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Abstract
Knowledge regarding the concentration levels resulting from the use of agricultural pesticides may indicate the nature of the
controls necessary to reduce environmental and human health risks to an acceptable level. Therefore, the main goal of the present
work was to assess the spatial and temporal occurrence of 35 pesticides in the River Sado estuary (Portugal) in 2017 and evaluate
its environmental condition, as data for estuarine ecosystems is scarce. Since pesticides are very susceptible to matrix effects
promoted by environmental samples, to attain the main goal, we developed a fast and almost solvent-free environmentally
friendly method with a good performance for both estuarine surface water and sediment samples. Quantified residues were
determined mostly during summer, in line with the pesticide application period. Five herbicides (alachlor, bentazon,
metobromuron, metribuzin and triclopyr) were measured in the water before and after the production season, suggesting a
long-term aquatic exposure. Sediment samples were less contaminated, since a lower number of quantified pesticides were found
in the study area, in lower frequencies and lower concentrations. No potential high adverse effects of the use of agricultural
pesticides were expected on the aquatic organisms of the Sado estuary, even considering the potential combination effect of
pesticide mixtures.
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Introduction

The assessment of the environmental condition of aquatic
ecosystems is of global importance and legally binding
through the EU Water Framework Directive (Directive 2000/
60/EC). Pursuant to this, European Directives set limits on

concentrations of priority substances as the pesticides atrazine,
alachlor, diuron, isoproturon, simazine and chlorpyrifos, as
well as environmental quality standards (EQSs) in surface
waters (Directive 2013/39/EU). Agricultural pesticides are
considered environmentally relevant pollutants, and alluvial
soil along rivers usually corresponds to the greatest areas of
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intense agriculture practices. Thus, estuaries seem to be suit-
able areas to develop monitoring programmes to determine
environmental levels (Papadakis et al. 2015; Rodrigues et al.
2018). In fact, the herbicide atrazine has a specific maximum
concentration of 2.0 μg L−1 allowed for European estuarine
waters (Annex I, Directive 2008/105/EC). Moreover, some
pesticides were released years ago and, due to their persis-
tence, are still strongly associated with estuarine sediment
(Cuevas et al. 2018; Duodu et al. 2017), with possible harmful
effects to benthic organisms, as sediment provides habitat for
a diverse range of estuarine organisms such as burrowing or
epifaunal bivalves, burrow-forming amphipod or flatfish.
Accordingly, sediment contamination has been receiving in-
creasing attention from environmental authorities since it is
recognised as a major source of ecosystem health stress
(EFSA 2015).

The aquatic environmental risk characterisation of pesticides
depends on their environmental levels, as well as on their po-
tential effects on aquatic organisms. Hence, the present study
proposes to determine the environmental condition of the River
Sado estuary, the second largest estuary in Portugal, due to the
application of agricultural pesticides in the Lower Sado (agri-
cultural area located upstream the estuary), by linking aquatic
exposure (obtained in the present study) and effects (obtained in
the literature). In order to attain this main goal, two specific
well-determined objectives were delineated: (a) to develop
and validate a multi-residue analytical method for the simulta-
neous determination of pesticides in complex matrices as estu-
arine water and sediment and (b) to determine 32 pesticide
residues and three degradation products of triazine pesticides
in surface water and sediments of the River Sado estuary.

The River Sado estuary was chosen since, among the eight
Portuguese estuaries studied by Vasconcelos et al. (2007), it
was considered the most affected by agriculture practices (par-
ticularly rice fields). To our knowledge, the occurrence of
pesticide residues in the Sado estuary has not been subject to
an overall assessment since 2008 (Silva and Cerejeira 2015).
By contrast, a reasonable amount of the literature concerning
the occurrence and effects of biphenyls, dibenzofurans and
dioxins (Nunes et al. 2014); metals and metalloids (Caeiro
et al. 2005; Serafim et al. 2013); nutrients (Saraiva et al.
2007); organo-tins (Díez et al. 2005); and polycyclic aromatic
hydrocarbons (Serafim et al. 2013) was reported for this estu-
ary. The River Sado estuary was also selected as a study area
because it comprises a great diversity of habitats, including
two Special Protection Areas for Birds and the Sado Estuary
Nature Reserve (23,160 ha), as well as one of the few resident
populations of bottlenose dolphins of Europe.

The 35 pesticides were selected to cover all groups (fungi-
cides, herbicides, insecticides and nematocides), as well as
three degradation products of triazine pesticides (desethyl-at-
razine, desisopropyl-atrazine and desethyl-terbuthylazine).
Alachlor (not approved in EU); atrazine (not approved in

