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Abstract
Economic policy uncertainty (EPU) will affect the external business environment of economic entities, which in turn affects the
decision-making of economic entities. Meanwhile, carbon emissions are closely related to the production decisions of micro-
economic entities. Thus, studying the relationship between EPU and carbon emissions helps to clarify the impact of institutional
factors behind carbon emissions, which is significant for achieving green development. Based on US sector data, we apply a
novel parametric test of Granger causality in quantiles to analyze the relationship between EPU and carbon emissions (its growth
and uncertainty). We find that there is an outstanding pattern of Granger-causality from the US EPU to the growth of carbon
emissions in the tails of the growth distributions of carbon emissions in the industrial sector, residential sector, electric power
sector, and transportation sector, except in the commercial sector. That is, carbon emissions are affected by EPUwhen the growth
of carbon emissions is in a higher or lower growth period. Lastly, we find that the US EPU affects carbon emissions uncertainty
over the entire conditional distribution for all sectors.

Keywords Economic policy uncertainty . CO2 emissions . Granger causality in quantiles . US sector

Introduction

Global warming, which is caused by carbon emissions has
been recognized as a threat to public health and welfare. The
reduction in carbon emissions is, therefore, a necessary task
for each country in order to address the severe challenges
arising from global warming. Scholars analyze the influencing
factors of carbon emissions greatly. However, previous studies

have neglected the macroeconomic institutional factor, which
closes the link to carbon emissions. As a reflection of macro-
economic institutional factor, EPU certainly affects the exter-
nal business environment of economic entities, which in turn
affects the decision-making of economic entities. Meanwhile,
carbon emissions are closely related to the production deci-
sions of microeconomic entities. Therefore, as the world’s
second-largest carbon emitter, analyzing the relationship be-
tween the US EPU and carbon emissions helps to clarify the
impact of institutional factors behind carbon emissions, which
is significant for achieving green development.

Currently, the US EPU has markedly increased. Figure 1
shows the dynamics of the EPU and energy-related carbon
emissions in the USA. It shows that the US EPU index and
its overall carbon emissions maintained a relatively consistent
dynamic path. When the US EPU index reaches a peak and
then falls, total carbon emissions also experience a local peak
and then decline. We speculate that EPU may affect carbon
emissions from the following aspects. Firstly, with the EPU
increasing, the attention on environmental governance from
the government will be transferred and reduced, and the im-
plementation of some environmental protection policies will
be affected negatively. For example, the USA withdrawing
from the Paris Agreement increases the EPU, which may
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affect the determination of state governments to reduce carbon
emissions negatively. Secondly, the EPU may harm the whole
economic situation and the performance of enterprises. On the
one hand, the economic demand for energy consumption will
be cut down, and then the carbon emission may be de-
creased. On the other hand, due to the bad economic sit-
uation, for enterprises and residents, they may choose to
use traditional cheaper energy such as coal and oil that
may produce more carbon emissions. Thirdly, facing high
EPU, enterprises may anticipate that governmental depart-
ments may relax requirements on environmental gover-
nance. It may lead enterprises to choose to reduce their
efforts for controlling carbon emissions.

Notes: The shaded regions represent NBER recessions in
the US economy. EPU constructed by three types of underly-
ing components, namely, news coverage about policy-related
economic uncertainty, tax code expiration data, and economic
forecaster disagreement data. The data of EPU is sourced from
the website of EPU (http://www.policyuncertainty.com/).
Data on the US CO2 emission is from the US Energy
Information Administration (EIA) (www.eia.gov/.)

Our study contributes to the previous literature in the follow-
ing aspects. First, although a lot of studies have analyzed the
influencing factors of carbon emissions (e.g., Stern 2004; Ling
et al. 2015; Zhang and Tan 2016; Bekhet and Othman 2017;
Abdouli and Hammami 2017), little research has explored
whether there is a causal relationship between the EPU and
carbon emissions from the empirical or theoretical perspective.
As we know, EPU can affect economic activity, enterprise op-
eration, and people’s consumption decisions (Caldara et al.
2016; Baker et al. 2016; Dibiasi et al. 2018). Analyzing the
relationship between EPU and carbon emissions helps to clarify
the impact of institutional factors behind carbon emissions. In
this study, we analyze the relationship between the US EPU and
carbon emission across various sectors as carbon emissions are
heterogeneous in different sectors. It can provide significant

implications for a country to achieve carbon reduction goals
with a more rationality institutional environment.

Second, we establish a carbon emission uncertainty indi-
cator by employing a GARCH (1, 1) model in order to esti-
mate the time-varying carbon emission volatility or uncer-
tainty at the sector level. Unstable factors in the economic
cycle and environmental policies commonly lead to uncer-
tain carbon emissions. For example, the USA cut the budget
of the US Environmental Protection Agency (EPA) in 2017.
The government withdrew from the Paris Agreement in the
same year. All these passive measures on carbon emissions
reductions may increase the uncertainty of the US carbon
emissions and impact the governance attitude to global
warming. Thus, we propose the carbon emission uncertain-
ty indicator to reflect the fluctuation on carbon emissions.
Based on this, we also reveal the relationship between EPU
and carbon emission uncertainty. The results can provide us
with deeper information about the impact of institutional
factors behind carbon emissions.

Third, this paper is the first to use the parametric test of
Granger causality in quantiles, which was recently proposed
by Troster (2018), to study whether the US EPU causes the
growth and uncertainty of carbon emissions across US sectors.
Rather than focusing on specific episodes of carbon emis-
sions, employing this quantile causality testing approach can
allow us to examine the impacts of the US EPU on the carbon
emissions under different emission periods or market condi-
tions. On the one hand, this approach takes the different loca-
tions and scales of the conditional distribution into account,
which can provide richer information. On the other hand, the
approach can address the problem of structural breaks and
sample segmentation. Existing studies have proved that car-
bon emissions have nonlinear and structural mutation charac-
teristics (Lanne and Liski 2004; Esteve and Tamarit 2012;
Liddle and Messinis 2018) and they may have adverse im-
pacts on linear model estimation (Troster 2018). Most studies
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choose to segment the sample, but it leads to the loss of the
sample’s information. This approach allows us to examine the
causal relationships at any chosen conditional quantiles with-
out preselecting arbitrary subsamples.

The remainder of the paper is organized as follows:
“Literature” provides a brief relevant literature review.
“Theoretical framework and analysis” discusses the theoreti-
cal framework and hypothesis. “Methodology” introduces the
empirical methodologies and research framework.
“Preliminary data analysis” presents the data and preliminary
analysis. “Empirical results and discussions” discusses the
empirical results. “Conclusions” presents the conclusions.

Literature

As climate change is a common concern across countries in the
world, a considerable number of researches analyzing the
influencing factors of carbon emissions have been emerging
(e.g., Richmond and Kaufmann 2006; Soytas and Sari 2009;
Menz and Welsch 2012; Garau et al. 2013; Lee and Min 2015;
Katircioğlu and Taşpinar 2017; Mutascu 2018; Balsalobre-
Lorente et al. 2018;Jiang et al. 2018; Liu et al. 2019). However,
these studieshaveneglected themacroeconomic institutional fac-
tor, which is closely linked to carbon emissions.

