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Abstract
Commercial usage of ZnO nanoparticles has increased recently due to its versatile applications, raising serious environmental
concern because of its ultimate release of nanoparticles in aquatic ecosystem. Therefore, it is important to understand the impact
of ZnO nanoparticle toxicity especially on algal flora, which is the primary producer in the aquatic food chain. In the current
study, algal growth kinetics was assessed after the exposure of zinc oxide nanoparticles and its bulk counterpart to Coelastrella
terrestris (Chlorophyceae). Zinc oxide nanoparticles were found to be more toxic (y = 34.673x, R2 = − 0.101, 1 mg L−1 nano-
particle (NP)) than bulk (y = 50.635x, R2 = 0.173, 1 mg L−1 bulk) by entrapping the algal cell surface. Higher toxicity may be due
to oxidative stress within the algal cell as confirmed through biochemical analysis. Biochemical parameters revealed stressful
physiological condition in the alga under nanoparticle exposure, as lactate dehydrogenase release (18.89 ± 0.2 NP; 13.67 ± 0.2
bulk), lipid peroxidation (0.9147 ± 1.2 NP; 0.7480 ± 0.8 bulk), and catalase activity (4.77 ± 0.1 NP; 3.32 ± 0.1 bulk) were found
higher at 1 mg L−1 in the case of nano-form. Surface adsorptions of nanoparticles were observed by SEM. Cell organelle damage,
cell wall breakage, and cytoplasm shrinkage were found as responses under toxic condition through SEM and TEM. Toxicity was
found to be influenced by dose concentration and exposure period. This study indicates that nano-form of ZnO is found to be
more toxic than bulk form to freshwater alga.
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Abbreviations
ANOVA Analysis of variance
BG-11 Blue Green-11
BSA Bovine serum albumin
CAT Catalase
CDH Central drug house
FTIR Fourier-transform infrared spectroscopy
LDH Lactate dehydrogenase
MDA Malondialdehyde assay
NADH Nicotinamide adenine dinucleotide hydrogen
NCBI National Center for Biotechnology Information

NP Nanoparticle
PBS Phosphate-buffered saline
PDI Polydispersity index
SD Standard deviation
SEM Scanning electron microscopy
SOD Superoxide dismutase
TEM Transmission electron microscopy
UV Ultraviolet
ZnO Zinc oxide

Introduction

Globally, ZnO nanoparticle is the third highest annually pro-
duced nanoparticles (550 tons per year) after silica dioxide
and titanium dioxide, respectively (Piccinno et al. 2012).
ZnO nanoparticles possess exotic piezoelectric and pyroelec-
tric properties, a wide bandgap, high exciton binding energy,
and wurtzite structure lacking the center of symmetry; these
properties make them unique and suitable for versatile usage
(Wang 2004). A comprehensive range of ZnO nanoparticle
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applications covers almost every mainstream sector of man-
kind needs like the following: as nano-fertilizers and as other
nano-agrochemicals in agriculture (Raliya et al. 2017); as UV
filter/absorber in textiles and cosmetics (Lu et al. 2015); as
nano-photocatalyst for wastewater treatment and in electron-
ics (Sharma et al. 2017); as nano-composite film in the food
industry for packaging purposes (Ejaz et al. 2018); and as an
antimicrobial agent (Alswat et al. 2016) and biosensors
(Lupan et al. 2016) in pharmaceuticals for targeted drug de-
livery (Rasmussen et al. 2010; Ghaffari et al. 2017) and even
for other biomedical purposes (Mishra et al. 2017). From these
nano-based products, ZnO nanoparticles will eventually get
released into the environment and ultimately sink into our
aquatic bodies (Wang et al. 2018). Even models predicting
the environmental fate of nanoparticles concluded the neces-
sity to evaluate the toxicity of nanoparticles including the
aquatic flora and fauna (Sun et al. 2016). For that reason, it
is very imperative to assess the impact of ZnO nanoparticles
on aquatic ecosystems. As alga is the primary source of food
in aquatic ecosystem, any sort of damage to algal flora could
lead to the disturbance in the complete food chain and ulti-
mately to the aquatic ecosystem (Nowack and Bucheli 2007).
Alga is the integral component of the aquatic ecosystem and
being the primary producer, its impact would affect the whole
food chain of the aquatic ecosystem; therefore, algae are the
ideal model organisms to examine the effect of nanoparticles
(Cattaneo 2018; Espinasse et al. 2018).