EU); chlorpyrifos, diuron and isoproturon (not approved in
EU); and simazine (not approved in EU) were selected as they
are listed as priority substances in Directive 2013/39/EU;
azoxystrobin, bentazon, imidacloprid and 2-methyl-4-
chlorophenoxyacetic acid (MCPA)were selected because they
are approved pesticides for rice production application in
Portugal (DGAV 2016); bentazon, MCPA, propanil and
triclopyr were selected as its occurrence in the Sado river basin
had previously been reported by Silva and Cerejeira (2015).
The persistent herbicides atrazine and simazine, which had
been widely used in Portugal, were removed from the
Portuguese market respectively in 2007 and 2005 in the scope
of Directive 91/414/EE, repealed by Regulation 1107/2009,
and its persistence in the River Sado estuary was investigated
in the present study. Conversely, the placement of
terbuthylazine on the market was authorised, and this herbi-
cide was recently detected in several other Portuguese estuar-
ies (Cruzeiro et al. 2015, 2016b; Rodrigues et al. 2018).
Alachlor, benalaxyl, chlorpyrifos, kresoxim-methyl, linuron,
S-metolachlor, penconazole, propazine, tebuconazole,
terbuthylazine and triclopyr were also selected as they have
hydrophobic properties (log Kow ≥ 3), and therefore tend to
bind to suspended particulate matter and to accumulate in
bottom sediments once entered into the water compartment.
A log Kow ≥ 3 is used as a trigger value for sediment EQS
determination, according to the European Commission
(2011). Finally, the degradation products of triazine pesticides
were chosen as atrazine is considered a persistent herbicide
(Jablonowski et al. 2010), and the desethyl-atrazine-to-
atrazine ratio could be an indicator of the residence time of
atrazine in the soil (Adams and Thurman 1991; Goolsby et al.
1997). Also, desethyl-terbuthylazine is frequently found in
aquatic ecosystems (recently reviewed by Tasca et al.
(2018)), where it constitutes a hazard to non-target organisms
(Stara et al. 2016; Velisek et al. 2016).

On-line solid-phase extraction (SPE) coupled with ultra-
performance liquid chromatography tandem mass spectrome-
try (UPLC-MS/MS) was the chosen methodology for pesti-
cide residue determination in the collected samples (estuarine
water and sediment). In sediment samples, the accelerated
solvent extraction (ASE) technique was used as an additional
step for simultaneous sample extraction, clean-up and concen-
tration. The ASE is considered an advanced technique since it
provides important benefits over more traditional extraction
techniques such as liquid–liquid extraction or Soxhlet extrac-
tion. ASE requires less solvent volume, thereby being in com-
pliance with green analytical practices; demands less sample
manipulation; and allows for shorter extraction times, thus
increasing sample throughput (Rodrigues et al. 2016).

The outcomes of the present study allowed the determina-
tion of pesticide aquatic risk characterisation for an estuarine
ecosystem by linking the exposure levels determined in this
study and the EQS values obtained in the literature. A
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limitation using this approach should be highlighted since
pesticides are considered individually, whereas agricultural
contamination is usually due to a mixture of pesticides, as well
as of other compounds such as fertilisers. The combined toxic
effects of pesticide mixtures exceeding the effect of each in-
dividual compound has already been demonstrated (Porsbring
et al. 2010; Verbruggen and van den Brink 2010). According
to the European Union (2012), pesticides with common
modes of action seem to act jointly to produce combination
effects that are larger than the effects of each mixture compo-
nent applied individually, and can be described by the concen-
tration additionmethod. For mixtures of independently acting
pesticides, if the individual pesticide is present above its EQS
level, the effects can be estimated directly from the probability
of responses to the individual components (response addition)
or the sum of biological responses (effects addition).
Accordingly, for the water and sediment samples with the
highest number of pesticides, these approaches were applied
to determine the realistic toxicity of the pesticides present in
the River Sado estuary.

Experimental methodology

Study area, sample collection and sediment organic
matter determination

The River Sado estuary (170 km2) is located in Southern
Europe, in the southwest coast of Portugal, and is considered
a well-mixed mesotidal estuary with irregular river discharge
(Bettencourt et al. 2004). The sampling area, along the
Comporta and Alcácer do Sal channels, the main agricultural
areas of the estuary, covered a total of 11 sampling points for
surface water and 10 for sediments (Fig. 1), as station 5 was in
a trench used for irrigation, and no sediment sample was col-
lected. The Comporta channel is highly dynamic, and tides are
the main responsible for water circulation, whereas the en-
trance of the Alcácer do Sal channel corresponds to a shallow
area with tidal flats, and freshwater forcing conditions charac-
terise the inner part of this channel. Pesticide seasonal and
spatial occurrences were considered, as a pollutant gradient
along the two channels of the estuary was expected.
Seasonal variations, before and after the production season
on the Lower Sado, were foreseen as well. The first sampling
campaign took place a few days after the end of the rainy
season but before the works for the following producing sea-
son on the Lower Sado agricultural fields started (March 14–
15, 2017). The second sampling campaign occurred in July,
which corresponded to the end of the producing season
(July 20–21, 2017). Two different matrices, superficial water
(≈ 1 L) and surface sediment (≈ 250 mg), were collected dur-
ing low tide, and the samples were stored in amber glass or
aluminium extrusion containers and transported to the

laboratory in 12-V car refrigerators, and then immediately
frozen. Several physico-chemical parameters were measured
in situ in the water samples, such as dissolved oxygen con-
centration (mg L−1), temperature (°C), pH and salinity.
Sediment samples (top 2–5 cm) were randomly collected in
quadruplicate within an area of 100 m2 in each sampling sta-
tion, using a stainless steel scoop. Three replicates went to the
Water Institute of the Northern Region (IAREN) (Portugal)
for pesticide determination, and the fourth replica was
homogenised, oven-dried to constant weight at 60 °C
(Raypa) to obtain dry weight and then burned at 450 °C
(Nüve MF110) for 8 h to obtain organic matter content.