According to real the option theory (Abel and Eberly 1993;
Gulen and Ion 2015), investment opportunities can be treated
as an economic entity’s resources when the investment is ir-
reversible. Once the EPU rises, the net income of “waiting”
will rise as the value of holding option increases. However, the
net income of investment will decrease as the increasing value
of holding option leads to the growth of marginal investment
cost of economic entities. In addition, social-political theory
holds that information disclosure is a response to political or
social pressure (Gray et al. 1995). Carbon-related information
disclosure transmits a good signal to the external. Connelly
et al. (2011) proposed a signal transmission theory, which
suggested that by increasing the transparency of carbon dis-
closure, it could indirectly reduce the pressure on stakeholder
environmental issues. Enterprises tend to adopt high-energy
and low-cost production methods to reverse the expected
downtrend of net income due to EPU. Meanwhile, investors
will not lose investment confidence for high energy consump-
tion production as information disclosure is not enough.
According to these theories, as a reflection of macroeconomic
institutional factor, EPU certainly affects the external business
environment of economic entities, which in turn affects the
decision-making of economic entities. Meanwhile, carbon
emissions are closely related to the production decisions of
microeconomic entities.

A large number of studies have argued that EPU has critical
impacts on a country’s economic growth, stock market, in-
vestment, and employment (e.g., Brogaard and Detzel 2015;

Baker et al. 2016). Numerous studies also confirm that EPU
could affect international commodity prices such as crude oil,
gold, and other commodity prices (Jones and Sackley 2016;
Balcilar et al. 2016, 2017). Delios and Henisz (2003) explored
the impact of policy uncertainty on Japanese manufacturing
firms’ investment sequence. They found countries with less
policy uncertainty attracted more investment entry. Kalamova
et al. (2012) assessed the impact of environment policy uncer-
tainty on innovation and found that policy uncertainty had a
negative effect on innovation activity. Handley and Limao
(2015) find that policy uncertainty had a large fraction on
exporting. Julio and Yook (2016) find that FDI flows from
US firms drop greatly when political uncertainty appears.
Feng et al. (2017) conclude that a reduction in trade policy
uncertainty reduces the firm export activity. Bhattacharya
et al. (2017) use nation election to reflect policy uncertainty
and examine whether the policy or policy uncertainty affects
technological innovation. They find that innovation activities
dropped greatly during national election. Charles et al. (2018)
establish an uncertainty indicator based on financial, political,
and macroeconomic, and then they analyze the impact of un-
certainty on economic activity.

To sum up, the existing literature has provided rich refer-
ences to understand the key impact factors on carbon emission
from various aspects, such as FDI (Zhang and Zhou 2016),
financial development (Al-Mulali et al. 2015; Abbasi and Riaz
2016), and environmental innovation (Lee andMin 2015), but
the critical impact of EPU on carbon emissions has been ig-
nored. A large number of studies find that EPU has a critical
impact on a country’s economic growth, the stock market, and
the investment and innovation activity. In this case, we spec-
ulate that the EPU may have an impact on carbon emissions
government decision for one country or enterprise. This paper
employs a novel parametric test of Granger causality in
quantiles to examine whether the US EPU impacts the growth
and uncertainty of carbon emissions based on US sector data.

Theoretical framework and hypothesis

EPU affects the carbon emissions through the direct policy
adjustment effect and indirect economic demand effect.
More specifically, for direction policy adjustment effect, first,
negative climate policy may directly harm their determina-
tions to reduce carbon emissions for governments, corporates,
and residences. For example, the USA decided to withdraw
from the Paris Agreement in 2016, which releases a negative
signal that the US government has lost determination to cut
emissions. Affected by this event, the uncertainty of economic
policies increases, the attention on environmental governance
from the government will be transferred and reduced, and the
implementation likelihood of some environmental protection
policies will be affected negatively. In addition, some
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enterprises and residents may doubt the government’s deter-
mination to reduce emissions. Therefore, both enterprises and
residents will not comply with the requirements of relevant
carbon emission reduction policies, which may result in the
increase of emissions.

Regarding the indirect economic demand effect of EPU on
carbon emissions, briefly, EPU may influence the economic
condition and then may induce the changing economic demand
for energy consumption. As we know, energy-related carbon
emissions account for approximately 98% of the US carbon
emissions in 2017 (BP data). Indeed, a large body of literature
find that the EPU has impacts on the FDI and firms’ investment
(e.g., Delios and Henisz 2003; Asiedu 2006; Kellogg 2014;
Rubashkina et al. 2015; Zhao and Sun 2016; Wang and Shen
2016; Julio and Yook 2016; Chen et al. 2018), trade ( Handley
and Limao 2015; Feng et al. 2017), stock market and economic
development (Pastor and Veronesi 2012; Shahzad et al. 2017;
Balcilar et al. 2017). For example, Julio and Yook (2016) find
that FDI flows from US firms drop greatly when political un-
certainty appears. Handley and Limao (2015) find that policy
uncertainty had a large fraction on exporting. Charles et al.
(2018) establish an uncertainty indicator based on financial,
political, and macroeconomic, and they prove the impact of
uncertainty on economic activity. Besides, some literature pro-
vide evidence that the EPU affects the patent application and
innovation (e.g., Kalamova et al. 2012; Rubashkina et al. 2015;
Zhao and Sun 2016; Wang and Shen 2016; Chen et al. 2018;
Bhattacharya et al. (2017). Meanwhile, numerous literature
document that the FDI, trade openness, financial development,
the patent application, and innovation are related to carbon
emissions (e.g., Ozturk and Acaravci 2013; Ling et al. 2015;
You et al. 2015; Dogan and Turkekul 2016; Shahbaz et al.
2016; Zhang and Zhou 2016; Katircioğlu and Taşpinar 2017;
Işik et al. 2017; Çetin and Ecevit 2017). In this way, naturally,
we speculate that EPU may affect the carbon emissions by
impacting the economic activity including the stock market,
investment and trade, and so on.

Moreover, under different carbon emission cycles, the im-
pact of EPU on carbon emissions may be different. In a period
of high carbon emissions growth (possibly due to increased
energy demand driven by economic growth), the government
faces greater pressure to reduce emissions, which may be
more vulnerable to the impact of EPU. By contrast, in a period
of low carbon emissions growth, excluding the impact of tech-
nological progress and energy efficiency (generally consid-
ered not to have a significant impact on carbon emissions in
the short term), lower carbon emissions may indicate a down-
turn in the economy. Due to the low growth of the economy,
the decline in energy consumption demand leads to a decline
in carbon emissions. Facing the pressure of economic growth,
the government will introduce more policies to stimulate eco-
nomic growth, which will more likely increase the EPU. At
this time, according to the direct policy adjustment effect, the

government may not pay attention to the implementation of
carbon emission reduction policies. Thus, it may make carbon
emissions vulnerable to greater EPU shocks. In addition, the
blind self-confidence from government and entrepreneur leads
to slack policy implementation. In the case of the low growth
in carbon emissions, the government and enterprises blindly
believe in the effectiveness of emission reduction and may
relax the implementation of carbon emission reduction poli-
cies. Therefore, during this period, carbon emissions may eas-
ily rebound and be more vulnerable to the impact of EPU.
Based on the analytic mechanisms commented on above, we
propose the following hypothesis.