Earlier studies reported that a ZnO nanoparticle con-
centration between 0.06 and 100 mg L−1 imparts toxicity
to most of the algae (Franklin et al. 2007; Miao et al.
2010; Chen et al. 2012; Li et al. 2017; Bhuvaneshwari
et al. 2018). The reported toxicity is found different re-
garding the different species, particle nature, and test
methods (Merdzan et al. 2014). ZnO nanoparticles are
kinetically very active and undergo numerous transforma-
tions rapidly that prominently influence itsThe two prime
factors imparting toxicity on the basis of earlier toxico-
logical impact. The two prime factors imparting toxicity
on the basis of earlier studies were dissolution and aggre-
gation (Chen et al. 2012; Ma et al. 2013). Reactive oxy-
gen generation production is also thought to be an impor-
tant factor in mediating toxic responses (Klaine et al.
2008; Fu et al. 2014). Reduction in photosynthetic pig-
ment (Hazeem et al. 2016), algal growth inhibition
(Manzo et al. 2013; Li et al. 2017), and lipid peroxidation
(Ji et al. 2011; Suman et al. 2015) as responses to ZnO
nanoparticles have also been reported earlier. But the
straightforward relationships between these factors, re-
sponses, and exposed organism have not yet been
established. This avenue is further being explored to un-
derstand the overall impact of ZnO nanoparticles to the
algal physiology. The purpose of the study is to monitor
the ever-lasting impact of ZnO nanoparticles on

Coelastrella terrestris which could help us predict the role
of algae in aquatic nano-ecotoxicology. In the present
study, we comparatively assessed the effect of ZnO nano-
particles and bulk form on Coelastrella terrestris on
growth kinetics. We have monitored the dynamics of tox-
icity over a period of 25 days; therefore, this is relatively
a long-term study exploring the impact of ZnO exposure
on the life cycle of Coelastrella terrestris. We have tried
to establish a straightforward relationship between the
dose concentration and the number of exposure days by
estimating IC50. Overall changes bought by the inclusion
of ZnO in nano- and bulk form during the growth of the
algae are monitored and the metabolic, physiological, and
morphological changes under the treatment during the
growth phases are assessed.

Material and methods

Algal cultures

Axenic culture of Coelastrella terrestris (NCBI accession
number: MK294227.1) has been established in lab-made
BG-11 media (pH 7.4; Rippka et al. 1979) in 250-mL
Erlenmeyer flasks and cultures were kept at 25 ± 1 °C temper-
ature and 14.5Wm−2 light intensity from the samples collect-
ed from Fateh Sagar, a freshwater lake in Udaipur, Rajasthan.
Cultures were maintained on a regular basis through frequent
media change under the same conditions and were subjected
to harvest during their exponential phase after measuring the
protein value. All the experiments were carried out under the
same experimental conditions in triplicates.

Chemicals, particle dispersions, and nanoparticle
characterization

ZnO nanoparticles and the bulk counterpart were purchased
from Sigma-Aldrich (CAS: 1314-13-2-030-013-007) and
Central Drug House Private Limited (CAS: 1314-13-2), re-
spectively. The size of the ZnO nanoparticles was confirmed
further through TEM (Tecnai, G-20 (FEI), USA) and FTIR
analysis (Bruker Alpha Model, laser class-1). Stock solutions
for both ZnO nano- and bulk forms were prepared with 10 mg
in 100 mL deionized water. In the case of ZnO nanoparticles,
stock suspension was sonicated for 30min at 40 Hz by using a
Probe sonicator (Q-500, Qsonica, USA.). Further, dilutions
were made in BG-11 medium for toxicological assessment
between 0.1- and 1-mg L−1 concentrations. Test suspensions
were vortexed mildly before use. One milligram per liter of
ZnO nanoparticle concentration was used further to determine
the zeta potential of suspended nanoparticles and hydrody-
namic diameters through dynamic light scattering using
Zetasizer Nano (ZS90, Malvern).
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Algal growth kinetics