Pesticide standards and chemicals

Twenty four of the 35 certified standards used in the present
study (Table 1) were of Pestanal© grade (Sigma-Aldrich),
imidacloprid (purity 99.8%, Dr. Ehrenstorfer), and the remain-
ing pesticides came in a pesticide mixture standard solution
from Ultra (U-PPM-017-1). Ammonium acetate (purity 99%,
LC grade, Sigma-Aldrich), methanol (LiChrosolv gradient
grade, Riedel-de Haën, Honeywell) and ultra-pure water
(Milli-Q, Millipore, Molsheim). Individual stock solutions of
2000 mg L−1 were prepared by dissolving 20 mg of each
pesticide standard in methanol. An intermediate mixture stock
solution was prepared from the individual stock solutions, and
from this, a final work solution containing 100 μg L−1 of each
pesticide was prepared. Calibration solutions were prepared
daily from this 100 μg L−1 work solution in ultra-pure water.

Pesticide extraction method

The ASE technique was applied to the sediment samples,
which had previously been dried for 96 h at room temperature
in a hotte, and then grounded in a mortar and sifted through a
1.0-mm fine sieve. The pesticide extraction and purification
steps were performed in Thermo Scientific™ Dionex™
ASE™ 350 equipment using 1.0 g of the sediment sample,
diatomaceous earth (0.20 g) as a dispersant agent and metha-
nol as a solvent. The following conditions were applied: a
pressure of 1500 psi, a temperature of 80 °C, a static time of
3 min, 4 cycles, a flush volume of 60% and a purge time of 60
s. Then, final extracts (15 mL) were diluted at 1:20 ratio with
ultra-pure water, filtered (in a 0.20-μm membrane filter of
cellulose acetate) and treated as described for water samples.

Similar to the sediment extracts, the water samples were
filtered through a 0.20-μm membrane filter of cellulose ace-
tate and placed in 20-mL vials which were then inserted into
the sampling tray of a CombiPAL autosampler. Next, a
5.0-mL sample was carried to the on-line SPE column
(Oasis® HLB HP, 20 μm, 2.1 mm × 30 mm), which had
previously been conditioned with eluent solution (5% metha-
nol in ultra-pure water). After the sample was passed through
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the on-line SPE column, the analytes were extracted with the
eluent to a final volume of 5.0 μL, providing a 1000-fold
enrichment factor. The module was equipped with two SPE
columns, allowing sample pre-conditioning and enriching in
one column while simultaneously eluting another sample in
the second column.

Analytical method

Pesticide residue determination was achieved using a UPLC-
MS/MS (Waters) supplied with an Acquity UPLC® HSS T3
column of 1.8 mm, 2.1 mm × 150 mm, at 40 °C ± 1 °C,
equipped with an on-line SPE module. The mobile phases
comprised eluents A (5.0 mM of ammonium acetate in ultra-
pure water) and B (5.0 mM of ammonium acetate in metha-
nol), using a gradient flow and a flow rate of 0.3 mLmin−1 for
12 min. The chromatographic gradient consisted at first of 5%
methanol, which was then increased to 100% methanol for 5
min, and then kept at 100% for 3 min. After this period, it was
quickly shifted back to 5% methanol and was kept at this
value for 3 min to re-equilibrate. Methanol and a mixture of
water:methanol 50:50 (v/v) were used as the strong and weak
washing solvents, respectively.

The mass spectrometer detector (Waters TQD triple–quad-
rupole) was equippedwith an electrospray interface (ESI), and
the instrumental control and data acquisition and evaluation
were carried out using MassLynx 4.0 software (Waters). The

general conditions of the mass spectrometer were as follows:
nitrogen as the desolvation gas at a flow rate of 850 L h−1,
argon as the collision gas at a flow rate of 50 L h−1, a source
temperature of 150 °C, a desolvation temperature of 350 °C
and a capillary voltage of 3.0 kV. For mass spectrometer de-
tection, cone voltage and collision energy were optimised by
infusing 0.5 mg L−1 of individual pesticide solutions. Using
IntelliStart (Waters™) software, two transition ions were ob-
tained for each pesticide, which was then analysed bymultiple
reaction monitoring (MRM). This optimisation was carried
out in positive and negative ionisation mode, and the
ionisation mode which produced the pair of transitions with
the highest peak intensity was the one selected for each pesti-
cide. Also, the transition with the highest peak intensity was
used for quantification and the ratio between both peak areas
was used for both the identification and the retention time of
the pesticide. The compilation of these data by analyte is pre-
sented in Table S1 (supplementary material).