Hypothesis: there exists causality between EPU and carbon
emissions, specifically when the carbon emissions are in a
higher or lower growth stage.

Methodology

Here, we present a novel methodology, as proposed by Troster
(2018), to examine the heterogeneity of the Granger causality
between the US EPU and carbon emissions at the sector level
across different conditional quantiles. Suppose EPU is Zt, and
carbon emissions growth or carbon emissions uncertainty at
the US sector level is Yt.

According to Granger (1969), a series Zt does not Granger
cause another series Yt if the past Zt does not help to predict the
future Yt given the past Yt. Suppose that the explanatory vector

I t≡ IY
0

t ; IZ
0

t

� �0

∈Rd , where Yt, IYt ≔ Y t−1;…Y t−sð Þ0∈Rs and

IZt ≔ Zt−1;…Zt−q
� �0

∈Rq. The null hypothesis of Granger non-
causality from Zt to Yt is as follows:

HZ↦Y
0 : FY yjIYt ; IZt

� � ¼ FY yjIYt
� �

for all Y∈R: ð1Þ

where FY yjIYt ; IZt
� �

and FY yjIYt
� �

are the conditional dis-

tribution functions of Yt given IYt ; I
Z
t

� �
and IYt , respectively.

We test Granger non-causality in the mean, which is only a
necessary condition for (1). In this case, Zt does not Granger
cause FY ⋅jIYt

� �
in the mean if

E Y tjIYt ; IZt
� � ¼ E Y tjIYt

� �
a:s:; ð2Þ

where FY ⋅jIYt ; IZt
� �

and E Y tjIYt
� �

are the mean of FY

⋅jIYt ; IZt
� �

and FY ⋅jIYt
� �

, respectively. Granger non-causality
in the mean of (2) can be easily extended to higher order
moments. However, causality in the mean overlooks the de-
pendence that may appear in the conditional tails of the distri-
bution. Thus, a test Granger non-causality in the conditional

quantiles is proposed. Let QY ;Z
τ ⋅jIYt ; IZt

� �
be the τ-quantiles of

FY ⋅jIYt ; IZt
� �

, then Eq. (1) can be rewritten as follows:
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HQC:Z↦Y
0 : QY ;Z

τ Y tjIYt ; IZt
� � ¼ QY

τ Y tjIYt
� �

; a:s:for all; τ∈T; ð3Þ

where Γ is a compact set such that Γ ⊂ [0, 1]. In
addition, the conditional τ-quantiles of Yt satisfy the
following restrictions:

Pr Y t ≤QY
τ Y tjIYt
� �jIYt� �

≔τ ; a:s:for all; τ∈T; and
Pr Y t ≤QY ;Z

τ Y tjIYt ; IZt
� �jIYt ; IZt� �

≔τ ; a:s:for all; τ∈T
ð4Þ

Given an explanatory vector It, we have Pr{Yt ≤Qτ(Yt| It)|
It} = E{Ι[Yt ≤ Qτ(Yt| It)] | It}, whereI(Yt ≤ y) is an indicator
function of the event that a is less or equal than y. Thus (4)
is equivalent to

1
h
Y t ≤QY ;Z

τ Y tjIYt ; IZt
� �jIYt ; IZt

� 	

¼ E Ι Y t ≤QY
τ Y tjIYt
� �
 � jIYt ; IZt� �

;
a:s:for all; τ∈T;

ð5Þ

where the left-hand side of (5) is equal to the τ-quantile of
FY ⋅jIYt ; IZt

� �
by definition. Following Troster (2018), we pos-

tulate a parametric model in order to estimate the τ th quantile
of FY ⋅jIYt

� �
, where we assume that Qτ(⋅| It) is correctly spec-

ified by a parametric modelm(⋅, θ(τ)) belonging to a family of
functionsΜ = {m(⋅, θ(τ)) ∣ θ(⋅)τ↦ ∈Θ ⊂ RP, for τ ∈ T ⊂ [0,
1]}. Let B ⊂M be a family of uniformly bounded functions
τ↦ θ(τ) such that θ(τ) ∈Θ ⊂ RP. Then, under the null hypoth-

esis in (3), the τ-conditional quantile QY
τ ⋅jIYt
� �

is correctly

specified by a parametric model m IYt ; θ0 τð Þ� �
, for some

θ0 ∈ B, using only the restricted information set QY
τ ⋅jIYt
� �

,
and we redefine our testing problem in (3) as

HZ↦Y
0 : E Ι Y t ≤m IYt ; θ0 τð Þ� �� �jIYt ; IZt
 �

¼ τ ; a:s:for all τ∈Τ ; ð6Þ

versus:

HZ↦Y
A : E Ι Y t ≤m IYt ; θ0 τð Þ� �� �jIYt ; IZt
 �

≠τ ; for some τ∈Τ ;ð7Þ

where m IYt ; θ0 τð Þ� �
correctly specifies the true conditional

quantile QY
τ ⋅jIYt
� �

, for all τ ∈ Τ. We rewrite (6) as HZ↦Y
0 : E

Ι Υ t−m IYt ; θ0 τð Þ� �
≤0

� �
−τ


 �jIYt ; IZt� � ¼ 0 almost certainly,
for all τ ∈ Γ. Then we can characterize the null hypothesis
(6) by a sequence of unconditional moment restrictions:

HZ↦Y
0 : E Ι Y t−m IYt ; θ0 τð Þ� �

≤0
� �

−τ

 �jexp iω

0
I t

� �n o
¼ 0 ð8Þ

Whereexp(iϖ′It) = exp[i(ϖ1(Yt − 1, Zt − 1)
′ + ... +ϖr(Yt − r,Zt

− r)
′ )] is a weighting function, for all ϖ ∈ Rd with r ≤ d, and i

¼ ffiffiffiffiffiffi
−1

p
is the imaginary root. The remainder of the statistic is

a sample analog of

E Ι Y t−m IYt ; θ0 τð Þ� �
≤0

� �
−τ


 �jexp iω
0
I t

� �� �
:

vT ϖ; τð Þ≔ 1ffiffiffiffi
T

p ∑
T

t¼1
Ι Y t−m IYt ; θ0 τð Þ� �

≤0
� �

−τ

 �

exp iϖ
0
I t

� �

ð9Þ

where θT is a
ffiffiffiffi
T

p
-consistent estimator of θ0(τ), for all

τ ∈ Τ.Then, we apply the test statistic:

ST≔ ∫
T
∫
W

VT ϖ; τð Þj j2dFϖ ϖð ÞdFτ τð Þ ð10Þ

whereFϖ(⋅) is the conditional distribution function of the ad-
variate standard normal random vector, Fτ(⋅) is a uniform dis-
crete distribution over a grid of Τ in n equi-distributed points,

Τn ¼ τ j
� �n

j¼1
, and the vector of weightsϖ ∈ Rd is drawn from

a standard normal distribution. The test statistic in (10) can be
estimated using its sample counterpart. Let Ψ be the T × nmatrix
Ψwith elementsψi; j ¼ Ψτ j Y i−m IYi ; θT τ j

� �� �� �
. Then, the test

statistic ST has the form

ST ¼ 1

Tn
∑
n

j¼1
jψ0: jWψ: jj ð11Þ

whereW is the T × Tmatrix with elementswt, s = exp[−0.5(It
− IS)2], and ψ⋅j denotes the jth column of ψ. It rejects the null
hypothesis whenever it observes “large” values of ST.