Protein values from homogenously growing axenic algal cul-
tures in the abovementioned conditions were assessed using a
protocol given by Lowry et al. (1951) as modified by Herbert
et al. (1971) by taking absorbance at 650 nm using a UV-Vis
spectrophotometer (Hitachi U2900). From OD, subsequent
protein values were calculated using BSA as standard. To
estimate the growth rate of algae, 1 mL of algal suspension
with a protein value of 100 μg mL−1 was further harvested
from established cultures and inoculated in 100 mL of freshly
prepared BG-11 medium having different concentrations of
ZnO nanoparticles and its bulk counterpart. From these newly
established cultures, protein contents were assessed regularly
starting from 96 h, after every fifth day. IC50 values were also
calculated to analyze the growth rates under the exposure
conditions.

Biochemical parameters

All the biochemical analyses were performed on the 25th day
of the experiment. Day 25 was chosen because in the growth
curve, the highest protein value was detected on that day and
after that, a decline was observed. Therefore, to assess the
impact of treatment on the physiological condition of the al-
gae, the 25th day was chosen for further assessment.

Estimation of chlorophyll and carotenoids Extraction of pig-
ment was done in methanol and their relative amounts were
estimated using equations as per Mackinney (1941):
13.42 × A665 = μg chlorophyll mL−1 and 200× A420 = μg ca-
rotenoids mL−1.

Lipid peroxidation (MDA) One milliliter of interacted cell sus-
pensions was added to 2 mL of trichloroacetic acid (20%) and
centrifuged for 45 min at 7000 rpm. The supernatant was
added to 3 mL of 2-thiobarbituric acid (0.5%) and heated for
10 min in boiling water bath. After cooling, absorbance was
measured at 532 nm as per Metzler et al. (2011).

Lactate dehydrogenase assay To quantify membrane damage,
lactate dehydrogenase (LDH) assay was performed (Wacker
et al. 1956; Pakrashi et al. 2013). One milliliter of each algal
cell suspension under various treatments was centrifuged at
7000 rpm for 10 min. About 100 μL of supernatant was col-
lected and added to 100 μL of 30 mM sodium pyruvate
followed by 2.8 mL of 0.2 M Tris-HCl. And just before mea-
suring the decrease in absorbance, about 100 μL of 6.6 mM
NADH was added. Ten readings at 340 nm were measured
using UV-Vis spectrophotometer.

Superoxide dismutase activity Algal cell suspensions were
prepared by adding 2 mL (0.5 M) PBS buffer solution

(pH 7.5) in 50 mg biomass harvested from treated algal cul-
tures. Samples were centrifuged for 10 min at 4 °C at
13000 rpm. One hundred microliters of the supernatant was
collected and mixed with reaction mixture prepared as per
Yilancioglu et al. (2014). This was incubated for 10 min at
37 °C and absorbances were recorded at 560 nm.

Catalase activity Catalase (CAT) enzyme helps in
decomposing hydrogen peroxide into water and oxygen. To
quantify the activity, 50 mg of interacted algal biomass was
harvested and suspended in 2 mL (0.5 M) PBS buffer (pH
7.5). Samples were centrifuged at 12000 rpm at 4 °C for
30min. One hundredmicroliters of supernatants was collected
and mixed with reaction mixture as per details given by Roy
et al. (2016). CATactivity was represented in terms of percent
decrease with respect to the control.

Microscopic analysis

Comparative microscopic analyses of algal cells under treat-
ments were done repeatedly using a compound microscope
(Olympus CH20i). Furthermore, to study the algal morpholo-
gy and particle localization, untreated and treated (1-mg L−1

concentration of ZnO treatments of both bulk and nano-forms)
algal cells were analyzed through TEM (Tecnai, G-20 (FEI),
USA) and SEM (EVO 18, Zeiss, Germany). For TEM analy-
sis, blocks were prepared, ultrathin sectioning were done, and
sections were loaded on copper grids, whereas for SEM, algal
cell drops of each sample were coated, air-dried via gold
sputtering, and subjected to analyses.

Statistical analysis

All the experiments were done in triplicates. Mean and stan-
dard deviation were calculated usingMS Excel (office version
10.0) and values are shown as mean ± SD in Table 1.
Correlation and regression equation were estimated using
MS Excel. Statistically significant differences between control
and treatment were analyzed using a one-way ANOVA with
the help of Prism Software (version 3.02), as P values less
than 0.5 were assumed as the significant differences.