To control the analytical reliability and assure the recovery
efficiency and the accuracy of the analytical results of the ASE
method, linear range, linearity, method detection limit (MDL),
method quantification limit (MQL), extraction recovery and
intra-day precision were determined by matrix and by target
pesticide. Uncontaminated sediment samples were used for
the optimisation and validation of the method. Nine samples
of those sediments were spiked with the pesticide mixture
work solution with concentrations ranging from 7.5 to

Fig. 1 Map of the study area showing the location of the sampling stations. Comporta channel, stations 1 to 5; Alcácer do Sal channel, stations 6 to 11.
Station 5 was in a trench only used for irrigation
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150 ng g−1 dry weight (dw) for all target pesticides. Samples
were carefully mixed in a mortar to promote contact and to
bind off the pesticides with the sediment matrix, being then

subject to the extraction procedure. The linearity of the meth-
od was assessed by the calculation of quadratic linear regres-
sion (R2) and residual analysis, as well as by the estimation of
MDL and MQL, calculated as requested by the Portuguese
guideline RELACRE 13 (2000) which defines the MDL and
MQL as 3.3 × S(y/x)/b and 10 × S(y/x)/b, respectively, where
S(y/x) is the residual standard deviation of the calibration
curve and b is the slope of the calibration curve.

For the chromatographic method validation, seven calibra-
tion standard solutions were prepared from the pesticide mix-
ture work solution using ultra-pure water, with concentrations
ranging from 25 to 200 ng L−1. The overall performance of the
method was evaluated by calculating the intermediate preci-
sion and recovery of spiked samples. During the validation
process, quality control was performed by the analysis of lab-
oratory and sample blanks, as well as by the analysis of inde-
pendently prepared standard solutions at regular intervals dur-
ing each run of the analysis.

Risk characterisation of pesticides

The risk characterisation for a specific pesticide was deter-
mined as the risk quotient (RQ), the ratio of the maximum
measured environmental concentration (MEC) value and the
EQS value for that pesticide. Two EQS values are possible for
each pesticide, the maximum allowable concentration
(MAC)-EQS and the annual average (AA)-EQS, which are
the values established for the protection of organisms from
lethal and sub-lethal effects, respectively. The concentration
addition method for pesticide mixture toxicity determination
was applied by the calculation of the RQmix of the pesticides
with a similar mode of action (Chèvre et al. 2006). In this
approach, the RQmix can be expressed as the sum of the ratios
of the measured environmental concentration and the EQS for
each pesticide according to

RQmix ¼ MEC1=EQS1 þMEC2=EQS2 þ⋯

þMECi=EQSi

The RQ or RQmix ≥ 1 demonstrates a high potential adverse
effect due to pesticide exposure concentration, while the 0.1 <
RQ or RQmix < 1 indicates a medium risk and RQ or RQmix ≤
0.1 a low risk.

Results

Validation of methods

Analytical figures of merit concerning the validation of the
ASE method applied to sediment samples by target pesticide

Table 1 List of pesticides by pesticide group, and triazine pesticide
degradation products, determined in the River Sado estuary (Portugal),
in 2017

Pesticides CAS registration number

Herbicides (17)

2,4-D CAS 2702-72-9

Alachlora CAS 15972-60-8

Atrazinea CAS 1912-24-9

Bentazon CAS 25057-89-0

Chlorotoluron CAS 15545-48-9

Diurona CAS 330-54-1

Isoproturona CAS 34123-59-6

Linuron CAS 330-55-2

MCPA CAS 94-74-6

Metobromuron CAS 3060-89-7

Metribuzin CAS 21087-64-9

Propanil CAS 709-98-8

Propazine CAS 139-40-2

Simazinea CAS 122-34-9

S-Metolachlor CAS 87392-12-9

Terbuthylazine CAS 5915-41-3

Triclopyr CAS 55335-06-3

Fungicides (8)

Azoxystrobin CAS 131860-33-8

Benalaxyl CAS 71626-11-4

Cymoxanil CAS 57966-95-7

Kresoxim-methyl CAS 143390-89-0

Metalaxyl CAS 57837-19-1

Penconazole CAS 66246-88-6

Pyrimethanil CAS 53112-28-0

Tebuconazole CAS 107534-96-3

Insecticides (6)

Carbaryl CAS 63-25-2

Carbofuran CAS 1563-66-2

Chlorpyrifosa CAS 2921-88-2

Dimethoate CAS 60-51-5

Imidacloprid CAS 138261-41-3

Omethoate CAS 1113-02-6

Nematocides (1)

Oxamyl CAS 23135-22-0

Triazine degradation products (3)

Desethyl-atrazine CAS 6190-65-4

Desethyl-terbuthylazine CAS 30125-63-4

Desisopropyl-atrazine CAS 1007-28-9

2,4-D 2,4-dichlorophenoxyacetic acid, MCPA 2-methyl-4-
chlorophenoxyacetic acid
a Priority substances according to Directive 2013/39/EU
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are shown in Table S2 (supplementary material), and Table S3
(supplementary material) lists the signal-to-noise (S/N) ratio
values for the sediment-spiked extract injected at 7.5 ng g−1

dw. Chromatograms of a real sample and a spiked sample are
presented in Figs. S1-A and S1-B (supplementary material),
respectively. A linear range starting at 7.5 ng g−1 dw was
validated for all pesticides except MCPA, whose linear range
started at 15 ng g−1 dw. The estimated MDL and MQL were
between 0.09 and 3.72 ng g−1 dw and between 0.27 and
11.28 ng g−1 dw, respectively, for all pesticides. The recovery
of the pesticides was accessed through the analysis of five
spiked samples at the concentration of 45 ng g−1 dw. The
recovery rate values of the method ranged from 75 to 125%
for all pesticides except carbofuran, desethyl-atrazine,
desethyl-terbuthylazine and simazine, which showed higher
recoveries. A precision under 25% was obtained for all
pesticides.