We use the subsampling procedure of Troster (2018)
to calculate the critical values for ST in Eq. (11). Given
our series {Xt = (Yt, Zt)} of sample size T, we generate
B = T − b + 1 subsamples of size b (taken without re-
placement from the original data) of the form {Xi, … ,
Xi + b − 1}. Then, the test statistic ST is calculated for
each subsample and we obtain the p values by averag-
ing the subsample test statistics over the B subsamples.
Following Troster (2018), we choose a subsample of
size b = [kT2/5], where [·] is the integer part of a num-
ber, and k is a constant parameter. To apply the ST test,
we specify three different QAR models m(⋅), for all
τ ∈ Γ ⊂ [0, 1], under the null hypothesis of non-Granger
causality in Eq. (9) as follows:

QAR 1ð Þ : m1 IYt ; θ τð Þ� � ¼ μ1 τð Þ þ μ2 τð ÞY t−1 þ σtΦ
−1
u τð Þ

QAR 2ð Þ : m2 IYt ; θ τð Þ� � ¼ μ1 τð Þ þ μ2 τð ÞY t−1 þ μ3 τð ÞY t−2 þ σtΦ
−1
u τð Þ

QAR 3ð Þ : m3 IYτ ; θ τð Þ� � ¼ μ1 τð Þ þ μ2 τð ÞY τ−1 þ μ3 τð ÞY t−2 þ μ4 τð ÞY t−3 þ στΦ
−1
u τð Þ
ð12Þ

where the parameters θ(τ) = (μ1(τ), μ2(τ), μ3(τ), μ4(τ), σt)
′

are estimated by the maximum likelihood in an equally spaced

grid of quantiles, and Φ−1
u ⋅ð Þ is the inverse of a standard nor-

mal distribution function. To verify the signature of the causal
relationship between the variables, we estimate the quantile
autoregressive models in Eq. (12) including lagged variables
of another variable. For simplicity, we present the results using
only a QAR (3) model with the lagged values of the other
variable as follows:
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QY ;Z
τ Y tjIYt ; IZt

� � ¼ μ1 τð Þ þ μ2 τð ÞY t−1 þ μ3 τð ÞY t−2

þ μ4 τð ÞY t−3 þ β τð ÞZt−1 þ σtΦ
−1
u τð Þ ð13Þ

Preliminary data analysis

This paper uses monthly data on the energy-related carbon
dioxide (CO2) emissions over the total USA and at the sector
levels covering the period from January 1985 to August 2017.
Given the fact that the carbon emissions are heterogeneous in
different sectors, we select five US sectors as samples in this
paper, namely the industrial sector, the residential sector, the
transportation sector, the electric power sector, and the com-
mercial sector. We mainly investigate whether there are sig-
nificant differences in the relationship between the US EPU
and carbon emission across these sectors. The series of carbon
emissions exhibiting seasonality have been seasonally adjust-
ed using the Census X-13 method. The carbon emission data
can be obtained from the US Energy Information
Administration (EIA) in the US Department of Energy1. We
calculate the carbon emissions growth by ln(Ei, t/Ei, t − 1),
where Ei, t is the carbon emissions for sector i at time t. We
obtain the EPU index as the measure of the EPU, which is
sourced from Baker et al. (2016)2. We use the EPU index after
a logarithmic transformation in our empirical model.

Figure 2 plots the dynamics of the carbon emissions in the
various sectors. As shown in Fig. 2, most of the sectors gen-
erally have an inverted U-shaped trajectory, except for the
transportation sector. Further observations show that the car-
bon emissions from the transportation sector have N-type
changes and are currently still rising. The EIA data show that
the carbon emissions of the transportation sector increased by
1.9% in 2016, exceeding the electric power sector for the first
time. In addition, the data shows that the carbon emissions
curve of each sector is not smooth, and the phenomena of
substantial growth and the sharp decline alternately appear.
This finding suggests that there is significant uncertainty re-
garding the carbon emissions trend in all sectors in the United
States. In addition, we find that during the economic reces-
sion, the carbon emissions of various sectors declined. This
finding verifies the basic understanding of environmental eco-
nomics, that is, there is a significant relationship between car-
bon emissions and economic growth.

The summary statistics of the variables have been reported in
Table 1. Table 1 shows that four out of five sectors have a pos-
itive carbon emissions change rate on average with the exception
of the industrial sector.With respect to the standard deviation, we
find that the residential sector possesses the largest values among
the five sectors, thereby indicating that the largest carbon

emissions uncertainty is in this sector. The Skewness and kurtosis
values indicate that the distributions of carbon emissions growth
for all sectors are negatively skewed (except for the industrial
sector) and leptokurtic. The Jarque–Bera statistic rejects the null
hypothesis that the carbon emissions growth is normally distrib-
uted for all cases. By applying the ARCH test of Engle (1982),
we reject the null hypothesis of no ARCH effects for the carbon
emissions growth in all sectors and thus find that the use of a
GARCH-based approach is appropriate formodeling the stylized
facts such as the fat-tails, volatility clustering, and persistence in
carbon emissions growth. Thus, in the next section, we estimate
the conditional volatility of emission growth by a GARCH (1, 1)
model, and select this as the proxy of carbon emission uncertain-
ty for US sectors.

Table 2 reports the unit root tests for the carbon emissions
growth of US sectors and the EPU series using two tests: the
augmented Dickey–Fuller (ADF) test (Dickey and Fuller,
1979) and the Phillips–Perron (PP) test (Phillips and Perron,
1988). The null hypothesis is the non-stationarity for all series.
The tests yield large negative values in all cases for the growth
of carbon emission and EPU, such that the growth and EPU
series reject the null hypothesis at the 1% significance level.
Thus, we conclude that all series of carbon emission growth
for five sectors and the EPU are stationary processes.
However, a major shortcoming with the standard unit root
tests is that they do not allow for the possibility of structural
breaks. Therefore, we follow Lee and Strazicich (2003) by
allowing two breaks at an unknown location on both the
trend and the intercept. Table 2 reports the results of the Lee
and Strazicich (2003) unit root test and the estimated break
date. The results confirm that these series are stationary, and
there are two breaks for the carbon emissions growth and the
EPU variables, respectively. This finding of breakpoints in the
growth of carbon emissions and EPU indicates that the linear
model based on the conditional mean estimation may not be
suitable for depicting the relationship between them.