Results and discussion

Nanoparticle characterization

Transmission electron microscopy analysis revealed polymor-
phic shape and size (≤ 100 nm) of ZnO nanoparticles (Fig. 1a).
The transmittance peaks at 518.48, 480.38, and 424 wave-
number cm−1 of ZnO nanoparticles were comparable with
the standard graph of ZnO (Fig. 1b). Sonication was essential
as particles have tendency to aggregate in aqueous form
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(Angel et al. 2013). Zeta potential of suspended ZnO nano-
particles was observed to be − 24.6 mV in stock solution pre-
pared within deionized water (Fig. 2b). The dynamic light
scattering study showed the hydrodynamic average size of
ZnO nanoparticles within the deionized water was 252 nm
in diameter with PDI value of 0.164 (Fig. 2a) and showed a
slow and clear tendency to aggregate further as the size is
much greater than the actual size of ZnO nanoparticles ana-
lyzed through TEM. The reason behind the aggregation is the
increase in ionic concentration which subsequently decreases
the repulsive forces between the ZnO nanoparticles. Hence, in
aqueous medium, hydrodynamic sizes usually greater than the
actual particle sizes were found (Bian et al. 2011).

Algal growth kinetics

Growth of Coelastrella terrestris was found adversely affect-
ed under the ZnO nanoparticles and its bulk counterpart treat-
ments. However, analyzing the growth pattern through protein
content, it was observed that the nano-form of ZnO is more
toxic to the Coelastrella terrestris than its bulk form. Toxicity
in both cases, nano-form and bulk form, was found to be dose-
dependent. It is clearly evident that the increase in dosage
concentration leads to the increase in toxicity similar to the
previously reported study (Schiavo et al. 2016). To assess the
growth rate, estimation of protein is one of the important and
useful parameters (Turhani et al. 2005). Protein as a parameter
has also been found useful in assessing the toxicity induced by
heavy metal and nanoparticles in few earlier published reports
(Rai et al. 1992; Harish et al. 2008; Gong et al. 2011). Further,
ZnO NPs were found to exhibit a strong adsorption capability
for proteins; therefore, estimating the protein is critical to un-
derstand the toxicity level (Horie et al. 2009). Earlier studies

also concluded the toxicological responses because of Zn+ ion
dissolution which depends on the adsorption potential of pro-
teins resultant into deprived growth rate in algae (Manzo et al.
2013; Suman et al. 2015). On the 25th day, when highest
protein level was marked by control, a 27% reduction in
growth rate under bulk (y = 50.635x, R2 = 0.173) and a 54%
reduction in growth rate under nano-form (y = 34.673x, R2 =
− 0.101) at 1 mg L−1 of treatment level were observed in terms
of protein level. In other treatment concentrations also, reduc-
tion in soluble protein under nano-form was higher compared
with the bulk was observed (Fig. 3). Even at the lowest con-
centration (0.1 mg L−1), a significant reduction (25%) in pro-
tein content was observed in the case of nano-form (y =
26.302x + 166.58; R2 = 0.1846), whereas in the bulk, the re-
duction was almost negligible (y = 47.095x + 149.63; R2 =
0.3557). A remarkable difference under the nano- and bulk
treatments was also observed at 0.5 mg L−1 where a 35%
reduction (y = 17.764x + 144.3, R2 = 0.1226) in nano-form
and a 27% reduction (y = 36.385x + 130.43, R2 = 0.262) in
bulk were detected. Reduced level of proteins clearly showed
that the nano-form of particles is toxic in comparison with the
bulk. Moreover, IC50 values were also calculated in both
of the cases. IC50 calculated on the 25th day revealed that
the nano-form is more toxic (IC50 = 0.255 mg L−1) in
comparison with the bulk form (IC50 = 0.455 mg L−1). It
means that lower concentration of nano-form is required
to induce a 50% growth inhibition and higher dose of
bulk is required to induce the same level of inhibition.
Results clearly revealed that the nano-form of ZnO nano-
particles is more toxic than the bulk form. IC50 growth
rate parameter is more appropriate scientifically and pro-
vides better interpretations between the comparative stud-
ies (Bergtold and Dohmen 2011).