Concerning the validation of the chromatographic method,
all pesticides presented R2 > 0.995, residuals under ± 25%,
MDL between 0.9 and 8.2 ng L−1 and MQL between 2.7
and 24.9 ng L−1. Recoveries between 80 and 115% were ob-
tained for all pesticides, showing that the method presented a
good recovery, with a precision under 27% for all pesticides.
The compilation of these results is presented in Table S4 (sup-
plementary material), and Table S5 (supplementary material)
lists the S/N ratio values for the water standard solution
injected at 25 ng L−1. Chromatogram examples of a real sam-
ple and a spiked sample are shown in Figs. S2-A and S2-B
(supplementary material), respectively.

Pesticide occurrence

The in situ parameters (oxygen, temperature, pH and salinity)
measured in the surface water samples, as well as organic
matter content in intertidal sediments, are shown in Table 2.
Regarding organic matter content in sediments, the results
indicated no seasonal differences, since only station 6 showed
a value of 1 order of magnitude higher in July when compared
to theMarch sampling period. However, a spatial gradient was
evident as, in both sampling periods, two different zones in the
sampling area presented high organic matter content (> 5.0%):
stations 4, 6 and 7 (an inner zone of the Comporta channel and
the first two stations of the Alcácer do Sal channel) and sta-
tions 9, 10 and 11 (upstream stations in the Alcácer do Sal
channel).

Among the 35 determined pesticides and degradation prod-
ucts, only herbicides (alachlor, bentazon, metobromuron,
metribuzin and triclopyr) and one degradation product
(desisopropyl-atrazine) of the legacy herbicide atrazine were
detected in estuarine surface water in March 2017 (17.7%),
and one other herbicide (isoproturon) and one insecticide
(dimethoate) also appeared in July 2017 (23.5%), showing
seasonal differences (Table 3 by raw data: Tables S6 and S7,

supplementary material). Concentrations ranged from the
MQLs to 8.87 μg L−1, the highest concentration determined
in this study, for bentazon in July. The results of the frequency
of occurrence are also presented in Table 3, with the highest
values for alachlor (100% both in March and in July) and
metribuzin (100% in March and 91% in July), followed by
bentazon (82% both inMarch and in July) and metobromuron
(64% in March and 82% in July). All the 11 sampling stations
presented quantified residues of pesticides or degradation
products, between 3–5 and 4–7 different compounds in each
sampling station in March and July, respectively. A spatial
gradient was observed, with generally higher residue values
and a higher number of compounds in the stations around the
Comporta village (stations 3, 4 and 6). Nevertheless, in July,
station 5 (trench used for irrigation) and stations 10 and 11
(upstream stations, near the town of Alcácer do Sal) also pre-
sented both higher concentration values and a higher number
of compounds quantified per sampling station, unlike what
had happened in March.

Among the analysed pesticides, only the herbicides ala-
chlor and metribuzin and the insecticide chlorpyrifos were
measured in sediments above their respective MQL, both in
March and in July, while bentazon was only measured in July
and triclopyr was only measured in March. Desisopropyl-
atrazine (atrazine degradation product) was measured above
its respective MQL in both sampling periods (Table 3), with
alachlor, chlorpyrifos and triclopyr presenting a log Kow value
≥ 3.

Sado estuary environmental condition

The aquatic MAC-EQS and AA-EQS values for the pesticides
measured above their respective MQLs in the Sado estuary
were obtained in available regulatory and scientific literature
(Table 4). Nevertheless, aquatic EQS values are still lacking
for certain active substances as metobromuron, as well as for
degradation products (desisopropyl-atrazine).

Based on the maximum MEC here determined for each
pesticide and its correspondent EQS value, reported in
Table 4, the risk for the aquatic organisms of the River Sado
estuary due to exposure concentrations to individual pesti-
cides was considered low to medium (Table 5). The gathered
results showed that no RQ ≥ 1 was obtained, being the highest
RQ calculated for long-term effects of metribuzin (RQ =
0.85).

Regarding the interactive mixture toxicity for the water
compartment, the maximum number of co-occurring pesti-
cides determined was 6 for station 5 in July, with bentazon
(3.22 μg L−1), isoproturon (0.058 μg L−1), metobromuron
(0.027 μg L−1) and metribuzin (1.16 μg L−1), which present
the same mode of action (inhibition of photosynthesis), and
alachlor (0.161 μg L−1) and triclopyr (0.030 μg L−1), with
different modes of action, inhibition of very long–chain fatty

24080 Environ Sci Pollut Res (2019) 26:24075–24087



acid and mimic of plant hormones (auxins), respectively. The
two latter independently acting pesticides presented no indi-
vidual risk for aquatic organisms (see Table 5) and therefore
were not considered for the combined toxicity effect
determination.