In this paper, the GARCH (1, 1) model is used to measure
the conditional volatility of carbon emissions growth for the
US sectors. We set the conditional volatility as a proxy vari-
able for the carbon emissions uncertainty. This variable is used
to reflect the phenomenon that the carbon emissions for one
country or one sector are uncertain in the future. The GARCH
(1, 1) model is often used to estimate the volatility of equity
returns, energy returns and economic output (Badinger 2010;
Choudhry et al. 2016; Diaz et al. 2016). A plot of the carbon
emission volatility (uncertainty) is shown in Fig. 3. As shown
in Fig. 3, overall, there are sharp fluctuations in the carbon
emissions for each sector. More specifically, it is found that
around the US recession, carbon emissions widely fluctuated
across sectors, especially in the industrial sector. For example,
we find that around the years of 1991, 2001, and 2008, espe-
cially before and after the USA entered the recession, there
was large volatility in the carbon emissions for the industrial

1 www.eia.gov/.
2 http://www.policyuncertainty.com/
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sector. This finding is similar to the existing literature that
confirms the strong link between carbon emissions and eco-
nomic growth (Tzeremes 2017). In addition, the data show
that there is a large fluctuation in US carbon emissions after
December 12, 2015 (see the dotted lines). This fluctuation

corresponds to the event when nearly 200 countries attending
the United Nations Framework Convention on climate change
reached the Paris Agreement at the Paris Climate Change
Conference in December 2015. Meanwhile, the formal enact-
ment of the agreement was announced in December 2016,
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Fig. 2 CO2 emissions for US sectors: 1985:01-2017:08. The series exhibiting seasonality have been seasonally adjusted using the Census X-13 method.
The shaded regions represent NBER recessions

Table 1 Descriptive statistics and unit root tests

Total Industrial Residential Transportation Electric Commercial EPU

Mean 0.030 − 0.031 0.019 0.075 0.014 0.061 4.641

Median 0.069 − 0.011 0.221 0.014 − 0.021 0.007 4.615

Maximum 10.613 8.183 23.847 7.597 14.648 17.557 5.502

Minimum − 11.319 − 7.588 − 20.077 − 6.802 − 14.799 − 19.436 4.047

Std. Dev. 2.548 2.419 5.714 1.988 3.777 3.816 0.280

Skewness − 0.245 0.121 − 0.022 − 0.044 − 0.041 − 0.148 0.306

Kurtosis 5.618 3.587 5.120 4.560 4.864 6.254 2.562

Jarque–Bera 115.629*** 6.561*** 73.240*** 39.759*** 56.708*** 173.889*** 9.242***

ARCH test 56.599*** 4.876** 39.295*** 13.964 38.130*** 53.305***

Observations 391 391 391 391 391 391 391

***Indicate significance at the 1% level
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Table 2 Unit root test

Total Industrial Residential Transportation Electric Commercial EPU

Panel 1: Conventional unit root test

ADF(C) − 22.362*** − 22.282*** − 21.396*** − 25.115*** − 20.737*** − 22.062*** − 3.645***

ADF(C+T) − 22.437*** − 22.357*** − 11.682*** − 25.260*** − 20.834*** − 22.147*** − 3.689***

PP(C) − 42.442*** − 41.218*** − 49.430*** − 46.132*** − 36.584*** − 41.015*** − 5.563***

PP(C+T) − 53.046*** − 61.667*** − 74.672*** − 48.349*** − 52.262*** − 61.471*** − 5.625***

Panel 2: Lee and Strazicich (2003) LM two breaks unit root test

Statistic − 22.261*** − 9.774*** − 20.839*** − 3.990** − 18.765*** − 20.472*** − 5.520***

Break 1 2013M10 2002M12 2002M02 2012M02 1989M05 1995M01 2000M04

Break 2 2014M01 2003M04 2004M07 2012M12 2014M05 2003M05 2008M08

For ADF and PP test, C denotes constant, T denotes trend; for Lee and Strazicich (2003) LM two breaks unit root test (crash model), the test critical value
of 1% level is 4.178, for 5% level is − 3.619 and for 10% level is − 3.316
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Fig. 3 Carbon emission uncertainty (volatility) for the US sectors. The shaded regions represent NBER recessions. Red shaded regions denote the period
of June 2017 in which the USAwithdrew from the Paris Agreement
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after which US carbon emissions also greatly fluctuated. This
finding suggests that global climate policy may impact the
carbon emissions in the USA. Moreover, it is found that the
economic policies of the US government may also affect the
volatility of carbon emissions. For example, in late
March 2017, US President Trump signed a presidential exec-
utive order aimed at boosting energy independence and eco-
nomic growth, which reduced the budgets related to climate
policy and scientific research programs. For example, the ex-
ecutive order stipulates a cut to the EPA budget of more than
31%, calls for the direct cancellation of the executive orders of
the previous president (the Obama administration) related to
climate change, and calls for an immediate review of the rel-
evant provisions of the Clean Power Plan. Afterwards, the
USA withdrew from the Paris Agreement in June 2017. As
can be seen in Fig. 3, the US carbon emissions volatility has
risen sharply since these events.

In summary, influenced by economic factors or policy fac-
tors, there is an obvious increase in the volatility or uncertainty
of carbon emissions in the US sectors. Together with Fig. 1,
these findings show that US carbon emissions significantly
fluctuated during a period when the US EPU index was at a
high level. This phenomenon implies that there may exist a
causal relationship between the two variables, which increases
our interest. This issue is also the main motivation of this paper.

Empirical results and discussions

Linear Granger causality test

Though our objective is to analyze the quantiles causality
between the US EPU and the carbon emissions in each sector,
for the sake of completeness and comparability, we also con-
ducted a standard linear Granger causality test (Granger 1969)
based on the VAR model. Table 3 presents the results for the
linear Granger causality test. For most sectors, the null hy-
pothesis of non-causality from the US EPU to carbon emis-
sion growth cannot be rejected at the 10% significance level.
In particular, at the 10% significance level, with the exception
of the industrial and commercial sectors, there is no evidence
of Granger causality from the US EPU to carbon emissions
growth for other sectors such as the residential, transportation,
and electric power sectors. For the carbon emissions uncer-
tainty, we find that only the carbon emission uncertainty of the
industrial sector is affected by the US EPU, and for other
sectors, the null hypothesis of non-causality cannot be
rejected. These results that are estimated in our paper may
have resulted from the misspecification of the test model. It
is well known that the linear Granger causality test could
overlook the important nonlinear causal relationship
(Balcilar et al. 2017). Therefore, the insufficient or weak evi-
dence for the causal relationship can be attributed to the low

power of the linear Granger causality test if the time series that
are analyzed are nonlinear or non-normal.

BDS test for the nonlinear feature

To motivate the use of the causality test in quantiles, this
section investigates the possibility of nonlinearity in the rela-
tionship between the US EPU and the growth and uncertainty
of carbon emission in five sectors. To this end, following
Balcilar et al. (2017), we apply the BDS test (Broock et al.
1996) to the residuals of carbon emissions growth or the un-
certainty equation of the VAR involving (relative) the US
EPU, respectively. The BDS test is one of the most popular
tests for nonlinearity. The BDS test determines if increments
of a data series are independent and identically distributed
(i.i.d.). The test is asymptotically distributed as standard nor-
mal under the null hypothesis of i.i.d. increments.

