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Abstract
Colloidal particles in runoff could play an important role in phosphorus (P) transfer from sloped farmland to waterbodies. We
investigated the distribution of P in different-size particles from a purple soil and colloidal phosphorus (CP) loss in runoff and
sediment from sloped farmland in south-western China. The profile distribution of P showed obvious surface accumulation. The
risk of P loss in topsoil was greater than those of the other soil layers on sloping farmland of purple soil. The concentration of soil
particles of < 0.002 mm in purple soil profiles was low, but the total phosphorus (TP) and available phosphorus (AP) concen-
trations of soil particles of < 0.002 mm were high. During a rainfall event, CP loss is significantly power function related to the
runoff yield rate, and is linearly related to the sediment yield rate. The majority of P in runoff was CP. The total loss of CP in
runoff was 139.52 g ha−1, in which surface runoff accounted for 64.3%. CP loss can be controlled by controlling runoff from
sloping farmland, especially surface runoff. Our results suggest that CP loss should be valued in the process of nutrient loss, as
well as CP transfer should be given greater consideration in the mechanistic studies of the P transfer process.
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Introduction

The migration and variation of phosphorus (P) significant-
ly impact eutrophication control in an agricultural system
(Kragh et al. 2017; Kleinman et al. 2017; Zhang et al.
2017a, b). In general, migration and transformation of P
occur in a stable solid phase and a removable aqueous
phase; however, the colloid phase can remarkably improve
the ability of contaminant adsorption owing to its mobility
(Turner et al. 2014; Zang et al. 2011; Liu et al. 2010).
Presently, most researchers consider 0.45 μm to be a cut-off

point and divide P in sediment and water into particulate phos-
phorus (PP) and dissolved phosphorus (DP) (He et al. 2018;
Zhang et al. 2017a, b; Qian et al. 2014; Barbosa et al. 2009).
Colloidal phosphorus (CP) refers to P that is absorbed on
colloids (Gottselig et al. 2017a; Liang et al. 2016;
Kretzschmar et al. 1999). In particular, colloids have a large
specific surface area and strong adsorption capacity, are mo-
bile in soil, and remain in solution for a long time. Retention of
CP occurs through sorption, flocculation, and deposition.
Colloids play an important role in biogeochemical cycles of
P (Yan et al. 2017; Turner et al. 2014; Baalousha et al. 2011).
In surface runoff, rivers, and lakes, CP has been observed to
reach up to 50% of total phosphorus (TP) (Missong et al.
2017), because CP can be easily released from the soil in
contact with water, and waterways enriched with P can devel-
op blue-green algal blooms, which can produce harmful
toxins, reduce aesthetic appearance, and worsen eutrophica-
tion. In areas with soil erosion, CP loss is frequently a long-
term environmental problem (Gottselig et al. 2017b;
Montalvo et al. 2015; Zang et al. 2011; Heathwaite and
Dils 2000). Therefore, understanding the distribution
characteristics and loss regularities of CP in soil, the
impact of P speciation, and environmental behaviour
and loss potential of P is important.

Responsible editor: Philippe Garrigues

* Zicheng Zheng
zichengzheng@126.com

1 College of Resources, Sichuan Agricultural University, 211,
Huiming Road, 611130 Chengdu, People’s Republic of China

2 College of Forestry, Sichuan Agricultural University, 211, Huiming
Road, 611130 Chengdu, People’s Republic of China

3 Soil and Fertilizer Research Institute, Sichuan Academy of
Agricultural Sciences, 610066 Chengdu, Sichuan, People’s Republic
of China

Environmental Science and Pollution Research (2019) 26:24088–24098
https://doi.org/10.1007/s11356-019-05735-5

Transport of colloidal phosphorus in runoff and sediment
on sloping farmland in the purple soil area of south-western China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11356-019-05735-5&domain=pdf
mailto:zichengzheng@126.com