Table 1 Biochemical parameter analysis of Coelastrella terrestris under different treatment levels

ZnO treatment
(conc. in mg L−1)

MDA content Total chlorophyll
(μg mL−1)

Carotenoids
(μg mL−1)

LDH
(nmol/minmL)

SOD
(unit mg−1prot)

CAT
(unit mg−1prot)

Control 0.2008 ± 0.3 13.3484 ± 0.02 9.1066 ± 0.04 0.002 ± 0.2 3.65 ± 0.3 0.03 ± 0.1

0.1 NP 0.5428 ± 0.6 11.3264 ± 0.02 8.9066 ± 0.05 7.26 ± 0.3 16.89 ± 0.2 2.96 ± 0.1

0.5 NP 0.7180 ± 0.8 5.1130 ± 0.03 5.4866 ± 0.07 15.32 ± 0.2 24.54 ± 0.3 3.76 ± 0.2

1 NP 0.9147 ± 1.2 4.2228 ± 0.03 3.8933 ± 0.05 18.89 ± 0.2 31.62 ± 0.3 4.77 ± 0.1

F 1.001 72460 8301 316800 7367000 72040

P value P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001

P value summary ** *** *** *** *** ***

Control 0.2008 ± 0.3 13.3484 ± 0.02 9.1066 ± 0.04 0.002 ± 0.2 3.65 ± 0.3 0.03 ± 0.1

0.1 bulk 0.4060 ± 0.4 12.3911 ± 0.04 8.7266 ± 0.06 1.27 ± 0.3 5.77 ± 0.2 0.77 ± 0.2

0.5 bulk 0.6368 ± 0.6 8.5082 ± 0.03 7.9200 ± 0.05 10.54 ± 0.2 17.67 ± 0.2 2.87 ± 0.1

1 bulk 0.7480 ± 0.8 7.5778 ± 0.03 6.3333 ± 0.03 13.67 ± 0.2 27.44 ± 0.3 3.32 ± 0.1

F 1.001 29480 2444 148800 555300 32490

P value P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001

P value summary *** *** *** *** *** ***
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As the nano-form of particles possesses greater surface
area to volume ratio which might be one of the key factors
in attributing toxicity to the algae, smaller size leads to the
stronger interaction with the algal cell and alters the cell
wall thickness (Kim et al. 2016). In fact, intrusion of nano-
particles is much easier in the case of newly formed algal
cells in comparison with the mature ones (Dash et al. 2012)
which might be the reason of retarded growth rate response
in the case of nanoparticle treatments. Inherent pores of
algal cell also suggested allowing nanoparticle internaliza-
tion. It was reported that more pores must be induced after
nanoparticle exposure. It produces oxidative stress and
leads to disruption of the cell (Navarro et al. 2008; Xia
et al. 2015; Taylor et al. 2016; Tripathi et al. 2017). The
size of the particle plays a prominent role in toxicological
pavements (Franklin et al. 2007). Earlier studies done on
ZnO nanoparticles reported that different particle shapes
and sizes of the same metal oxide result into a different

toxicity level (Peng et al. 2011; Samei et al. 2019).
Likewise, Manzo et al. (2013) revealed that the bulk ZnO
particles were less toxic than its nanoparticles for
Dunaliella tertiolecta. In the present study, the lowest con-
centration (0.1 mg L−1) of bulk treatment was not observed
to be harmful to the algae, whereas the same concentration
in nano-form was found generating a negative impact on
algal growth. However, at the 1-mg L−1 concentration,
both were detected affecting the growth adversely but the
toxicity was found more in the case of nanoparticles in
comparison with the bulk. Similar results were observed
in the case of two marine algae, Tetraselmis suecica and
Phaeodactylum tricornutum, while assessing the ZnO
nanoparticles and bulk form toxicity (Li et al. 2017). The
surface of algal cells was observed to be occupied by ZnO
nanoparticles (Fig. S1), which could have obstructed the
nutrient exchange between the growth medium and algal
cell (Bhattacharya et al. 2010). A similar phenomenon was