The short-term RQ values for the co-occurring pesticides
measured in the River Sado estuary surface water, which exert
a similar mode of action, are as follows: 0.012 for bentazon,
0.058 for isoproturon and 0.58 for metribuzin, while the long-
term RQ values are 0.0006 for bentazon, 0.19 for isoproturon
and 0.61 for metribuzin. Since no individual aquatic EQS was
found for metobromuron, the potential toxicity of this pesti-
cide in the mixture was not considered. Overall, regarding the
water quality criteria for the pesticide mixture present in the
Sado estuary, no RQmix ≥ 1 was obtained (short-term RQmix =
0.65 and long-term RQmix = 0.81), and thereby, no potential
adverse effects of the use of agricultural pesticides on aquatic
organisms in the Lower Sado are expected.

Concerning sediments, individual EQSs were not found,
even for pesticides with log Kow ≥ 3 as alachlor, chlorpyrifos
and triclopyr. In the River Sado estuary, a maximum of four
pesticides co-occurred in sediment samples, in stations 1 and
10, in July, with only two pesticides, bentazon (0.031 μg g−1

dw) and metribuzin (0.038 μg g−1 dw) presenting the same
mode of action, in station 10. In this latter station, chlorpyrifos
(0.032 μg g−1 dw) and desisopropyl-atrazine (0.103 μg g−1

dw) were also measured. In station 1, all the measured pesti-
cides, alachlor (0.030 μg g−1 dw), chlorpyrifos (0.039 μg g−1

dw) and metribuzin (0.043 μg g−1 dw), present different
modes of action (see Table 3), and desisopropyl-atrazine
(0.058 μg g−1 dw) was also measured. However, since no
individual EQSs were found for pesticides in sediments, the
potential toxicity of pesticide mixtures in sediments was not
determined.

Discussion

A newmethodwas developed and validated for the analysis of
35 pesticides and three triazine pesticide degradation products
in estuarine water and sediment. Regarding the use of the ASE
method for the extraction of pesticide residues in sediment
samples, the method presented better recoveries, between 77
and 125% for most pesticides, than those provided in other
studies which used different approaches, such as QuEChERS
or pressurised liquid extraction methods (e.g. Dagnac et al.
2005; Masiá et al. 2015). Even though those publications re-
port slightly lower MQL values (0.15–15 ng g−1 dw) than the
ones estimated in the present study for some pesticides, this is
mainly due to the way MDLs and MQLs were determined. In
the present study, the limits were estimated in accordance with
the RELACRE guideline, which requires the use of the resid-
ual standard deviation of the calibration curve. However, theTa
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S/N ratio, a ratio which usually provides much lower MDL
andMQL values than the ones obtained from estimations with
the residual standard deviation of the calibration curve, is
much more frequently seen in publications. We obtained a S/
N ratio > 100 for the lowest-concentration spiked samples of
the majority of the pesticides (Table S3, supplementary
material). This demonstrates that if we had estimated MQLs
based on the S/N ratio, we could have presented remarkably
lower limits than those reported by the above-mentioned
authors.

Concerning chromatographic method validation, the meth-
od permitted lower MDLs and better recoveries than those
found in the literature (Chiron et al. 1994; Nogueira et al.
2004; Potter et al. 2007), even though the estuarine water
matrix is more complex and poses more challenges than fresh-
water or water for human consumption. Also, as mentioned
above, the MDLs and MQLs determined in the present study
were estimated according to the RELACRE guideline. Since
our study presented a S/N ratio > 1000 for most pesticides in
the lowest standard solution injected during the linearity tests
(Table S5, supplementary material), it can be assumed that the

MDLs and MQLs would have been at least 10 to 100 times
lower if they had been estimated experimentally by injecting
increasingly less concentrated standard solutions of those
pesticides.

In general, the validated methods show good linearity since
R2 > 0.995 for all pesticides in both water and sediment
methods, despite the differences in their chemical properties.
Since the matrices are complex, the method also showed good
precision and recoveries for both matrices, with all pesticides
exhibiting an intermediate precision under 27%, and recover-
ies between 75 and 120%. The developed chromatographic
method is also fast, as it only takes 12 min per sample and
allows a high throughput for estuarine water samples. As for
sediment samples, the method takes longer due to the addi-
tional sediment drying and ASE steps needed.

The present study showed that, from the 35 pesticides and
triazine degradation products determined in the River Sado
estuary in 2017 belonging to the fungicide, herbicide, insecti-
cide and nematocide pesticide groups, only herbicides (20%)
and insecticides (5.7%) were measured above their respective
MQLs in surface water and sediments. A degradation product
of legacy atrazine, desisopropyl-atrazine, was found in estua-
rine surface water and sediment samples in both sampling
periods (March and July), suggesting higher persistence than
the parent compound atrazine or the other two degradation
products determined, desethyl-atrazine and desethyl-
terbuthylazine. For instance, it is known that atrazine degra-
dation products were more persistent than atrazine in pore
water (Panshin et al. 2000), and that atrazine is rapidly incor-
porated into organic matter and clay colloids of sediments,
becoming strongly absorbed and not extractable (Papilloud
et al. 1996). Even though alachlor and isoproturon are EU-
banned pesticides, they were found in the water compartment,
which highlights the need to include legacy pesticides in mon-
itoring programmes. In addition, dimethoate, metobromuron,