Purple soils on the hilly area of the upper Yangtze River are
thin Entisols with high erosivity and strong dispersibility and
are the potential contribution source of colloidal particles
(Wang .2017; Ding et al. 2017; Wang et al. 2013), which are
known to have a remarkable capacity to carry and transport P
(Liu et al. 2014a, b; Siemens et al. 2004). This area is charac-
terized by scattered small plots of steep slopes. Rainfall is
uneven, mainly concentrated in summer, and mostly in the
form of heavy rainstorms (Xian and Tang 2017; Sun et al.
2016; Lin et al. 2009). This causes frequent wet-dry cycles,
thus complicating and changing the surface and subsurface
runoffs of sloped lands. Thus, the migration of CP severely
affected the water environment of the upper reaches of the
Yangtze River already being affected adversely (Ding et al.
2017; Khan et al. 2016; Wang et al. 2015a, b). Several studies
have produced estimates of P loss (Zhang et al. 2017a, b; Ding
et al. 2017; Bouraima et al. 2016; Zeng et al. 2008), but there
is still insufficient data for CP loss in the area.

In this study, the plots on sloped purple soils were used to
simulate rainfall in order to compare losses characteristic of
different P forms. This study aimed to (1) investigate P con-
centration of different-size particles in purple soil profiles; (2)
quantify the relationships between CP loss and soil erosion;
and (3) identify the pathway of CP transport from sloping
farmland.

Materials and methods

Study site

The experimental field is located in the upper reaches of
the Tuo River system of the Yangtze River (104° 34′ 12″–
104° 35′ 19″ E and 30° 05′ 12″–30° 06′ 44″ N), at an
elevation of 395 m. Mean annual temperature is 16.8 °C,
and mean annual precipitation is normally 966 mm. The
greater part of annual precipitation is mainly distributed
from April to October. The area is dominated by purple
soils formed in purple sandy shale, classified as Entisol
according to the soil taxonomy of the U.S.D.A. (Soil
Survey Staff 1999). Soil physical-chemical properties are
listed in Table 1.

Experimental setup and sample collection

The study area was cultivated with maize (Zhenghong 6).
There was a total of 40,000 plants ha−1, with plant spacings
and row spacings of 80 and 25 cm, respectively. Nitrogen (N),
phosphate (P2O5), and potash (K2O) fertilizers were applied at
rates of 250, 125, and 150 kg ha−1, respectively, before sow-
ing. The N fertilizer was urea (46.3% N); P fertilizer, calcium
superphosphate (12% P2O5); and K fertilizer, potassium chlo-
ride (60% K2O). The tillage method was cross ridge, and the
slope gradient was 15°.

Three runoff plots (2 m × 1 m × 0.4 m) were built for
collecting surface runoff, subsurface runoff, and sediment
samples under the simulated precipitation events (Fig. 1).
This plot area was mainly used in order to simulate slop-
ing farmland of scattered and small areas in the study area.
The bottom of each plot was reinforced with concrete to
create a relatively impermeable layer. Each concrete layer
was covered by a 40-cm-thick soil layer to simulate the
natural bulk density of approximately 1.41 g cm−3(0–
10 cm), 1.44 g cm−3(10–20 cm), and 1.6 g cm−3(20–
40 cm). The surface runoff in each plot was drained
through an outlet into a concrete trough (Fig. 1). The sub-
surface runoff reached the impermeable layer through
small holes of 2 cm diameter, and a PVC pipe was used
to connect the tank and the runoff collection barrel. The
experiment was conducted during the maize seedling stage
in spring 2016 (3–5 May).

Surface and subsurface runoffs were collected in plastic
buckets every 3 min. The first collection was made at the start
of rainfall (time zero). Each runoff sample was filtered. Runoff
samples were collected in 500-mL plastic bottles, to which
0.5 mL of 98%H2SO4 was added to reduce microbial activity.
The runoff samples were taken back to the laboratory frozen
(− 4 °C) for immediate analysis. The sediment samples were
oven-dried (105 °C) and passed through 2-mm sieves for
measurements.

