by-
product from the bioethanol and sugar mills).

To the best of our knowledge, there is no work yet in the
literature for the incorporation of PB onto bagasse as a costless
agro-industrial waste for the adsorption of cesium ions.
Furthermore, large capacity is still the objective for the suc-
cessful treatment of cesium waste.

Herein, this study presents an efficacious procedure to
synthesize functionalized Prussian blue adsorbent for
highly effective removal of cesium ions from alkaline so-
lutions by a one-pot, room-temperature method.

Experimental

Materials

All chemicals used during this study were analytically
pure and used as supplied without further purification.
FeC l 3 · 6H2O and po t a s s i um hexa cyano f e r r a t e
(K3[Fe(CN)6]) were purchased from Sigma-Aldrich, and
cesium chloride (CsCl) salt from Fluka Company. The
radioisotope sample of 137Cs was obtained from the sec-
ond Egyptian Research Reactor.

Preparation of PB-SCB hybrid adsorbent

No-cost, locally available, eco-friendly SCB was collected,
washed thoroughly with tap water to remove dust, and then
boiled in water for 1 h to remove the sweet materials.
Subsequently, before sun-dried, the obtained SCB was rinsed
with deionized water and milled to 0.125 mm. The PB-SCB
hybrid was synthesized through in situ co-precipitation meth-
od as reported elsewhere with some modifications (Alamudy
and Cho 2018). In this method, 4 g of bagasse was added to
25 mL of 0.062 M K4[Fe(CN)6] solution under magnetic stir-
ring. Then, 25 mL of 0.082 M Fe(NO3)3·9H2O solution was
introduced to the previous mixture with adjusting the solution
pH at 2 using hydrochloric acid (0.1 M). The solution was
kept stirring overnight at room temperature. Before the obtain-
ed blue colored material subjected to air drying, it was filtered
and washed until the washing liquor was colorless (Figs. 1 and
2).

Adsorbent characterization and instrumentation

The prepared PB-SCB adsorbent morphologies were visual-
ized by scanning electron microscopy (SEM; JXA-840A;
JEOL; Japan). To recognize the functional groups, the struc-
tures of the samples were recorded by Fourier transform in-
frared spectroscopy (FT-IR, Nicolet spectrometer, Meslo,
USA). An X-ray diffraction pattern of PB-SCB nanoparticles
was measured using CuKα radiation by Schimadzo X-ray
diffractometer, and the sample was scanned for 2θ ranging
from 2 to 55.

Atomic absorption spectrometry (AAS, Varian AA20 spec-
trometer) was used for the measurement of inactive Cs+ ion
concentration in which the samples were collected, filtrated,
and analyzed. The radiometric analysis of the cesium radio-
isotope (137Cs) in the real sample solution was done using
multichannel NaI (Tl) scintillation detector (model 3M3/3-X,
Canberra Industries Inc., USA).

Determination of point of zero charge

The point of zero charge (pHPzc) was estimated following
the procedure reported by Igberase and Osifo (2015). In
this context, after adjusting the pH values of 5 ml (0.1 M)
NaCl series in the range (2–10) (pH initial) using NaOH
and HCl (0.1 M each), equal amounts (0.03 g) of PB-SCB
were separately added to these solutions. These mixtures
were agitated at room temperature for 24 h. Then, the
solutions were filtered and pH of the filtrates was deter-
mined (pH final). By plotting the difference between ini-
tial pHi and final pHf, (ΔpH = pHf − pHi), against the pHi,
the point of intersection at which ΔpH = zero is called the
point of zero charge. The same procedure was applied for
the determination of SCB point of zero charge.
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Adsorption experiments