Table 5 Rate of aquatic risk quotient (RQ) and risk levels for the River
Sado estuary (Portugal)

Pesticides Short-term risk Long-term risk

RQ Risk level RQ Risk level

Alachlor (H) 0.34 Medium 0.79 Medium

Bentazon (H) 0.03 Low 0.02 Low

Dimethoate (I) 0.05 Low 0.38 Medium

Isoproturon (H) 0.11 Medium 0.36 Medium

Metribuzin (H) 0.81 Medium 0.85 Medium

Triclopyr (H) 0.012 Low 0.061 Low

Table 4 Aquatic maximum allowable concentration–environmental quality standard and annual average–environmental quality standard values for the
pesticides measured in the River Sado estuary (Portugal), in 2017

Pesticides MAC-EQS (μg L−1) Data source AA-EQS (μg L−1) Data source

Alachlor (H) 0.7 Directive 2013/39/EU 0.3 Directive 2013/39/EU

Bentazon (H) 270 Ecotox Centre databasea 500 SEPA (2015)

Dimethoate (I) 4.0 Johnson et al. (2007) 0.48 Johnson et al. (2007)

Isoproturon (H) 1.0 Directive 2013/39/EU 0.3 Directive 2013/39/EU

Metobromuron (H) – – – –

Metribuzin (H) 2 Silva et al. (2015) 1.9 Silva et al. (2015)

Triclopyr (H) 6.6 Silva et al. (2015) 1.3 Silva et al. (2015)

Desisopropyl-atrazineb – – – –

H herbicide, I insecticide
a Swiss Centre for Applied Ecotoxicology (http://www.ecotoxcentre.ch/expert-service/quality-standards/proposals-for-acute-and-chronic-quality-
standards/)
b The degradation product of atrazine
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metribuzin and triclopyr were also found, even if they are not
authorised for rice crops, thus stressing the need to select a
wide range of pesticides in monitoring programmes. The
number of quantified compounds in water was higher in
July, in line with the pesticide application period in the agri-
cultural area located upstream of the estuary. Also, five herbi-
cides (alachlor, bentazon, metobromuron, metribuzin and
triclopyr) were measured before the beginning of the produc-
tion season in the Lower Sado (in March), as well as after (in
July), suggesting long-term aquatic exposure. From those, al-
achlor, linked to maize and vine production in Portugal, is
listed as a priority substance. Alachlor (100%) and metribuzin
(≥ 91%) were the most frequent pesticides, whereas bentazon
(8.87 μg L−1) and metribuzin (1.61 μg L−1) were those found
at higher concentrations. Alachlor has also been found in other
Portuguese coastal systems, with lower maximum concentra-
tions in the water compartment: 0.10 μg L−1 in the Mondego
estuary in 2010–2011 (Cruzeiro et al. 2016a) and 0.012 μg
L−1 in the Ria Formosa Lagoon in 2012–2013 (Cruzeiro et al.
2015). Nevertheless, the highest maximum value (6.1 μg L−1)
was reported for the Albemarle-Pamlico estuarine system
(USA) in 2000 (Powell et al. 2017). Regarding bentazon,
which is highly soluble in water (500 mg L−1), it was found
dissolved in the water phase in both sampling periods (max.
8.87 μg L−1), representing a low risk to the aquatic organisms
of the Sado estuary. A maximum concentration of 3.4 μg L−1

has also been found in the Mondego estuary in 2014 and 2016
(Rodrigues et al. 2018). Dimethoate is a broad-spectrum or-
ganophosphate insecticide and acaricide which was found in
the study area only in July, and only in estuarine water, with a
maximum concentration of 0.18 μg L−1, thus representing a
medium risk in long-term exposure to the aquatic organisms
of the Sado estuary. Comparable maximum concentrations of
0.20 μg L−1 were found in 2012–2013 along the Ria Formosa
Lagoon (Cruzeiro et al. 2015). Isoproturon is an herbicide
only found in July in the study area, and only in estuarine
water, with a maximum concentration of 0.11 μg L−1. The
non-renewal of the approval of isoproturon as an active sub-
stance in accordance with Regulation 1107/2009 was per-
formed only in 2016, and it may still be in use by Lower
Sado farmers. In the Sado estuary, this herbicide poses a me-
dium risk to aquatic organisms. A similar maximum value was
found during 2010–2012 in Sjaelland, Denmark (McKnight
et al. 2015). Surprisingly, no studies were found reporting
worldwide metobromuron concentrations. In the Sado estuary,
this herbicide was found only in the water compartment in a
maximum concentration of 0.034 μg L−1. The EFSA peer
review for the metobromuron risk assessment indicates a no-
observed-effect concentration (NOEC) value of 500 μg L−1

for fish (EFSA 2014), and thereby no adverse effects were
expected in the Sado estuary. Concerning metribuzin, this her-
bicide was found in the water of the San Francisco Bay (USA)
by Klosterhaus et al. (2013) and in the Ria Formosa Lagoon

by Cruzeiro et al. (2015) in very low concentrations
(0.0002 μg L−1 and 0.0014 μg L−1, respectively). The con-
centrations mentioned were lower than the maximum concen-
tration found in the Sado estuary (1.6 μg L−1), where it repre-
sents a medium risk to estuarine organisms. Finally, the her-
bicide triclopyr was found in the Sado estuary in the water
(max. 0.079 μg L−1) and in both sampling periods, presenting
a low risk to aquatic organisms, and a similar maximum con-
centration (0.068 μg L−1) was found during 2010–2012 in the
Strymonas river basin (Northern Greece) by Papadakis et al.
(2018).