Bulk soil samples were collected by shovel from alongside
the plots up to 0–10, 10–20, and 20–40 cm depths. To mini-
mize the disturbance caused by other factors, the soil samples
were collected on the day the rainfall began. All soil samples
were collected on the same day with three replications. The
soil samples were air-dried and then sieved < 2 mm.

Table 1 Basic physical characteristics of the purple surface soil in the study area

Soil layer
(cm)

Bulk density
(g cm−3)

pH TP (mg kg−1) AP (mg kg−1) Soil particle size classification (%)

0.2–2 mm 0.02–0.2 mm 0.002–0.02 mm < 0.002 mm

0–10 1.41 ± 0.05 8.1 1457.88 ± 149.9 255.28 ± 5.78 38.51 ± 3.6 17.99 ± 2.5 24.05 ± 2.8 19.45 ± 4.4

10–20 1.44 ± 0.02 8.1 1026.00 ± 118.43 171.01 ± 0.75 38.20 ± 2.1 23.74 ± 2.0 22.00 ± 0.9 16.06 ± 3.3

20–40 1.55 ± 0.08 8.2 977.57 ± 149.9 112.73 ± 3.46 43.29 ± 1.7 23.84 ± 1.2 18.63 ± 1.0 14.25 ± 2.1
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Rainfall simulator

The rainfall simulator was programmed and equipped with
two V-80100 series spray nozzles (SRs) manufactured by
the institute of Soil and Water Conservation, Chinese
Academy of Sciences (Liu et al. 2014a). The operating
pressure ranged from 0 to 5.0 bar. The height of the rain-
fall simulator was 6.5 m, and the effective rainfall area
was approximately 48 m2. The rainfall uniformity of the
simulator was approximately 85%. The simulated rainfall
intensity was 1.5 mm min−1 according to the hydrological
data of the research area (National Meteorological
Information Center) in recent years. The rainfall duration
was 72 min for each simulated rainfall event.

Analytical methods

Soil particle size classification of different soil layers The soil
particles of 0.2–2, 0.02–0.2, 0.002–0.02, and < 0.002 mm
were separated using a nylon sieve, the sedimentation
siphonic method, and the centrifugation method. The
samples were freeze-dried before measurements of P
were made.

Analysis of soil physical and chemical properties Soil pH was
measured with distilled water in a 1:2 soil and water suspen-
sion by a glass electrode. Soil bulk density was measured with
the ring cutting method. The TP and available phosphorus

(AP) of soil samples were determined according to Hooda
et al. (2001) and Olsen and Sommers (1982).

Analysis of P in runoff TP was determined after digestion
(121 °C, 30 min) with acidic potassium persulphate. The run-
off samples were filtered through 2-μm microporous mem-
branes and digestion at 121 °C for 30 min with acidic potas-
sium persulphate; the P was composed of CP and TDP. The
first 5 mL of filtrates was discarded. An aliquot of the filtrate
was ultracentrifuged at 300,000g for 2 h to remove colloids,
and TDP was determined after digestion at 121 °C for 30 min
with acidic potassium persulphate. The concentration of CP
was calculated as the difference between the concentration of
total P in the ultracentrifuged and non-ultracentrifuged sam-
ples (Ilg et al. 2005). The concentration of PP was calculated
as the difference between the concentrations of total P in fil-
tered and non-filtered samples.

Analysis of P in sediment The TP and AP of sediment samples
were determined according to Hooda et al. (2001) and Olsen
and Sommers (1982). Sediment CP was extracted by gently
shaking 10 g of air-dried sediment samples with 80 mL de-
ionized water at 25 °C for 24 h. The extracts were centrifuged
at 3000g for 10 min to remove coarse particles. Thereafter, the
extracts were filtered through 2-μm microporous membranes
to separate out particles < 2 μm, which are defined as colloids
(Kretzschmar et al. 1999). The extracts total phosphorus
(ETP), TDP, and PP in extracts were determinedwith the same
method as that in runoff.