The results of the BDS test are reported in Table 4. As
shown in panel 1 of Table 4, for the carbon emissions
growth and uncertainty series, the null hypothesis of
i.i.d. residuals is strongly rejected at the 1% significance
level across various dimensions (m). From panel 2 of
Table 4, we also see that residuals of the carbon emission
growth and the uncertainty equation of the VAR of
(relative) the US EPU also pass the BDS test at the 1%
significance level. This finding indicates that the relation-
ship between the US EPU and carbon emissions growth
and uncertainty for these five sectors are nonlinear and
implies that the Granger causality tests based on a linear

Table 3 Linear Granger causality test (EPU and carbon emissions)

Null hypothesis Lag Chi-sq p value Causality or not

Panel 1: from EPU to carbon emission growth

EPU↦ Total 8 16.033** 0.042 Yes

EPU↦ Industrial 5 14.716** 0.012 Yes

EPU↦ Residential 8 11.920 0.155 No

EPU↦ Transportation 5 4.538 0.475 No

EPU↦ Electric 5 7.594 0.180 No

EPU↦Commercial 8 15.656** 0.048 Yes

Panel 2: from EPU to carbon emission uncertainty

EPU↦ Total 5 13.232** 0.021 Yes

EPU↦ Industrial 4 15.060*** 0.005 Yes

EPU↦ Residential 5 8.472 0.132 No

EPU↦ Transportation 5 4.821 0.438 No

EPU↦ Electric 4 2.440 0.656 No

EPU↦Commercial 4 4.909 0.297 No

*, **,and ***indicate significance at the 10%, 5%, and 1% level, respec-
tively; the symbol ↦ represents the null hypothesis of Granger non-cau-
sality. The lag parameters are selected based on the Akaike information
criterion (AIC). Yes in the last column indicates that the null hypothesis
was rejected at least at the 10% significance level
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framework are likely to suffer from misspecification prob-
lem. In other words, the results of the linear test for
Granger non-causality cannot be deemed to be robust
and reliable.

The table shows the BDS Statistic. Italic p values denote
rejection of the null hypothesis at the 5% significance level.
The lag parameters for the VAR model are selected based on
the Akaike information criterion (AIC). m stands for the em-
bedded dimension

Nonlinear Granger causality tests

Given the strong evidence of nonlinearity that was obtained
from the BDS tests, we further investigate whether there is a
nonlinear Granger causality running from the US EPU to the
total and the sectors’ carbon emissions. To this end, we use the
D&P nonlinear Granger causality test (Diks and Panchenko
2006). The results for the D&P nonlinear Granger causality
test are presented in Table 5. We perform the tests for the

embedding dimension m = 1.5 and select the lags 1–6. As
seen, the null hypothesis of no nonlinear Granger causality
running from US EPU to the carbon emissions growth in the
sample period cannot be rejected at the 10% significance lev-
el, with the industrial sector being an exception. With respect
to carbon emissions uncertainty, it is found that there is no
evidence in favor of the nonlinear Granger causality from
EPU to the total and all five sectors’ carbon emissions uncer-
tainty at the 5% significance level. For both linear and non-
linear Granger causality test, results are fairly similar. There is
no causality for most sectors. That is slightly counterintuitive,
for the intimate connection between EPU and carbon emis-
sions, as we have discussed above. At this point, we need to
think twice about the models that have been used here. These
two models, linear and nonlinear Granger causality tests, both
merely rely on conditional-mean-based estimations and thus
fail to capture the entire conditional distribution of the growth
and uncertainty of carbon emissions. Therefore, in order to
obtain the full picture, we next turn to the causality-in-
quantiles tests, which consider all quantiles of the distribution.
This test can provide more detailed information on the rela-
tionship between the US EPU and its carbon emissions
behavior.

Granger causality test in quantiles

In this section, we analyze the importance of US EPU in
predicting the growth and uncertainty of carbon emissions
by employing a causality test in quantiles proposed by
Troster (2018). The model considers all quantiles of the dis-
tribution of carbon emissions growth and uncertainty, which
can provide richer information on the relationship between
EPU and carbon emissions.

Table 6 reports the p values for the test of the quantile
causality which runs from the US EPU to the carbon emis-
sions growth for the five US sectors. Based on the total carbon
emissions data, the test results of quantile causality running
from US EPU to carbon emission growth are insignificant at
the median (quantiles at 0.5), but there is an outstanding pat-
tern of Granger-causality from the US EPU to the total carbon
emissions growth in the tails of the distribution of the emis-
sions growth. Furthermore, the data show that the effects are
more likely to be concentrated on the lower quantiles of the
carbon emission growth distribution. Meanwhile, at high
quantiles, we only find evidence of causality in the 0.7 and
0.9 quantiles. This finding reveals that the effects of EPU on
carbon emissions growth are more likely to be concentrated
on the lower quantiles of the carbon emission growth distri-
bution, which corresponds to an extreme period of big drops.
This finding is consistent with our intuition in “Theoretical
framework and hypothesis.”

As for the industrial sector, the p values of the quantile-
causality test provide supporting evidence of causality from

Table 4 BDS test

m 2 3 4 5 6

Panel 1: BDS test for each variable

EPU 0.107 0.177 0.217 0.236 0.243

Total 0.032 0.054 0.060 0.057 0.051

Industrial 0.025 0.048 0.061 0.064 0.063

Residential 0.034 0.055 0.060 0.057 0.049

Transportation 0.051 0.079 0.095 0.096 0.092

Electric 0.025 0.039 0.043 0.041 0.037

Commercial 0.026 0.041 0.044 0.042 0.037

Total_ volatility 0.062 0.105 0.118 0.113 0.101

Industrial_ volatility 0.116 0.190 0.230 0.246 0.246

Residential_ volatility 0.058 0.093 0.104 0.095 0.083

Transportation_ volatility 0.073 0.119 0.140 0.144 0.138

Electric_ volatility 0.040 0.061 0.069 0.062 0.053

Commercial_ volatility 0.034 0.059 0.066 0.065 0.055

Panel 2: BDS test for the residuals of carbon emission equation of the
VAR model with EPU

Total-VAR(8) 0.013 0.022 0.023 0.020 0.018

Industrial-VAR(5) 0.009 0.022 0.031 0.034 0.034

Residential-VAR(8) 0.015 0.025 0.030 0.026 0.023

Transportation-VAR(5) 0.018 0.029 0.038 0.038 0.035

Electric-VAR(5) 0.019 0.028 0.032 0.030 0.028

Commercial-VAR(8) 0.011 0.017 0.017 0.015 0.015

Total_ volatility-VAR(5) 0.048 0.087 0.103 0.100 0.091

Industrial_ volatility-VAR(4) 0.037 0.072 0.089 0.095 0.096

Residential_ volatility-VAR(5) 0.035 0.062 0.074 0.071 0.059

Transportation_ volatility-VAR(5) 0.034 0.062 0.072 0.076 0.071

Electric_ volatility-VAR(4) 0.035 0.054 0.055 0.054 0.049

Commercial_ volatility-VAR(4) 0.028 0.052 0.059 0.055 0.049
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EPU to carbon emissions growth in all three types of quantiles
(lower, median and higher quantiles). More specifically, we
find that the causality is significant both in the lower and
median quantiles, such as 0.1, 0.2, 0.3, 0.4, and 0.5 quantiles
at the 5% significance level. However, for higher quantiles,
we just find evidence of causality in the 0.6 and 0.9 quantiles.