Fig. 1 Zinc oxide nanoparticle
characterization: a TEM
micrograph and b FTIR spectrum
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observed by Metzler et al. (2011) in assessing the effect of
titanium dioxide nanoparticle on algal growth. Moreover,
aggregates entrapping algal cells must have reduced the
availability of light which could have affected the cell
growth activity (Fig. S1). Similarly, Huang et al. (2005)
also concluded that the inhibition of algal cell growth is
due to the adsorption of titanium dioxide nanoparticles on
algal cell surface. Interestingly, with the increase in dosage
concentration, we observed delays in the growth pattern at
the onset of exponential phase in both bulk and nano-forms
of ZnO. Merdzan et al. (2014) reported ZnO nanoparticle
aggregation in correlation with the dissolution phenome-
non and concluded that both the processes could simulta-
neously contribute to produce toxicological impact.
Moreover, earlier dissolution was found to damage the cell
wall and destructive cell organelles, which was also appar-
ent in the present study after microscopic analysis, which
will be discussed later. Moreover, the toxicological attri-
butes were also because of the time of the exposure. As the
duration of exposure was extended, aging of particles also
occurred which also influences the toxicity in the case of
nanoparticles (Schiavo et al. 2018). The overall impact of

ZnO nano-form and bulk form is found negative on the
protein content of algal cells which in terms of growth
was suppressive.

Biochemical parameters

Toxicity assessment by evaluating biological endpoints
like chlorophyll, enzyme activities, and peroxidation re-
veals the oxidative stress of the algae and helps in corre-
lating the mechanism, imparting the toxicity. Therefore, it
is important to determine the biochemical parameters
(Chen et al. 2019).

Chlorophyll and carotenoid content Significant deduction in
chlorophyll content was observed after the exposure of ZnO
nano- and bulk counterpart at 0.5- and 1-mg L−1 concentra-
tions (Table 1). At the lowest concentration of 0.1 mg L−1,
no significant changes in chlorophyll were detected in both
nano- and bulk samples. Chlorophyll content was found
more sensitive under treatments as it was earlier detected
in stress conditions reported by Houimli et al. (2010)
whereas contrastingly carotenoid content was not found
much reduced. This supports the earlier studies reporting
that metal stress in algae responded in carotenoid synthesis
to quench oxidative stress (Nikookar et al. 2005; Wang
et al. 2010).

Lipid peroxidation (MDA)Oxidative stress could be detected
by the quantification of lipid peroxidation, as the mem-
brane lipid damage indicates the stress conditions
(Sayeed et al. 2003). A dose-dependent increase in the
lipid peroxidation was observed in all concentrations ex-
posed, except in bulk at the 0.1-mg L−1 concentration. A
similar dose-dependent response was reported in the earlier
study conducted by Wang et al. (2011). In nano-form, in-
crease in lipid peroxidation was also reported by Chen
et al. (2012). Peroxidation levels were found much higher
in the case of nano-treatments in comparison with its bulk
counterpart as a biomarker of oxidative stress indicating
that nano-form is more toxic.

LDH release Lactate dehydrogenase leakage is one of the pa-
rameters to measure cytotoxicity induced by nanoparticles
(Yang et al. 2009). LDH release was found to be enhanced
with the dosage concentration under nanoparticle treatment,
whereas, at lowest concentration (0.1mg L−1) of bulk, no such
release was detected (Table 1). However, at the same concen-
tration, ZnO nano-form was observed to be more cytotoxic to
the algae than its bulk counterpart via LDH analysis. At
1 mg L−1 of nano-form concentration, substantial membrane
damage was notified indicating the toxicity as reported earlier
(Zhang et al. 2012).

b

a

Fig. 2 a Hydrodynamic size nanoparticles measured via dynamic light
scattering of zinc oxide nanoparticle stock solution in deionized water. b
Zeta potential of suspended nanoparticles
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SOD activity Enzymatic activity was reflective even at lower
concentrations of treatment. The maximum activity detected
in nano- and bulk form was 31.62 ± 0.3 and 27.44 ±
0.3 unit mg−1prot at 1 mg L−1, respectively. Enzymatic activity
observed was directly proportional to dose concentration.
Superoxide dismutase (SOD) activity clearly showed stressful
physiological condition in algae after the exposure of ZnO in
nano- and bulk forms as reported earlier (Suman et al. 2015).