Fig. 1 The layout of experimental plots
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Statistical analysis

Statistical analysis of the data was carried out on SPSS 22.0.
Multiple comparisons were made by the Fisher’s least signif-
icant difference test. Differences were considered significant
at the P value of 0.05. Graphs and tables were generated using
Origin Pro 8.0 and Excel (2016).

Results

P level of different particle sizes in purple soil profiles

The soil particle percentage was reduced with decreasing par-
ticle size in the 20–40-cm layer; the percentage of 0.2–2-mm
particles was significantly higher than that of the other particle
sizes (Table 1). The percentage of the same size class particles
in different soil layers was not significantly different. The
concentrations of TP and AP of < 0.002-mm particles were
higher than those of other particle sizes in every soil layer, and
those of the 0–10-cm soil layer were higher than those of the
other soil layers (Table 2).

Despite the difference in concentration, about 38% to 50%
of TP and AP were adsorbed on 0.2–2-mm particles in every
soil layer (Table 3). In the 0–10-cm soil layer, the contribution
rate of 0.2–2-mm particles to TP and AP was the highest and
that of 0.02–0.2-mm particles was the lowest. However, the
particle size contribution rate to TP and AP decreased with the
reduction in particle size in the 10–20-cm and 20–40-cm soil
layers. Thus, the larger the soil particle size, the higher was the
P loss, thereby increasing the risk of P loss via surface runoff.

Surface pathways of CP transport

Surface pathways of CP transport are divided here into key
pathways of CP loss: surface runoff and sediments. The dis-
tinction between surface runoff and sediment pathways is
made because the controls on P loss differ.

CP transport in surface runoff

The distribution of CP, PP, and true dissolved phosphorus
(TDP) in surface runoff is shown in Fig. 2. The P loss caused

by rainfall in surface runoff was dominated by CP and PP; PP
accounted for 16.0–82.8% of TP. CP accounted for 17.2–
83.9% of TP (Fig. 2). TDP was the least and accounted for
0.01–0.05% of TP. The TP concentration showed a bimodal
pattern with an increase in the rainfall time. Peaks appeared
after 27 and 54 min, with PP and CP concentrations at
0.64 mg L−1, 0.92 mg L−1 and 0.20 mg L−1, 0.35 mg L−1,
respectively, which were all above the threshold P for eutro-
phication of a water body (0.2 mg L−1). During the rainfall
event, the concentration of CP remained stable at the early
period, but increased subsequently. The concentration of
TDP was extremely low, and no obvious changes occurred;
the mean concentration was only 0.09 μg L−1, which was
below the threshold for eutrophication.

Surface runoff volume showed a wave form, increasing
with rainfall time and remaining stable after about 50 min
(Fig. 3). During a rainfall event, the surface runoff rate ranged
from 0.22 to 1.17 mm min−1, and the total runoff depth was
51.81 mm. The mean values of PP, CP, and TDP were 1.63,
1.30, and 0.001 g ha−1 min−1, respectively. During rainfall, the
account of PP loss load showed two peaks, and the CP loss
load remained stable at the early period, but varied widely at
the later period. TDP loss load was the lowest and constantly
changed during the simulated rainfall event. During a single
rainfall event, the total loss load of PP, CP, and TDP in surface
runoff was 112.72, 89.70, and 0.10 g ha−1, respectively. The
CP and PP loss represented a significant division of TP losses
in the surface runoff.

