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Abstract
To investigate the influence of Moringa seed extract (MSE) on the cerebral Nrf2/NQO1 signaling in TiO2-NPs–induced brain
damage, 80 male albino rats were divided into four groups (n = 20); group I was used as a control, group II received TiO2-NPs
(500mg/kg b.w/day orally) for 14 days, group III receivedMSE (100mg/kg b.w/day orally) for 30 days, and group IVreceivedMSE
an hour before TiO2-NPs administration with the same doses as before. Administration of TiO2-NPs was started on the 17th day for
both groups (II) and (IV). Administration of MSE significantly increased the cerebral mitochondrial viability and Nrf2 level with a
simultaneous increase of NQO1 mRNA expression. This designates a powerful antioxidant effect of MSE which is indicated by a
significant reduction of INOS expression, MDA, TOS, OSI levels, and DNA fragmentation % with a significant increase of GSH
concentration, SOD activities, and TAC. MSE possesses an anti-inflammatory effect by a significant reduction of IL-1β and TNF-α
levels, and anti-apoptotic effect manifested by a significant reduction of caspase-3 and Fas levels. In harmonization, dopamine,
serotonin concentrations, and acetylcholinesterase activities return back to normal as compared to control group. These results were
confirmed by the histopathological features which were alleviated with MSE administration. In conclusion, Nrf2 plays a pivotal role
in the mechanism of TiO2-NPs cerebral toxicity and MSE as a Nrf2 activator can provide a powerful cerebroprotective effect,
whereasMSE increased theNrf2 expression and consequently restore the antioxidant activity of brain cells by increasingNQO1 gene
expression and cerebral mitochondrial viability as well as inhibition of pro-inflammatory and apoptotic mediators.
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Introduction

Titanium dioxide nanoparticles (TiO2-NPs) possess different
physicochemical characters matched to their fine particle an-
alogs, which might modify their bioactivity. Earlier studies
have revealed that TiO2-NPs are more toxic than fine particles
(Fabian et al. 2008). TiO2-NPs may transport from the gastro-
intestinal tract and lung to the systemic organs. Oral exposure
generally occurs via consumption of food products containing
TiO2-NPs additives (Shi et al. 2013). TiO2-NPs is a bright
white pigment with very high refractive index. TiO2-NPs are
commonly used in industrial and commercial products world-
wide (Shukla et al. 2011). TiO2-NPs can be used as a
photocatalyst (Gurr et al. 2005), in paints, inks, papers, plas-
tics, food products, toothpaste, pharmaceuticals, cosmetics
(Wolf et al. 2003), and sunscreens (Sadrieh et al. 2010).
Before accumulating in the brain tissues, TiO2-NPs can be
rapidly absorbed via many routes as the olfactory nerve
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translocation (Wang et al. 2008), the placental barrier
(Tsyganova et al. 2014), and blood-brain barrier (Song et al.
2015).

Neurons and glial cells are the most commonly affected
cells by TiO2-NPs. TiO2-NPs encourage reactive oxygen spe-
cies (ROS) production, apoptosis, and inflammation and
cause brain dysfunctions, neurodegenerative disorders, and
cell death (Long et al. 2007). Inflammation and mitochondrial
dysfunction are linked to oxidative stress cascades and are
considered as important mechanisms in neurodegeneration.
Glial cells with injured mitochondria can generate excess
ROS and pro-inflammatory molecules that could be toxic to
cells and other neurons in the central nervous system (CNS)
(Sun et al. 2007). ROS production can initiate a series of toxic
oxidative reactions (Han et al. 2006) accompanied by down-
regulation of the nuclear erythroid-related factor 2 (Nrf2)
genes (Clements et al. 2006; McCoy and Cookson 2011).
Nrf2 is considered the main regulator of antioxidant response.
Nrf2 activation decreases oxidative stress in the brain and
helps manage neurodegenerative diseases through upregula-
tion of antioxidants, inhibition of inflammation, and keeping
of mitochondrial function and protein homeostasis (Dinkova-
Kostova et al. 2018).