Sediments were less contaminated, with a lower number of
quantified compounds, lower frequencies (< 80%) and lower
concentrations in the study area. This conclusion was also
attained by Ccanccapa et al. (2016) in the Ebro river basin, in
Spain. Bentazon was measured in sediments in the present
study, showing temporal and spatial variations, since it was
only measured in July (max. 0.037 μg g−1), and in the sampling
stations with higher organic matter content (> 7%). This herbi-
cide was also found in sediments of the Llobregat river basin
(Spain) in 2005–2006, but in a lower concentration (0.009 μg
g−1) (Ricart et al. 2010). The high soil adsorption and non-
mobility properties (Pesticides Properties DataBase (PPDB),
https://sitem.herts.ac.uk/aeru/ppdb/en/atoz.htm), as well as the
moderate water solubility (1.05 mg L−1 at 20 °C, PPDB) of
chlorpyrifos indicate its preferential partitioning into the
organic matter rather than in water, resulting in a strong
binding with sediment. Also, because chlorpyrifos is an
unauthorised pesticide in Portugal (DGAV 2016), this broad-
spectrum organophosphate insecticide was only measured in
sediment samples of the Sado estuary, with a maximum con-
centration of 0.072 μg g−1. Similar maximum concentrations
(0.036 μg g−1 and 0.044 μg g−1) were determined in the sedi-
ment samples collected from the Ebro river basin (Spain) in
2011 (Ccanccapa et al. 2016) and from the Orcutt Creek
(Santa Maria estuary, California, USA) in 2008 (Smalling
et al. 2013), respectively. Metribuzin was also found in the
sediments of the Sado estuary, in a maximum concentration
of 0.046 μg g−1. Triclopyr was found in a single measurement
in the sediments (0.025 μg g−1) of the Sado estuary.

Maximum concentrations of 0.069 μg L−1 and 0.10 μg g−1

were measured in water and sediment for desisopropyl-atra-
zine, respectively. In sediments, in July, possibly due to higher
temperatures that intensify biological transformation, as well
as higher solar radiation that increases both direct and indirect
photodegradation (Vieno et al. 2005; Musolff et al. 2009), a
maximum value of 1 order of magnitude higher was deter-
mined when compared with the March sampling period. A
concentration of 0.25 μg L−1 was measured during 2006–
2007 in the water of the Bay of Vilaine (France) (Caquet
et al. 2013). The toxicity of degradation products is not often
taken into account, and no EQS or NOEC values have yet
been set. Nevertheless, Ralston-Hooper et al. (2009) found
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an LC50,96 h (95% confidence interval), a 50% lethality, where
a concentration of 7200 (6200–8400) μg L−1 was determined
after exposing Hyalella azteca, an amphipod crustacean, to
desisopropyl-atrazine. Desisopropyl-atrazine also significant-
ly inhibited the metamorphosis of the larval prawn Penaeus
monodon within the following concentration range: 3.5–
917 μg L−1 (Mercurio et al. 2018). The desisopropyl-
atrazine concentrations found in the present study were far
from the toxicity values reported in the literature, indicating
a low likelihood of effects on aquatic organisms.

Conclusions

A fast and almost solvent-free environmentally friendly meth-
od with a good performance for both estuarine water and
sediment samples which enables achieving the MQLs re-
quired by the strict EU legislation for pesticide monitoring is
proposed. The research carried out under this study
established both seasonal and spatial occurrences of pesticides
and degradation products on a temperate estuarine system
(River Sado estuary). In surface water, alachlor, metribuzin
and bentazon were the most frequent in March, while
metobromuron also joined this group in July. Metribuzin and
bentazon were at the highest concentrations. From the 35
studied pesticides, four (azoxystrobin, bentazon, imidacloprid
and MCPA) are authorised for use in rice crops, the main crop
of Lower Sado, being bentazon the only pesticide determined
above quantification limits, which indicates compliance with
pesticide use requirements since no risk to aquatic organisms
was determined from bentazon use. Two pesticides already
banned under EU regulations were quantified in surface water
(alachlor and isoproturon), highlighting the need to include
legacy pesticides in monitoring programmes. In general, the
compounds measured in sediments were similar to the ones
measured in the water, with the exception of the insecticide
d imethoa te and the herb ic ides i sopro turon and
metobromuron, which were measured only in water, and the
insecticide chlorpyrifos, which appeared only in sediments.
Sediments were less contaminated, with a lower number of
quantified compounds, lower frequencies and lower concen-
trations in the study area. No potential high adverse effects
were expected on the aquatic organisms of the River Sado
estuary due to the use of agricultural pesticides in the Lower
Sado, even when the potential combination effect of pesticide
mixtures was considered. Nevertheless, individually, alachlor,
dimethoate and isoproturon were found above acceptable
aquatic short- and long-term risk values worldwide.
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