CP transport in sediments

The characteristics of TP and AP loss can be used to evaluate
the sediments delivering CP. The TP loss load showed a wave-
like pattern, rising with increasing rainfall time (Fig. 4). It
varied widely with two peaks at 9 and 48 min, and then
showed a stable rate of loss till the end of a rainfall event.
The rate of TP loss ranged from 1.67 to 36.43 g ha−1 min−1,
with an average of 18.49 g ha−1 min−1. The rainfall event
eventually caused a TP loss load of 1275.99 g ha−1. The AP
loss tended to increase first and then remained stable at the end
of the rainfall. The rate of AP loss ranged from 0.52 to
6.82 g ha−1 min−1, with an average of 3.24 g ha−1 min−1.
The rainfall event caused an AP loss load of 223.54 g ha−1.

Table 2 Phosphorus characteristics in different particle size distributions of soil layers

Soil layer
(cm)

TP (mg kg−1) AP (mg kg−1)

0.2–2 mm 0.02–0.2 mm 0.002–0.02 mm < 0.002 mm 0.2–2 mm 0.02–0.2 mm 0.002–0.02 mm < 0.002 mm

0–10 1537.32 ± 149.9 1239.882 ± 149.9 1320.09 ± 149.9 1734.24 ± 149.9 247.64 ± 8.04 232.33 ± 9.63 253.00 ± 3.70 288.15 ± 6.20
10–20 1035.61 ± 82.4 982.37 ± 91.5 935.76 ± 149.9 1150.24 ± 149.9 174.44 ± 5.97 167.03 ± 7.25 164.19 ± 3.61 178.37 ± 5.70
20–40 1163.02 ± 149.9 761.98 ± 149.9 919.05 ± 149.9 1066.24 ± 149.9 103.08 ± 6.97 91.64 ± 2.20 120.41 ± 2.45 135.78 ± 11.57

Environ Sci Pollut Res (2019) 26:24088–24098 24091



P losses were mainly in the form of CP loss, which
accounted for 36.67% to 96.19% of the total water-
dispersive P in sediment (Fig. 5). CP concentrations ranged
from 2.40 to 3.51 mg kg−1 with an average of 2.92 mg kg−1.
PP loss accounted for 3.78% to 63.31% of the total water-
dispersive P in sediment. PP concentrations ranged from
0.11 to 5.10 mg kg−1, with an average of 0.82 mg kg−1.
Losses of TDP were the lowest and accounted for 0.01% to
0.05% of the total water-dispersive P in sediment. During
rainfall events, PP concentrations peaked at 33 min, with
5.10 mg kg−1. CP concentrations remained stable, and TDP
concentrations were extremely low without any obvious
changes.

The sediment yield rate first increased gradually from 0 to
24min, and then sharply from 24 to 60min (Fig. 6). It reached
a peak at 60 min and then remained stable. Sediment yields
ranged from 5.22 to 67.56 kg ha−1 min−1, with total sediment
yields of 2217.23 kg ha−1. During the rainfall period, the CP
loss rate trends were similar to that of the sediment yield rate: a

gradual upward trend with increasing rainfall duration
and fluctuation at the end of the rainfall event. PP loss
rates were stable early in rainfall events, peaked at
33 min, and then varied widely. The TDP loss rate
was less and stable than PP and CP. Mean losses of
PP and CP were 0.023 and 0.096 g ha−1 min−1, respec-
tively. TDP loss rates were extremely low with a mean
value of 0.048 mg ha−1 min−1. The total loss loads in
sediment caused by rainfall were 1.61 g ha−1 of PP,
6.60 g ha−1 of CP, and 0.003 g ha−1 of TDP.
Therefore, the water-dispersible P loss in sediment was
mainly CP loss.