Nrf2 activates the expression of a group of cytoprotective
phase II antioxidant enzymes, such as heme-oxygenase-1
(HO-1), superoxide dismutase (SOD), glutathione peroxidase
(GPX), and glutathione reductase (GR). One of the most im-
portant antioxidant pathways regulated by Nrf2 is the produc-
tion and regenerating glutathione (GSH) and NAD (P) H:
quinone oxidoreductase 1 (NQO1) (Gorrini et al. 2013).
NQO1 is a cytosolic homodimeric flavoprotein that catalyzes
two-electron depletion and detoxification of highly reactive
quinones and its derivatives, protecting cells from the oxida-
tive stress, redox cycling, and neoplastic injury (Dinkova-
Kostova and Talalay 2000). Malondialdehyde (MDA) is the
major metabolite of arachidonic acid and acts as a reliable
biomarker for oxidative stress (IARC 1985). MDA is the best
indicator of lipid peroxidation and the consequent oxidative
stress.

Medicinal plants are incorporated for centuries into tradi-
tional medicine (Sermakkani and Thangapandian 2012). The
plants are considered a rich source of secondary metabolites
with remarkable biological activities (El-Shemy et al. 2007)
and other phytochemicals which can be used in drug
synthesis.

Moringa oleifera, belonging to the family of Moringaceae,
is rich in nutrients owing to the presence of several important
bioactive ingredients in the seeds, leaves, and pods of the
plant. In fact, Moringa provides vitamin A, vitamin C, calci-
um, potassium, iron, and protein (Rockwood et al. 2013).
Moringa oleifera has been reported to have neuroprotective
(Panda et al. 2013), the powerful antioxidant, anti-inflamma-
tory, and antibacterial properties of its phytochemicals, such

as flavonoids and polyphenols (Mbikay 2012). Polyphenols,
flavonoids, and terpenoids can motivate key transcription fac-
tors like Nrf2 which regulates the antioxidant response and
phase II detoxifying enzymes and thereby eliminate toxic
ROS (Li et al. 2012). Eugenol that is present in abundance
in Moringa seeds is a well-known activator of Nrf2 (Rajappa
et al. 2017). Indeed, targeting of the Nrf2 signaling may pro-
vide a therapeutic strategy for mediating antioxidant and anti-
inflammatory responses which are the underlying mecha-
nisms for the treatment of neurodegenerative disorders.
Previous studies have focused on the use of leaves’ extract
of moringa and studied its protective mechanism in other tis-
sues rather than the brain. Therefore, the seed extract of
moringa (MSE) is used in the current study to evaluate its role
in Nrf2/ NQO1 signaling pathway in TiO2-NPs–induced ox-
idative brain damage.

Materials and methods

Chemicals

TiO2 particles and acetylcholinesterase kit were obtained
from Sigma Aldrich/Egypt. Reduced glutathione (GSH),
superoxide dismutase (SOD), malondialdehyde (MDA),
and total antioxidant capacity (TAC) commercial kits
were purchased from Biodiagnostic Company for research
kits, Egypt. Rat Dopamine ELISA kit (catalog number
MBS725908), and Rat 5 Hydroxytryptamine (5-HT)
ELISA kit (catalog number MBS725497) were supplied
by R&D system, USA. Rat Interleukin-1β (IL-1β) (cata-
log number K 0331212) ELISA kit was purchased from
Komabiotech Company, Korea. Rat TNF-α ELISA kit
(catalog number RTAOO-SRTAOO-PRTAOO) was pur-
chased from Quantikine R&D Systems, Inc. USA. Rat
Caspase-3 ELISA kit (catalog number PTE-CASP3-
D175) and Rat Fas ELISA kit (catalog number ELR-
FAS) were purchased from Ray Biotech Inc., Georgia,
USA. The other chemicals used in the experiment are of
high grade and have been obtained from Sigma, USA.