Sorption of inactive cesium

The batch technique was applied to evaluate the applicability
of the PB-SCB adsorbent to remove Cs+ ions from alkaline
solutions. For safety precautions, during the batch technique,
inactive cesium was chosen as a model ion for radiocesium,
since they have similar chemical behaviors in the aqueous
solutions (Yu et al. 2017a). In this respect, different effective
parameters such as pH (2–12) and contact time (5 min-6 h)
were examined by mixing 0.01 g of the prepared adsorbent
with 5 ml of Cs+ (50 mg/L). For isotherm studies, cesium
solutions having different initial concentrations (25–300 mg/
L) were exposed to a fixed quantity of the PB-SCB (2 g/L) at
predetermined equilibrium time (3 h) at different temperatures
(303–333 K). The prepared adsorbent weight parameter was
carried out in the range of (5–20) mg. The interfering ion
influence on the adsorption of Cs+ ion was investigated utiliz-
ing various concentrations of Li+, Na+, and K+ in the range
(25–100 mg/L). The removal efficiency (% R) and the adsorp-
tion capacities at any time t (qt, mg/g) and at equilibrium (qe,
mg/g) retained on the PB-SCB adsorbent were calculated in
addition to the distribution coefficient (Kd) using the following
equations respectively:

%R ¼ Co−Ceð Þ=Co½ � � 100 ð1Þ

qe ¼ Co−Ceð Þ � V
m

mg=gð Þ ð2Þ

qt ¼ Co−Ctð Þ � V
m

mg=gð Þ ð3Þ

Kd ¼ Co−Ceð Þ=Co½ � � V=m ð4Þ
where Co, Ce, and Ct are the initial, equilibrium concentration,
and concentration at any time t of the metal ions, respectively,
in the aqueous solution (mg/L); m is the adsorbent mass (g),
and V is the solution volume (L); while V in the case of
Kd (ml/g) is in milliliters.

Application on LLRLW sample

Static study

Low-level radioactive liquid waste (LLRLW) sample contains
137Cs (140 × 103) Bq/L produced from the second Egyptian
Research Reactor was subjected to the adsorption process
with the prepared PB–SCB adsorbent where the effect of
PB-SCB weight (10, 50) mg on the decontamination factor
(DF) at different time intervals was calculated by the follow-
ing equation:

DF ¼ Ao=Ae ð5Þ
where (Ao) and (Ae) are the initial and final activities (Bq/ml)
of the real radioactive Cs(I) samples, respectively, after treat-
ment with PB-SCB adsorbent. All the previous experimental
work was repeated two times (duplicated) to avoid the expo-
sure to radioactive 137Cs.

Fig. 2 Scheme for the preparation of PB-SCB adsorbent

Fig. 1 Digital image for the preparation of PB-SCB adsorbent
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Dynamic study

Column experiment was performed to investigate the dynamic
removal of real radiocesium solution through adsorption.
Total 0.25 g of PB-SCB was packed in a glass column with
a length of 100 mm and an internal diameter of 6.5 mm. The
radiocesium solution (50 ml) of total activity (7000 Bq) was
pumped downward through the top of the column at a flow
rate of 2.5 ml/min. Effluent samples were gathered from the
column exit at regular time intervals and then analyzed for
residual activity in the total 50 ml radioactive wastewater
solution.

Result and discussion

Characterization of the samples

The obtained morphology given in Fig. 3a, b showed that the
smooth surface, sheet-like structure SCB is retained after im-
pregnation with PB (Su et al. 2018). The X-ray diffractogram
obtained from the unmodified SCB and the PB decorated SCB
is shown in Fig. 3c. The diffraction patterns revealed that 5

new characteristic peaks correspond to 17.364, 22.294,
24.523, 35.197, and 39.57 can be clearly assigned to the suc-
cessful anchoring of PB on the surface of SCB which is con-
sistent with other reports (Jang and Lee 2016; Chang et al.
2018). The FT-IR analysis illustrated in Fig. 3d confirms the
signature of PB with the absorption vibration band at
2086 Cm-1 which corresponds to the C ≡N group (Basu
et al. 2018). Peaks that appear at 3700, 3400, 1719, and
1400 on the PB-SCB FTIR spectrum are attributed to the
stretching vibration bands for OH (from COOH), OH (from
H2O), C–H (from CH2 in cellulose), C=O (from ketone and
aldehyde), and C=C (from aromatic rings), respectively. The
1050 Cm-1 band ascribed for C–O bending. It can be inferred
from the FTIR spectrums for both SCB and PB-SCB that C=O
might take part in the functionalization process, where the
band of CO shifted from 1730 to 1719 Cm-1.