This finding suggests that despite EPU affecting the carbon
emissions growth for the industrial sector both in lower and
higher quantiles to some extent, the effects are more likely to
be significant when carbon emissions growth is at a lower
level than at a higher level. In terms of the residential sector
and the electric power sector, we find similar conclusions with

Table 5 Nonlinear Granger causality tests of Diks and Panchenko (2006)

lX = lY

Null hypothesis 1 2 3 4 5 6

Panel 1: carbon emission growth

EPU↦ Total 0.469 (0.319) 0.901 (0.183) 0.617 (0.268) 0.897 (0.185) 0.935 (0.174) 0.494 (0.311)

EPU↦ Industrial 1.478 (0.069) 1.111 (0.133) 1.196 (0.116) 1.856** (0.032) 1.962** (0.025) 2.076** (0.019)

EPU↦ Residential − 0.385 (0.649) 0.923 (0.118) 0.016 (0.493) 0.730 (0.232) 0.370 (0.355) − 0.055 (0.522)

EPU↦ Transportation − 0.756 (0.775) 0.117 (0.453) 0.114 (0454) − 0.295 (0.616) 0.718 (0.236) 0.598 (0.275)

EPU↦ Electric − 0.398 (0.654) − 0.087 (0.535) − 0.467 (0.679) 0.627 (0.265) 0.646 (0.2580 − 0.155 (0.561)

EPU↦Commercial − 0.085 (0.534) 0.103 (0.458) − 0.042 (0.516) 0.692 (0.244) 0.637 (0.261) 0.494 (0.310)

Panel 2: carbon emission uncertainty

EPU↦ Total 0.098 (0.461) 0.512 (0.303) 0.814 (0.207) 1.134 (0.128) 1.028 (0.151) 0.929 (0.176)

EPU↦ Industrial 0.231 (0.408) 1.570 (0.058) 1.421 (0.077) 1.286 (0.099) 1.209 (0.113) 1.434 (0.075)

EPU↦ Residential 0.329 (0.370) 0.455 (0.324) 0.590 (0.277) 0.461 (0.322) 0.694 (0.243) 0.864 (0.193)

EPU↦ Transportation 1.074 (0.141) 0.702 (0.241) 1.404 (0.080) 1.432 (0.075) 1.526 (0.063) 1.601 (0.054)

EPU↦ Electric − 0.423 (0.663) − 1.177 (0.881) − 0.986 (0.838) − 0.605 (0.727) − 0.626 (0.734) − 0.696 (0.756)

EPU↦Commercial − 0.698 (0.757) − 1.015 (0.844) − 0.850 (0.802) − 0.633 (0.736) − 0.852 (0.802) − 0.787 (0.784)

The p value in the parentheses; *, **, and ***indicate rejection of the null hypothesis at the 10%, 5%, and 1% level, respectively; lX = lYdenotes the lag
length. EPU↦ Total denotes the null hypothesis of no nonlinear Granger causality from EPU to total carbon emission

Table 6 Quantile causality test results (subsampling p values) from EPU to carbon emissions growth

Lag [0.1,0.9] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Total 1 0.003 0.003 0.003 0.062 0.276 0.193 0.122 0.003 0.095 0.003

2 0.024 0.003 0.006 0.077 0.039 0.196 0.142 0.003 0.125 0.196

3 0.027 0.018 0.030 0.059 0.136 0.122 0.098 0.003 0.142 0.513

Industrial 1 0.033 0.353 0.412 0.053 0.033 0.430 0.344 0.350 0.068 0.003

2 0.003 0.024 0.181 0.009 0.098 0.003 0.015 0.148 0.226 0.024

3 0.003 0.027 0.190 0.021 0.033 0.003 0.113 0.110 0.166 0.039

Residential 1 0.003 0.006 0.003 0.003 0.021 0.003 0.027 0.036 0.122 0.249

2 0.003 0.003 0.003 0.003 0.003 0.006 0.003 0.068 0.098 0.365

3 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.024 0.128 0.214

Transportation 1 0.012 0.104 0.003 0.003 0.341 0.763 0.056 0.071 0.160 0.261

2 0.056 0.021 0.148 0.107 0.475 0.053 0.107 0.042 0.178 0.804

3 0.036 0.018 0.089 0.092 0.409 0.125 0.125 0.045 0.154 0.703

Electric 1 0.003 0.006 0.003 0.030 0.065 0.107 0.039 0.012 0.003 0.258

2 0.003 0.036 0.003 0.306 0.074 0.003 0.003 0.003 0.163 0.104

3 0.006 0.033 0.003 0.190 0.059 0.030 0.003 0.003 0.098 0.107

Commercial 1 0.053 0.065 0.047 0.101 0.193 0.561 0.214 0.063 0.095 0.145

2 0.142 0.169 0.181 0.318 0.211 0.389 0.122 0.184 0.412 0.184

3 0.151 0.380 0.267 0.252 0.098 0.469 0.104 0.472 0.148 0.261

Italic p values denote rejection of the null hypothesis at the 5% significance level
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that of the industrial sector. That is, regardless of whether the
carbon emissions growth is in lower, median or higher
quantile, we can always find that the US EPU impacts the
carbon emissions growth. However, this finding proves that
for higher quantiles such as in 0.8 and 0.9 quantiles, the null
hypothesis of non-causality from US EPU to the carbon emis-
sion growth cannot be rejected at the 5% significance level.
This finding fits our observation of the data. As shown in Fig.
1, lower carbon emissions growth is generally accompanied
by an economic recession and high uncertain economic poli-
cy. Therefore, under the lower carbon emissions growth (low-
er quantiles), carbon emissions are more vulnerable to the
impact of economic policy uncertainty. Unfortunately, we
have not found any study on the relationship between EPU
and carbon emission. Some researchers provide evidence that
higher policy uncertainty leads to higher macroeconomic vol-
atility, which has been theoretically proven by Pastor and
Veronesi (2012, 2013). In this way, the reduction of energy
consumption demand due to the decrease in corporate produc-
tion and resident living activities will result in a reduction of
carbon emissions. In addition, the increase in the unemploy-
ment rate caused by EPU will also affect residents’ carbon
emissions. For example, when affected by unemployment,
some residents will choose to reduce travel by car, thus lead-
ing to the carbon emissions reduction. In addition, the uncer-
tainty of economic policy gives entrepreneurs pause.
Entrepreneurs doubt that the carbon reduction policies will
change at any time, which cause them not to implement the
current policies. Meanwhile, with the increase of EPU, the

attention on environmental governance from the government
will be reduced, and the implementation of some environmen-
tal protection policies will be affected negatively.