TiO2-NPs preparation

TiO2-NPs were prepared by high-energy ball mill (HEBM)
technique in Nanoparticles Lab, Faculty of Postgraduate
Studies for Advanced Sciences, Beni-Suef University. This
is an effective and productive process of grinding solid tech-
nique, which is used to obtain nanopowders in a high-energy
planetary with an average particle size of less than 100 nm.
Obtaining TiO2-NPs nanoparticles was done according to the
method that was described by Gusev (2007) and Gusev and
Kurlov (2008).
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TiO2-NPs characterization by TEM electron
microscope

The characterization of TiO2-NPs was done at the National
Research Center, Dokki, Giza, Egypt, by using a TEM elec-
tron microscope (Model: JEM-2100, JEOL Ltd., Tokyo,
Japan). A droplet of TiO2-NPs suspension was dropped onto
copper grids and allowed to dry in the air before observation
under high-resolution TEM.

Preparation of Moringa seed extract

The seeds of Moringa oleifera were obtained from the
Agricultural Research Center, Egypt. The seeds were cleaned,
dried in shade, and finely powdered using an electric mixer.
The ethanol extract was made from the seed powder according
to the procedure designated by Harborne (1973) and Culei
(1964) as follows; 1 kg of dried powdered Moringa oleifera
seeds was extracted successively with 3 l of 70% ethanol and
kept at room temperature for 72 h. The extracts were filtered
usingWhatman No.1 filter paper. The combined extracts were
then evaporated at 40 °C on a water bath and the dried crude
extract was kept at 4 °C in a dark sterile container for analysis
and use.

Chemical composition of Moringa ethanol extract
by gas chromatography-mass spectrometry (GC-MS)
analysis

GC-MS is a combination of two different analytical
techniques, gas chromatography and mass spectrometry.
The chemical composition of MSE samples was per-
formed using Trace GC Ultra-ISQ mass spectrometer
(Thermo Scientific, Austin, TX, USA) with a direct cap-
illary column TG-5MS (30 m × 0.25 μm × 0.25 μm film
thickness). To be identified, the components retention
time and mass spectra were compared with those of
WILEY 09 and NIST 11 mass spectral database
(NIST, the National Insti tute of Standards and
Technology, UK, 1998) and confirmed by comparing
the mass spectra of the peaks and those from the study
of Okwu and Ighodaro (2010).

Preliminary quantitative phytochemical analysis

Preliminary quantitative analyses of phytochemical con-
stituents of Moringa oleifera were done using previous-
ly reported protocols. Total phenolic content was esti-
mated according to the Folin-Ciocalteau phenol reagent
method (Katsube et al. 2004). The total flavonoid con-
tent was measured based on the method of Lin and
Tang (2006). The antioxidant activity of the extract
was assessed by the method described by Prieto et al.

(1999). The data existing are average values of 5 mea-
surements for each sample and were expressed as the
number of milligram of gallic acid equivalents (GAE)/
gram of dried plant extract.

In vitro hydrogen peroxide (H2O2) scavenging activity
of MSE

The ability ofMoringa oleifera seed extract to scavenge H2O2

was determined according to the method of Nabavi et al.
(2008). The percentage of H2O2 scavenged was calculated
using the following formula:

H2O2 scavenge %ð Þ

¼ Optical density of control−optical density of sample

Optical density of control

� 100

Toxicity test of MSE

Acute toxicity was tested in 40 male albino rats (180–250 g).
Rats were randomly divided into 4 groups (n = 10) as follows;
Control received a saline solution. Group 2 received MSE
100 mg/kg, orally. Group 3 received MSE 200 mg/kg, orally.
Group 4 received MSE 500 mg/kg, orally. The signs of toxic-
ity were carefully observed during the first 30 min and hourly
for 3 h, then during the first 24 h, and then daily for 14 days for
delayed toxicity or mortality.