SCB and PB-SCB point of zero charge determination

Point of zero charge (pHPzc) is the point at which the surface
texture charge of an adsorbent is zero. When a solution pH
surpasses this point, the surface of an adsorbent will be nega-
tive; therefore, the adsorption efficiency for cations will be

(a) SEM image of SCB (b) SEM imageof PB-SCB adsorbent
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Fig. 3 Characterization of SCB and PB-SCB adsorbent: (a) SEM image of SCB, (b) SEM image of PB-SCB, (c) XRD pattern, and (d) FT-IR spectrum
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enhanced (Metwally et al. 2019). On the other hand, at pH
values below this point, the adsorption of positive charge sub-
stances will be negatively affected because the surface charge
will be positive. As can be seen in Fig. 4, the pHPzc of SCB
and PB-SCB are 4.5 and 3, respectively, indicating that PB-
SCB will have better adsorption efficiency profiles than SCB
at pH > 3.

Batch experiments

Batch technique tests were applied to evaluate the adsorption
behaviors of inactive Cs(I) on the prepared PB-SCB adsor-
bent. In this respect, different effective parameters like solu-
tion pH, contact time, metal ion concentration, adsorbent
dose, temperature, and the presence of interfering ions on
the uptake process were optimized.

Influence of initial pH

The environmental pH has an overwhelming effect on the
adsorption process, because the solubility of heavy metal ions,
ionization of functional groups on the adsorbent surface, and
charges of adsorption sites depend entirely on the solution pH
(Ren et al. 2016). Therefore, it is vitally important to adjust the
optimal pH value of the solution. As can be seen in Fig. 5, the
adsorptive removal of Cs ions using both SCB and PB-SCB
increased substantially as the solution pH values increased. In
the case of using SCB, the removal efficiency for Cs ions was
less than 10% at pH values below the SCB point of zero
charge (pHPzc = 4.5) because the surface charge was positive
below this point. However, when the solution pHwas > pHPzc,
the surface charge was negative; therefore, the removal

efficiency of Cs ions gradually increased reaching to 30% at
pH 10. In the case of using PB-SCB, at pH values below its
pHPzc, the adsorptive removal efficiency of Cs ions was only
around 40% as the electrostatic interaction between Cs ions
and the PB-SCB was relatively hindered because the surface
charge was positive; however, at pH values beyond 3, the
removal efficiency of Cs ions increased significantly, reaching
to around 90%, owing to the surface charge that was negative-
ly charged. Overall, it can be observed that the capability of
using PB-SCB to capture Cs ions from alkaline solutions was
at least three times higher than that of applying SCB. Hence,
these results confirmed that PB-SCB could be used in an al-
kaline solution to remove cesium ions.

Influence of contact time and adsorption kinetics

The adsorption capacity and removal efficiency of the pre-
pared PB-SCB for Cs ions as a function of time were exam-
ined. Figure 6 a shows that the adsorption efficiency of the
adsorbent increased rapidly over time, which attained after 2 h
at 87.4% and reached equilibrium. It might be attributed to the
existing of numerous vacant active sites on the surface of the
adsorbent in the initial stage, which were occupied by the
metal ions with the increase in the contact time (Karkeh-
abadi et al. 2016). Therefore, in the next experiments, a con-
tact time of 2 h was chosen for cesium adsorption.

The adsorption performance and kinetic mechanism of ce-
sium ions on the prepared PB-SCB were investigated using
pseudo-first-order (Lagergren 1898), pseudo-second-order
(Yuh-Shan and Gordon 1999), and intraparticle diffusion
(Weber and Morris 1963) models. The nonlinear forms of
the former two models are given in Eqs. (6) and (7) respec-
tively, and the latter model is shown in Eq. (8).