CAT activity Catalytic activity was found increasing in linear
manner with respect to the dosage concentrations. However,
under nano-treatments, catalase activity was more profound
than the bulk treatments. At the 1-mg L−1 ZnO nanoparticle
exposure, the value 4.77 ± 0.1 unit mg−1prot was obtained
which is the highest among all, whereas at the same concen-
tration, 3.32 ± 0.1 1 unit mg−1prot was observed in bulk form.
Only under the 0.1 mg L−1 bulk, no significant activity of
catalase was noticed.

Microscopic analysis

Preliminary screening of algal cells done by compound mi-
croscope embarked a difference between the cultures grown
under nano- and bulk treatments and provided us supportive
evidences (Fig. 4). In comparison with the control, particles of
ZnO along with media particles were found aggregated under
both of the cases which must have hindered the nutrient avail-
ability required by the algal cells to grow. Peculiar morpho-
logical proofs and lack of motility of Coelastrella terrestris

allowed an easier aggregation of ZnO around the cells.
Another observation was that with the increase of dosage con-
centrations in both of the cases, aggregation was found to
increase. This reduced the availability of light to the algal cells
which have obstructed the growth (Aruoja et al. 2009; Gong
et al. 2011).

Similar results were evident by SEM analysis (Fig. 5). One
more trendwas observed that in the case of nano-form, surface
adsorptions of ZnO nanoparticles were observed (Fig. S1) as
reported earlier (Li et al. 2017). It could be the reason why
nano-form is more toxic than bulk as it covers larger surface
area of algal cell via forming large aggregates and stops the
exchange between the cell and the media and light. Moreover,
aggregation increases the direct interaction of ZnO nano- and
bulk forms with the algal cell surface which could be the
reason of cytological damages manifested after the TEM anal-
ysis under both treatments (Xia et al. 2015). TEM results
revealed that cell organelles after the exposure collapsed and
fragmented (Fig. 5). Cell wall was found ruptured; cytoplasm
was shrunken. Overall analysis showed that the long-term
exposure of ZnO nanoparticles induces cytological abnormal-
ities to which the growth of the algae was affected.

Conclusion

Our results revealed that physiochemical nature of the parti-
cles plays an important role with respect to the development
phase of the algae. This study clearly revealed that the growth

Fig. 3 Effect of zinc oxide nanoparticles and its bulk counterpart on Coelastrella terrestris growth kinetics measured via protein content
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Fig. 4 Compound microscopy images of Coelastrella terrestris under
control and under different treatment concentrations of zinc oxide
nanoparticles and its respective bulk form after 600 h: a control or
untreated algal cells; b–d zinc oxide nanoparticle–treated algal cells with
0.1-, 0.5-, and 1-mg L−1 concentrations, respectively; e–g zinc oxide

bulk–treated algal cells with 0.1-, 0.5-, and 1-mg L−1 concentrations,
respectively; h algal cultures under treatment along with control (1 con-
trol; 2, 3, and 4 represent 0.1-, 0.5-, and 1-mg L−1 zinc oxide nanoparticle
treatments, respectively; 5, 6, and 7 represent 0.1-, 0.5-, and 1-mg L−1

zinc oxide bulk treatments, respectively)

a b c

Disrupted 
cells

Plasmolysed
cellv

d e f
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cell 
organelle

Cytoplasm 
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wall

Zinc oxide 
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Fig. 5 Scanning electron microscopy: a Coelastrella terrestris control
cells, b algal cells treated with zinc oxide nanoparticles, c algal cells
treated with zinc oxide bulk counterpart (arrows representing
detrimental effects of treatments). Transmission electron microscopy: d

Coelastrella terrestris control cells, e algal cells treated with zinc oxide
nanoparticles, f algal cells treated with zinc oxide bulk counterpart; both
micrographs were taken after 25 days of exposure treated with 1 mg L−1
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rate of algae was suppressed. The nano-form of ZnO was
found remarkably toxic in comparison with its bulk counter-
part. Toxicity was found directly proportional to the dosage
concentration under both nano- and bulk treatments, and ag-
gregation was found to play a vital role in attributing toxicity.
To develop a better understanding regarding the nature of
aggregation with respect to the media and exposure time,
more investigation needs to be done.
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