Regarding causal i ty f rom the US EPU to the
transportation-related carbon emissions growth, our results
reveal that the EPU Granger causes the growth of carbon
emission in the lower quantiles such as the 0.1, 0.2, and 0.3
quantiles for the transportation sector. However, for the medi-
ate and upper quantiles, we find limited evidence of existence
of causality, with the 0.7 quantiles being an exception. For the
commercial sector, the null hypothesis of no causality from
EPU to carbon emission growth cannot be rejected over the
entire conditional distribution. This finding indicates that the
US EPU has no impact on the carbon emission growth for the
commercial sector. For the different results across five sectors,
it may be because different sectors have varied energy depen-
dence and policy response.

Next, we examine whether the US EPU impacts the carbon
emissions uncertainty. Table 7 displays the results of the cau-
sality in a quantile test. As seen from Table 7, it is proven that
the US EPU affects the carbon emissions uncertainty over the
entire conditional distribution, i.e., at various phases of the car-
bon emission volatility (uncertainty). This finding is in line with
previous literature suggesting that shocks in policy uncertainty
foreshadow decreased investment, output, and employment in
the USA. In this way, EPU affects the production and consumer
consumption decision-making that is associated with carbon
emission, which in turn naturally leads to uncertainty in the
carbon emissions from production and consumption activities.

Table 7 Quantile causality test results (subsampling p values) from EPU to carbon emissions uncertainty

Lag [0.1,0.9] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Total 1 0.003 0.003 0.003 0.003 0.188 0.003 0.003 0.003 0.003 0.003

2 0.003 0.003 0.003 0.003 0.060 0.003 0.003 0.003 0.003 0.003

3 0.003 0.003 0.003 0.003 0.042 0.003 0.003 0.003 0.003 0.003

Industrial 1 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

2 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

3 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

Residential 1 0.003 0.003 0.003 0.003 0.063 0.003 0.003 0.003 0.003 0.131

2 0.003 0.003 0.003 0.003 0.018 0.003 0.003 0.003 0.003 0.119

3 0.003 0.003 0.003 0.003 0.196 0.003 0.003 0.003 0.003 0.116

Transportation 1 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

2 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

3 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

Electric 1 0.003 0.003 0.003 0.003 0.024 0.003 0.003 0.003 0.003 0.003

2 0.003 0.003 0.003 0.003 0.042 0.003 0.003 0.003 0.003 0.003

3 0.003 0.003 0.003 0.003 0.009 0.003 0.003 0.003 0.003 0.003

Commercial 1 0.003 0.003 0.003 0.003 0.226 0.003 0.003 0.003 0.003 0.003

2 0.003 0.003 0.003 0.003 0.158 0.003 0.003 0.003 0.003 0.003

3 0.003 0.003 0.003 0.003 0.188 0.003 0.003 0.003 0.003 0.003

Italic p values denote rejection of the null hypothesis at the 5% significance level
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Conclusions

In recent years, although the growth of global carbon emis-
sions is declining, it still faces challenges and uncertainties in
the future with respect to environment management. In
June 2017, the USA, which is the second-largest carbon emis-
sions country in the world, announced that it had withdrawn
from the Paris Agreement. This action increased the uncertain-
ty of future US carbon emissions. Therefore, in this context,
understanding the dynamics and behavior of US carbon emis-
sions is a matter of utmost significance. The motivation of this
paper is derived from the research interest to determine if EPU
has a relationship with carbon emissions growth and uncer-
tainty. To serve this purpose, based on US sectoral data, a
standard linear Granger causality test is implemented, but no
evidence is found for most sectors regarding causality running
from US EPU to carbon emissions growth and uncertainty.
Following the nonlinearity BDS tests, we find that the rela-
tionship between EPU and carbon emissions growth and un-
certainty has nonlinear characteristics. In this case, we further
investigate whether there is a nonlinear Granger causality run-
ning from the US EPU to carbon emissions growth and un-
certainty, and the results indicate that no evidence has been
found for most sectors. Since the linear and nonlinear Granger
causality test merely relies on conditional-mean-based estima-
tions, the results may not be reliable. To overcome this prob-
lem, we employ a novel parametric test of Granger causality in
quantiles as proposed by Troster (2018). This approach takes
the different locations and scales of the conditional distribu-
tion into account, which can provide richer information than
the traditional mean causality on causality between the US
EPU and carbon emission.

Themain findings of the current study can be summarized as
follows. First, our main results suggest that EPU is relevant for
understanding the behavior of total and sectoral carbon emis-
sions. In particular, we provide evidence that for total carbon
emission, there is no causality running from the US EPU to
carbon emission growth in the median quantiles (quantiles at
0.5), but there is an outstanding pattern of Granger-causality
from US EPU to total carbon emissions growth in the tails of
the emissions growth distribution. More specifically, it shows
that the effects of EPU on carbon emissions growth are more
likely to be concentrated on the lower quantiles distribution of
the carbon emission growth. We find that EPU tends to affect
carbon emissions growth when the latter is in an extreme state
of great decreases or lower growth. Furthermore, for various
sectors such as the industrial sector, residential sector, electric
power sector, and transportation sector, we find results that are
similar to the total emissions data. However, the US EPU has
no impact on the carbon emission growth for the commercial
sector. For the different results across five sectors, it may be
because different sectors have varied energy dependence and
responses to policy. Finally, it is proven that the US EPU affects

the carbon emissions uncertainty over the entire conditional
distribution, i.e., at various phases of the carbon emission vol-
atility for all sectors. The reason behind our finding is perhaps
that EPU impacts macroeconomic operations and household
consumption decisions, which in turn affects the carbon emis-
sions of the whole society. In addition, the uncertainty of the
policy will lead to doubts in entrepreneurs, who suspect that the
carbon emissions reductions policy will change at any time.
Therefore, entrepreneurs will not do their best to implement
the current emissions reduction targets.

These results are important for policymakers and traders in
the carbon market. To be more explicit, it is important for
traders in the carbon market to understand that attention should
be given to EPU during lower emission periods, considering
that it affects the carbon emission behavior inmost sectors. This
relationship, in turn, will affect the trader’s demand for carbon
emissions trading rights, which will lead to fluctuations in the
carbon market. Therefore, accounting for the variations in the
political environment could aid with the more accurate timing
of carbon trades. Furthermore, policymakers should become
more aware that their decisions and actions have tangible ram-
ifications for carbon emissions behavior. Maintaining stable
economic policies, especially climate policies, could promote
its realization of carbon reductions targets.

Lastly, fellow researchers ought to realize that our work is
one of the first attempts to link economic policy uncertainty to
the carbon emissions. More study is required in this field in
order to explore all aspects of this nexus. Future research is
required to address the following questions. First, the impacts
of different economic policies on the economic situation vary,
and enterprises and residents may react differently to different
policies. Therefore, future work can study the heterogeneous
effects of different policies such as money policies, fiscal pol-
icies and tax policies on carbon emissions policies. Second,
we can use causality tests in the frequency domain in order to
investigate the impacts of concentrated business condition in
the short or long term. Understanding the effect of the time
horizon on the impact of EPU on carbon emissions is useful
for environmental management.
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