Fig. 4 Point of zero charge of SCB and PB-SCB adsorbents

Fig. 5 Effect of solution pH on the adsorptive removal of cesium
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qt ¼ qe 1−exp−K1
t

� �
ð6Þ

qt ¼ K2 qe
2 t

� �
= 1þ K2 qe tð Þ ð7Þ

qt ¼ K id t0:5 þ I ð8Þ
where qt and qe are the adsorption capacities (mg/g) at t
(min) and at equilibrium, while I is the interparticle diffu-
sion model intercept (mg/g), K1 (1/min), K2 (g/(mg.min)),
and Kid (mg/(g.min)) are the investigated three models rate
constants, respectively.

Table 1 and Fig. 6 outline the three investigated models’
parameters. According to the obtained experimental data, the
adsorption of cesium ions on PB-SCB was explained better
and fitted to the pseudo-second-order model with higher cor-
relation coefficient reached 0.82 compared to pseudo-first-
order model which was 0.51 meaning chemical adsorption
mechanism played a considerable role in the process which
is consistent with other reports (Jang and Lee 2016) to remove
cesium ions. Moreover, the experimental and calculated ca-
pacity values in the case of pseudo-second-order are more
close to each other compared with that of pseudo-first-order
model. The straight line obtained in the case of intraparticle
diffusion model linear fitting implied that intraparticle diffu-
sion participated in the adsorption mechanism, but it is not the
only rate controlling step because this line did not pass
through the origin.

Influence of PB-SCB adsorbent dosage

An important factor that affects the adsorption capacity and
the removal % of Cs+ using PB-SCB is the adsorbent dose. In
Fig. 7, by increasing PB-SCB dose, the adsorption capacity
decreased from 28.69 to 11.60 mg/g, while the adsorption %
increased from 57.38 to 92.86%. This is because of a portion

Fig. 6 (a) Effect of contact time, and (b) Nonlinear kinetics models
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Fig. 7 Effect of adsorbent dose on the adsorption of Cs(I)

Table 1 Kinetic parameters of the removal of Cs+ from alkaline
solutions

Kinetic models Parameters

Pseudo-first-order qe (mg/g) 22.20

qcal (mg/g) 19.85

K1 (1/min) 0.27

R2 0.51

Pseudo-second-order qe (mg/g) 22.20

qcal (mg/g) 20.99

K2 (mg/(g.min)) 0.02

R2 0.82

Intra-particle diffusion Kipd 0.70

R2 0.93

I (mg/g) 14.29
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of the adsorption remained unsaturated when the adsorbent
dose increased, and this outcome in better removal percentage.
Keeping the concentration of Cs+ constant, the increase in PB-
SCB dose may cause particulate accumulation of its adsorp-
tion sites resulting in a decrease in the total adsorbent surface
area available for Cs+ ion removal (Kumar et al. 2009). From
the economic perspective, 10 mg was considered through oth-
er experiments.

Influence of Cs(I) ion concentration and isotherm study

The investigation of Cs+ initial concentration effect on the
adsorption process was studied. As shown in Fig. 8a, Cs+

adsorption capacity increased with increasing initial concen-
tration and reached 56.7 mg/g. This well-known phenomenon

may be attributed to the existing of a large number of acces-
sible Cs+ ions near the adsorbent leading to a high driving
force for mass transfer before the adsorption-desorption equi-
librium (Karkeh-abadi et al. 2016). Moreover, the adsorption
efficiency decreased as the initial concentration of the Cs+ ions
increased, indicating that the available adsorption sites be-
came occupied (Ararem et al. 2011).