Subsurface pathways of CP transport

The P concentration in subsurface runoff was dominated
by CP loss, which accounted for 16.7–89.9% of TP in
subsurface runoff with a mean concentrat ion of
0.157 mg L−1 (Fig. 7). PP accounted for 10.0–83.3% of
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Fig. 2 Size distribution of P in
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Table 3 The contribution rate of TP and AP in different particle size distributions of soil layers

Soil layer
(cm)

The contribution rate of TP (%) The contribution rate of AP (%)

0.2–2 mm 0.02–0.2 mm 0.002–0.02 mm < 0.002 mm 0.2–2 mm 0.02–0.2 mm 0.002–0.02 mm < 0.002 mm

0–10 40.28 ± 3.9 15.18 ± 1.8 21.60 ± 2.5 22.95 ± 2.0 37.54 ± 1.2 16.45 ± 0.7 23.95 ± 0.4 22.06 ± 0.5

10–20 38.81 ± 3.1 22.88 ± 2.1 20.19 ± 3.3 18.12 ± 2.4 38.96 ± 1.3 23.18 ± 1.0 21.12 ± 0.5 16.74 ± 0.5

20–40 49.93 ± 6.4 18.02 ± 1.8 16.98 ± 0.9 15.07 ± 0.5 41.22 ± 2.8 20.18 ± 0.5 20.72 ± 0.4 17.87 ± 1.5
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TP in the subsurface runoff with a mean concentration of
0.104 mg L−1. Losses of TDP were the lowest and
accounted for 0.03–0.07% of TP in the subsurface runoff
with a mean concentration of 0.131 μg L−1. During the
rainfall events, the PP concentration peaked at 33 min
with 0.753 mg L−1, whereas the CP concentration was
stable; the TDP concentration was extremely low without
any obvious changes.

The subsurface runoff peaked at 65 min and then decreased
at the end of rainfall (Fig. 8). The subsurface runoff was pro-
duced at 21–24 min and ranged from 0.33 to 0.90 mm min−1

during the rainfall events. The mean rates of PP, CP, and TDP
losses were 0.65, 1.04, and 0.0008 g ha−1 min−1, respectively.
During the rainfall events, the PP loss rate showed one peak,
and the CP loss rate had a steady increase. The TDP loss rate
was the least and changed stably. The total loss loads of CP,
PP, and TDP in the subsurface runoff were 49.82, 31.39, and
0.04 g ha−1, respectively. Therefore, the P loss in subsurface
runoff caused by rainfall was mainly CP and PP losses.

Discussion

Fertilizers have long been used in farmland soil; they are re-
sponsible for the remarkable accumulation of P in topsoil
(Wang et al. 2015a, b; Zeng et al. 2008). In our study, the
TP and AP conc en t r a t i o n s we r e 1457 . 88 and
255.28 mg kg−1 in the 0–10-cm soil layer, respectively, which
were considerably greater than those of the other soil layers
(Table 1). The profile distribution of TP and AP showed ob-
vious surface assembly, because excessive fertilizer was ap-
plied to retard the supply and requirement contradiction of
population and land resources. During rainfall events, the
higher the concentrations of P in the topsoil, the greater the
potential loss of P in the topsoil (Moges et al. 2017; Barbosa
et al. 2009). The concentrations of TP and AP of < 0.002-mm
particles were higher than those of other particle sizes in all
soil layers (Table 2). Because P concentrations of different
particle sizes were not the same, the environmental behaviour
of P varied widely in soil (Dari et al. 2017). In this study, the
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proportion of < 0.002-mm particles was the least (Table 1);
however, previous studies indicated that the purple soil parti-
cles of < 0.002 mm in purple soil have colloidal properties (He
and Lei 2003). Colloidal particles with a large specific surface
area, strong surface charge, and superior mobility have an
impact on the P concentration (River and Richardson 2018;
Kotelnikova et al. 2017). This implied that greater CP loss
during rainfall events was caused by the loss of < 0.002-mm
soil particles.