Equilibrium studies for the adsorption of Cs(I) were exam-
ined to clarify the adsorption mechanism using three different
isotherm models, Langmuir (1918), Freundlich (1906), and
Dubinin-Radushkevich (D-R) (Dubinin and Radushkevich
1947), where the mathematical nonlinear forms of these
models are represented in Eqs. (9), (10), and (11), respectively.
Although Langmuir model assumes a monolayer formed by
adsorbate around the homogenous surface of the adsorbent
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Fig. 8 (a) Effect of metal ion concentration, (b) Langmuir, (c) Freundlich, and (d) D-R isotherm models

25556 Environ Sci Pollut Res (2019) 26:25550–25563



without interaction between them, Freundlich model supposes
a heterogeneous surface multilayer adsorption process, based
on strong electrostatic interaction between positive and nega-
tive charges (Liu and Zhang 2015). In the D-R adsorption
isotherm, Ea can be utilized to decide the adsorption mecha-
nism to be physical or chemical (Ren et al. 2016). When 1 <
Ea < 8, the dominant adsorption process mechanism will be
physical; however, in the case of 8 < Ea < 16, the dominant
mechanism will be an ion exchange (chemical) (Alipour
et al. 2016).

qe ¼ Cebqmð Þ= 1þ Cebð Þ ð9Þ

qe ¼ K FCe
1=n ð10Þ

qe ¼ qm exp
�
−δ RT ln 1þ 1=Ceð Þð Þ2

� �
ð11Þ

where Ce represents the equilibrium concentration in (mg/L)
for Eqs. (9) and (10) and in (mole/L) for Eq. (11). qe (adsorp-
tion capacity at equilibrium) and qm (maximum adsorption
capacity) are given in (mg/g) for Eqs. (9) and (10) and in
(mole/g) for Eq. (11), where b is the Langmuir equilibrium
constant, n and KF are the Freundlich isotherm constants. R is
the rate gas constant (8.314 kJ/(mol.K)), and T is the temper-
ature in kelvin (K). δ value can be utilized to calculate the
mean energy of adsorption (Ea = (1/(2 δ)0.5) (kJ/mol).

The adsorption plots and the fitting model parameters with
R2 for the diverse models were independently shown in Fig. 8
and Table 2. In terms of R2 values, the applicability of the
above 3 models for present experimental data approximately
followed the order: Freundlich > D-R > Langmuir. Based on
these obtained data, the adsorption mechanism of Cs+ seems
to follow the Freundlich isotherm with higher correlation co-
efficients R2 (0.98) rather than that of Langmuir isotherm R2

(0.81) suggesting multilayer adsorption being more predomi-
nant with an agreement with other studies using PB-based
adsorbents to remove cesium ions (Cho et al. 2018). The

values of n in the Freundlich equation over the range of 1 to
10 explain that the adsorption is favorable. As shown in
Table 2, the n values at all 4 temperatures were in this range
illustrating that PB-SCB adsorbent had good adsorption char-
acteristics toward Cs+. According to the analysis of the D-R
model, the Ea value was ranged from (13–14) kJ/mol which
indicated that the adsorption behavior of cesium on PB-SCB
could be described as chemical adsorption, which is in good
agreement with kinetic models. These results well agreed with
the observations of previous reports for the adsorption of ce-
sium onto other adsorbents (Wang et al. 2019). The maximum
adsorption capacity calculated by the Langmuir at 303 K is
56.21 mg/g, which is very close to the value actually deter-
mined as 56.7 mg/g.

Influence of temperature and thermodynamic study

The influence of temperature was optimized for Cs+ adsorp-
tion on PB-SCB adsorbent. Figure 9 a illustrates that, with the
rise of temperature, the adsorption capacity of PB-SCB adsor-
bent and Cs(I) removal rate increased slightly, reaching
38 mg/g and 94%, respectively. This is may be because the
increase of the adsorbent active sites at elevated temperature
enhanced the adsorption capacity of Cs(I) ions (Chen et al.
2010).

The impact of temperature on the adsorption reaction can
be assessed using the adsorption thermodynamic parameters.
Therefore, Gibbs free energy change (ΔG), standard enthalpy
(ΔH), and standard entropy (ΔS) as thermodynamic parame-
ters were calculated under different temperatures using the
following equations:

ΔG ¼ −RT Ln Kc ð12Þ
ΔG ¼ ΔH−TΔS ð13Þ
where Kc is the equilibrium constant (Kc =Ca/Ce) (Kurniawan
et al. 2011), Ca and Ce are the concentration of Cs+ phase
adsorbed on PB-SCB at equilibrium (mg/L), and the equilib-
rium concentration of Cs+ in solution (mg/L), respectively, R
represents the universal gas constant (8.314 J/(mol.K)), and T
is the absolute temperature in Kelvin (K). Figure 9 b explains
the plot of ΔG versus T in which the values ofΔH andΔS can
be determined from the slope and intercept that were tabulated
in Table 3. While the negative values of ΔG confirmed that
the adsorption of cesium ions using PB-SCB is spontaneous in
nature, the positive value ofΔH indicated that the adsorption
process is endothermic.

It was previously reported that physical adsorption oc-
curred when (ΔG) ≤ − 20 (KJ/mol), while at (ΔG) ≥ − 40
(KJ/mol) (chemical adsorption) is dominated the adsorption
process. The (ΔG) values obtained in this study are < − 10
(KJ/mol), indicative that physical adsorption is included in
the sorption process.

Table 2 Langmuir, Freundlich, and D-R isotherm parameters

Isotherm
model

Parameters Temperature

303 313 323 333

Langmuir qm (mg/g) 56.21 60.99 72.12 70.55

R2 0.75 0.81 0.72 0.79

Freundlich Kf (L/g) 11.45 11.70 11.69 14.51

n 3.39 3.30 3.06 3.35

R2 0.96 0.97 0.94 0.98

D-R qm (mg/g) 110.39 121.45 140.98 139.65

δ (mol2/KJ2) 2.73E-9 2.67E-9 2.62E-9 2.54E-9

Ea (kJ/mol) 13.53 13.68 13.81 14.03

R2 0.92 0.94 0.89 0.94
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Effect of interfering cations

The electrostatic interaction, ionic strength, and hydrated ra-
dius are significant factors, as physisorption (ion trapping) and
chemisorption (ion exchange) are important for cesium ad-
sorption. The distribution coefficient of Cs+ on the optimal
mixture as a function of Li+, Na+, and K+ concentration is
shown in Fig. 10a. The obtained results clarified that there
was no significant change (only less than 2%) in the Kd values
of Cs+ at the investigated range concentration in the case of
Li+ and Na+ solution. However, the more decrease in the Kd

values of Cs+ can be obviously observed in the case of using
K+ ions, where there was around 10% decrease when the
concentration of K+ increased to 100 mg/L. This can be clar-
ified by the way that the higher charge density ions (Fig. 10b)
can bind to larger water clusters; hence, the change in the Kd

values could follow the order of hydrated ionic radii sequence
Li+ > Na+ > K+ > Cs+ (Jr 1959). Thus, the competitive adsorp-
tion capacity of the present ions decreased in the order K+ >
Na+ > Li+, which is consistent with the experimental results
and other previous reports (Wang et al. 2019). However, the
concentration of K+ in radioactive wastes is much lower than
that of other cations; hence, the prevention of cesium adsorp-
tion by K+ will not be a significant issue in real applications
(Attallah et al. 2011).

The maximum adsorption of Cs(I) with various adsorbents

For comparison, the cesium adsorption capacities of previous-
ly reported adsorbents are given in Table 4. The maximum
adsorption capacity of PB-SCB adsorbent was not the best
among those reported in previous studies. However, the max-
imum adsorption capacity is not the only performance indica-
tor, and we focused more on the simplicity, environmentally
friendless, and the cost-effectiveness of the prepared
adsorbent.