Soil particles of > 0.002 mm accounted for 80.55% of total
soil in the 0–10-cm soil layer, but PP (> 0.002 mm) was only
51.51% of TP in surface runoff, and water-dispersible PP in
sediment was 19.00% of water-dispersible TP. This is proba-
bly because most P adsorbed on large-sized particles was

deposited during the runoff processes (Wang et al. 2017;
Fink et al. 2016). In contrast, soil particles of < 0.002 mm
accounted for 19.45% of the total soil in the 0–10-cm soil
layer, and CP in the surface runoff reached 48.46% of TP.
Loss of water-dispersible P in sediment was mainly CP loss,
of which 80.98% was total water-dispersible P loss. The CP
loss was caused by the soil colloid carrier (< 0.002 mm). That
is, under the interaction of runoff and topsoil, soil particles of
< 0.002 mm have a greater contribution to surface runoff and
sediment P loss. Therefore, when the soil was dispersed and
transported by water, the likelihood of P loss on soil colloids
had increased (Yan et al. 2017; Turner et al. 2014; Baalousha
et al. 2011). The annual downward migration rate of P in soil
is very slow because the subsoil has a strong capacity for P
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retention. However, with the constant input of P fertilizer, P
was continuously bonded and accumulated in soil, and P loss
occurred immediately when the soil reached the absorption
limit (Ding et al. 2017; Cao et al. 2014; Barbosa et al. 2009).

The tillage method used in this study was the conventional
cross ridge, which blocks surface runoff and stores it into
ditches until the rainwater fills up the ditches (Barbosa et al.
2009; Liu et al. 2014a, b); the surface runoff then crosses the
ridge and runs down the hillside, and surface runoff and sed-
iment volume present a zigzag increasing trend (Figs. 3 and
6). We investigated the relationship between sediment and
runoff and P loss (Table 4). Regression analysis showed that
the CP loss is significantly power function related to the runoff
yield and AP loss. P losses are linear related to sediment yield
rate, in which AP and CP were remarkably influenced. This
probably occurred because the top surface soil particles were

detached and dispersed under the kinetic energy of raindrops,
and they then moved along with surface runoff during a rain-
fall event (Sun et al. 2016). With an increase in surface runoff
volume (Fig. 3), the sediments yield were increased (Fig. 6).
River and Richardson (2018) showed that the impact of dis-
persion, exfoliation, and migration on soil particles were rein-
forced, and rainwater flows turbulently, which increased the
slope sediment yield and loss of P from small-sized particles
carried by runoff and sediments. Therefore, the presence of
CP in runoff has marked implications for understanding the P
transfer process, because colloids facilitate the transport of P
from the soil.

Rainfall began to generate subsurface runoff after 21 min,
because the shear stress and frictional resistance acting on the
flow in the internal layers are small and exfoliation on colloi-
dal particles is weak (Wu et al. 2017; Turner et al. 2014), with
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the addition of lower P concentration in the subsoil (Table 2);
therefore, the P level in subsurface runoff was lower than that
in surface runoff, consistent with the results of Melland et al.
(2008). The total runoff caused by rainfall was 85.94 mm, in
which surface runoff accounted for 60.3%. The total loss load
of CP in runoff was 139.52 g ha−1, in which surface runoff
accounted for 64.3%. The total loss load of PP in runoff was
144.12 g ha−1, in which surface runoff accounted for 78.2%.
The concentration and loss amount of TDP were extremely
low and did not pose a risk to the environment. Therefore, the
surface runoff was the main pathway of P loss for purple soil
sloping farmland. However, Tan and Zhang (2011) reported a
considerably higher contribution rate of subsurface runoff to
the total P loss load on flat land. Because the slope gradient in
our experiment was 15°, the P was detached and dispersed
from the soil under the kinetic energy of raindrops, and then
moved along with surface runoff. The sediment erosion from
the slope was deposited into the downstream water body. The
P in the sediment could be released into the water and become
the potential pollution source of water eutrophication under
certain conditions. Therefore, the concentration and loss of P
in sediment are particularly important (River and Richardson
2018; Qian et al. 2014). The sediment yield caused by rainfall
was 2217.23 kg ha−1, and the TP, AP, and CP in the sediment
were 1275.99, 223.54, and 6.60 g ha−1, respectively. The
small loss load of CP was found in the sediment, and only
0.5% of TP. However, the water-dispersible P loss in sediment
was mainly CP loss. The CP was widely distributed in the
sediment and soil profile because the hydrodynamic force of
surface runoff has scouring and coercing effects on soil farm-
land, resulting in numerous colloidal particles being carried by
the surface runoff. Thus, most of the CP in soil was released
into the runoff under hydro-dynamism (River and Richardson
2018; Jiang et al. 2017; Zhang et al. 2017a, b). The AP load in
the sediment is high. The CP is released from AP in sediment
under certain conditions (temperature, illumination,