Mechanism

The binding mechanism of Cs+ ions on PB remains con-
troversial. Some researchers suppose that Cs+ ions are
adsorbed into the crystal cage structure of metal
hexacyanoferrate as an ion pair with a cation (physical
adsorption) (Ishizaki et al. 2013), whereas others consider
that Cs+ ions are exchanged with K+ ions (chemical ad-
sorption) (Avramenko et al. 2011), particularly on the ad-
sorbent surface layer. FT-IR and EDS investigation
(Fig. 11a, b, respectively) were performed to propose the
adsorption mechanism of Cs+ ions onto PB-SCB. FT-IR
spectra of Cs-laden samples showed no obvious changes
in the vibration bands indicating the non-participation of
the functional groups located on the surface of PB-SCB
for the removal of Cs+ ions (Zong et al. 2017). Moreover,
EDS spectra explained elevated peaks of Cs on PB-SCB
(Fig. 11b), which were not clear on the PB-SCB before
adsorption. These elevated peaks of Cs+ have associated
with the lowering of other peaks, e.g., K+ peaks present in
pre-sorption samples. This result approved the involve-
ment of the ion exchange mechanism between K+ and
Cs+ during sorption onto PB-SCB, in which the element
content of K+ and Cs+ before and after the reaction was
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Table 3 Thermodynamic parameters for the adsorption of Cs(I)

T (K) ΔG (kJ/mol) ΔH (kJ/mol) ΔS (KJ/(mol.K)) Ea (KJ/mol)

303 − 4.19 21.2 0.08 5.06 E-05
313 − 4.35
323 − 5.89
333 − 6.7
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changed from 1.90 to 0.66% for K+ and from 0 to 8.82%
for Cs+. On the other hand, the conjunction of the adsorp-
tion kinetic (pseudo-second-order), isotherms (Dubinin
and Radushkevich), and thermodynamics with the analy-
sis of EDS in this study elucidated that the removal mech-
anism of Cs+ by PB-SCB might be the joint action of
chemisorption (K-exchange) and physisorption (ion-trap-
ping), which is in good agreement with other reports
(Alamudy and Cho 2018). Therefore, Cs+ ions would be
efficiently adsorbed at the crystal lattice spaces by the

proton-exchange mechanism, not the electrostatic attrac-
tion (Jang et al. 2015) as clearly illustrated in Fig. 12.

Radioactive 137Cs removal

The PB-SCB adsorbent was applied for the removal of a real
radioactive 137Cs sample. In this respect, different samples
with activity 140 × 103 Bq/L of radioactive 137Cs were mixed
with different weights of PB-SCB adsorbent (0.01, 0.05 g)
and shaked for different times. After the separation of the

Table 4 Maximum adsorption capacity of cesium in various adsorbents

Adsorbent Adsorption parameters Adsorption capacity (mg/
g)

Ref.

Cs ion
concentration

pH Adsorbent
dose

PB-SCB adsorbent 300 mg/L 10 2 g/L 56.7 Present study

Photocatalytic-PB/TiO2 6.65 mg/L NR 5 g/L 1.2 (Kim et al. 2018)

PB/GO foam 500 mg/L NR 2 g/L 18.67 (Jang et al. 2015)

Ammonium-pillared MMT/Fe3O4 composite 40 mg/L 6.7 0.5 g/L 27.53 (Zheng et al. 2017)

CMC/PB-La 140 mg/L 7 1 g/L 35.22 (Zong et al. 2017)

PB/Fe3O4/GO/alginate 150 mg/L 7 2.5 g/L 43.52 (Yang et al. 2014)

Ammonium
molybdophosphate–polyacrylonitrile

200 mg/L 7.5 2 g/L 78.17 (Long et al. 2014)

Ethylamine-modified MMT 340 mg/L 7.5 2 g/L 80.27 (Long et al. 2013)

PB-coated magnetic nanoparticles 2780 mg/L NR 6.25 g/L 96 (Thammawong et al.
2013)

NR not reported
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adsorbent from the liquid phase, the activity of the samples
was measured bymultichannel NaI (Tl) detector. The obtained
results are illustrated in Fig. 13.

It was found that the activity of the solution dropped by
more than 95% (from 280 down to 11.2 Bq) using 0.05 mg of
the composite (Fig. 13b), which was attributed to a large num-
ber of accessible adsorption sites. In addition, the highDF (25)
further confirmed the promising application of the PB-SCB
composite for the decontamination of 137Cs containing radio-
active wastewater which is 13.88-fold higher than that of in
case using cellulose/HO7Sb3 nanocomposite (Abdel-Galil
et al. 2018) and 10 times as high as that of in case using
aluminum silicate modified by magnesia (Mansy et al. 2017)
for the removal of 137Cs from radioactive wastewater.

Moreover, in the case of the dynamic removal of 50 ml
137Cs (with total activity of 7000 Bq), the applicability of
the PB-SCB to decontaminate radiocesium ions from real ra-
dioactive wastewater was confirmed by the outstanding drop
in the total 50-ml activity (from 7000 to almost 250 Bq), a
decline of more than 96% in just 20 min, resulting in a high
DF (27.8) (Fig. 13a).

Cost analysis and applicability

The price of any adsorbent plays an important role when it is
to be used for detoxification of contaminants from wastewater
in large-scale implementation. Hence, there are several factors

(a) FT-IR spectra of PB-SCB before and after

Cs (I) adsorption   

(b) EDS analysisof PB-SCB before and after Cs

(I) adsorption   

Fig. 11 (a) FT-IR spectra, and (b) EDS analysis before and after Cs ions adsorption on the PB-SCB backbone

Fig. 12 Proposed mechanism of the PB-SCB to remove cesium ions
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that governed the cost of any adsorbent material, like energy
consumed and the precursors used. SCB is readily available in
abundance as waste at no cost; therefore, the main cost will
come from the using of the reagents to be used in the synthesis
of PB. The overall cost can be calculated using Eq. (14)
(Dalvand et al. 2011).

Operating Cost ¼ ∑Creagents þ CEnergy ð14Þ

where Cenergy denotes the cost of energy consumed and
Creagents represents the sum of the cost of the used reagents.
The rate of electricity US$0.13/kW was used in the calcula-
tions as used by Saad et al. (2017).

As the maximum adsorption capacity of PB-SCB for the
removal of Cs is 56.7mg/g at 30 °C, therefore, an approximate
amount of PB-SCB (17.5 g) will be required to decontaminate

1000 mg of Cs. The approximate consumption and evaluated
cost for the treatment of Cs-decontaminated wastewater
(1000 mg) at the optimum operating parameters is presented
in Table 5, where the prices were obtained from Alibaba
website as an actual estimation for the market price as previ-
ously approved by several authors (Thompson et al. 2016;
Borra et al. 2016).

Considering the benefits of PB-SCB preparation and eco-
friendless, the analysis revealed that the proposed method is
not only efficient for the significant removal of radio-cesium
but also it is among the least expensive methods available for
the said purpose. The total cost was determined to be only
US$0.12 for the treatment of 1000 mg cesium-containing al-
kaline solution, confirming that our proposed material is con-
sidered to be among the cheapest adsorbents available for
wastewater treatment.

Conclusion

Prussian blue nanoparticles functionalized sugarcane bagasse
was successfully prepared for the removal of radioactive cesi-
um (137Cs). According to the obtained results, PB-SCB adsor-
bent showed enhanced adsorption toward cesium in the pres-
ence of competing cations with adsorption capacity reached to
56.7 mg/g. Therefore, the PB-SCB adsorbent could be widely
applied in large-scale applications for the decontamination of
radioactive cesium from alkaline solutions because of the sim-
ple and environmentally friendly synthetic method, and the
costless of sugarcane bagasse.
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Fig. 13 Removal of 137Cs from real radioactive liquid waste sample: (a) Dynamic studies, and (b) Application static

Table 5 Approximate cost estimation for the all used reagents

Price
(US$)/unit

Amount
consumed

Cost
(US$)

Process/precursor

SCB collection Bio-waste Free 0.000

Washing and drying Tap Water and Sun Free 0.000

Boiling 0.13/kW 0.25 kW 0.033

K4[Fe(CN)6]·3H2O 2.25/kg 2.84 × 10−3 kg 0.006

Fe(NO3)3·9H2O 0.56/kg 3.59 × 10−3 kg 0.002

Stirring over night 0.13/kW 0.54 kW 0.070

Net cost 0.111

Overhead cost (10% of net cost) 0.011

Final cost 0.122
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