destabilization, etc.) when the sediment flows into the down-
stream water, and then subsides, which becomes the potential
supply source of CP in water and becomes a real pollution risk
(Qian et al. 2014).

The main pathway for CP loss was surface runoff. The
concentration of CP in sediment was low but was the main
part of water-dispersible P in sediment (Fig. 5). Because of
its small size, the pedesis is stronger than the action of
gravity; it exists stably in water. Furthermore, the mobility
of CP is stronger than that of PP, and its migration distance
is farther under the force of soil matrix space exclusion and
electrostatic repulsion (Bol et al. 2016; Gottselig et al.
2014; Zang et al. 2011). Colloids act as a buffer and play
an important role in the process of particle transformation
through coagulation, collection, and flocculation. They ef-
fectively influence P distribution, and thus play an impor-
tant role in water P distribution (Yasutaka et al. 2017).

Controlling P release into water is a focus issue in
the prevention of soil erosion, and worldwide studies
focus on water eutrophication. CP is a significant por-
tion of P during the transportation from surface to sub-
surface water, which is mainly influenced by the P level
of soil, surface runoff, subsurface runoff, and sediment.
The CP loss on sloped farmland can be controlled by
measures such as the utilization of soil P by crops,
improvement of soil structure, and prevention of water
and soil erosion.

Conclusions

The vertical distribution of P showed obvious surface accu-
mulation. The risk of P loss in topsoil was greater than those of
the other soil layers on sloping farmland of purple soil. The
concentration of soil particles of < 0.002 mm in purple soil

Table 4 Correlation analysis between P loss and runoff, sediment yield rate, and TP and AP in sediment

P loss y
(g ha−1 min−1)

Surface runoff yield
rate (mm min−1)

Subsurface runoff
yield rate (mm min−1)

Sediment

Sediment yield rate
(kg ha−1 min−1)

TP (g ha−1 min−1) AP (g ha−1 min−1)

TP y = 3.065x0.8756 y = 1.8954x0.8356 y = 0.420x + 5.002 – –
R2 = 0.7634 R2 = 0.6997 R2 = 0.637

CP y = 1.952x1.218 y = 1.489x0.873 y = 0.003x − 0.004 y = 0.0048x + 0.0071 y = 0.0285x1.0148

R2 = 0.707 R2 = 0.673 R2 = 0.970 R2 = 0.6289 R2 = 0.9892

PP y = 1.334x0.574 y = 0.974x2 − 0.843x + 0.425 y = 0.001x + 0.001 y = 0.0022x0.6838 y = 0.0065x0.8646

R2 = 0.238 R2 = 0.039 R2 = 0.502 R2 = 0.3217 R2 = 0.5271

AP – – y = 0.1x − 0.002 – –
R2 = 0.9999
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profiles was low, but the TP and AP concentrations of soil
particles of < 0.002 mm were high.

During a rainfall event, the concentration of CP was stable
in runoff and sediment, but its loss load continued to increase
with rainfall time. The CP loss is significantly power function
related to the runoff yield rate, and is linear related to sediment
yield rate.

The majority of P forms was CP in the runoff. The main
pathway of CP loss load was surface runoff. Although the
concentration of CP in sediment was low, it also dominated
the water-dispersible P loss in the sediment. CP loss can be
controlled by controlling runoff from sloping farmland, espe-
cially surface runoff.
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