Experimental animals

The present study was carried out on 80 adult male albino rats
ranging between 180 and 250 g body weight. They were ob-
tained from the Helwan Farm of Laboratory Animals, Cairo,
Egypt. Rats were kept under observation for 1 week before the
onset of the experiment to be acclimatized. Afterward, they
were housed in groups in metal cages (each cage contained 5
rats), at room temperature (25 ± 2 °C), humidity (70%) under
12 h light-dark cycle. Rats had free access to diet and water.
Body weights were recorded weekly. All experimental mea-
sures were performed according to the recommendations for
the care and use of laboratory animals and in accordance with
the local Animal Care and Use Committee at Beni-Suef
University with an approval number (018-8).

Experimental design

The rats were randomly distributed into four equal groups (20
rats each) and treated as follows:

Group I (control)
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The rats were given distilled water for 30 days orally by
stomach tube.

Group II (TiO2-NPs)

Rats were given TiO2-NPs for 14 days (17th–30th day) at a
dose of 500 mg/kg b.w (Rizk et al. 2017). The particles were
freshly suspended in distilled water and dispersed by ultrason-
ic vibration for 15 min then administered orally by stomach
tube. The dose selection was based upon the LD50 of TiO2-
NPs which exceeded 5000 mg/kg b.w in rats and mice after
oral administration (Warheit et al. 2007). In addition, the oral
route administration was selected as it is the main route for
entry of nanoparticles into the body.

Group III (MSE)

Rats were given MSE (100 mg/kg b.w) for 30 days orally
by stomach tube (Chivapat et al. 2012).

Group IV (MSE+ TiO2-NPs)

Rats were given MSE (100 mg/kg b.w) for 30 days,
interrupted by TiO2-NPs 500 mg/kg b.w at 17th–30th day
orally by stomach tube.

Tissue homogenates for measurement
of oxidative/antioxidant parameters and biochemical
parameters

To obtain a uniform suspension, 0.5 g of fresh brain tissue
sample was homogenized in 5 ml phosphate buffer saline
(pH 7) by using a homogenizer (Ortoalresa, Spain). The ho-
mogenate was kept at − 80 °C for further biochemical
investigations.

Biochemical assays

Determination of dopamine and serotonin (5-HT) by ELISA
kits

Dopamine and serotonin concentrations were measured in rat
brain tissues by competitive enzyme-linked immunosorbent
assay (ELISA) using rat dopamine and Rat 5 hydroxytrypta-
mine (5-HT) ELISA kits according to the manufacturer’s in-
struction. ELISA is based on the principle of competitive
binding according to the method of Tietz (1995).

Determination of acetyl cholinesterase activity

Acetyl cholinesterase activity in brain tissue homogenate was
estimated according to the method described by Kovarik et al.
(2003).

Determination of brain oxidative/antioxidant parameters

The brain homogenate supernatant was used for the estimation
of oxidative/antioxidant levels according to standard proce-
dures: GSH (Beutler et al. 1963), superoxide dismutase
(SOD) (Nishikimi et al. 1972), malondialdehyde (MDA)
(Buege and Aust 1978), total antioxidant capacity (TAC)
(Koracevic et al. 2001), and total oxidative status (TOS)
(Erel 2005). The oxidative stress index (OSI) was calculated
as the percentage ratio of TOS level to TAC level according to
the following formula (Meng et al. 2013):

OSI arbitrary unitð Þ
¼ TOS micromolar H2O2 equivalent=literð Þ

=TAC micromolar Trolox equivalent=literð Þ:

Assessment of inflammatory markers (IL-1β
and TNF-α) and apoptotic markers (Caspase-3
and Fas) in brain tissues

Measurement of IL-1β, TNF-α, Caspase-3, and Fas concen-
trations was employed in brain tissues by a quantitative sand-
wich enzyme immunoassay technique using ELISA kits ac-
cording to the manufacturer’s instruction. ELISA is based on
the principle of competitive binding according to the method
of Tietz (1995).

Cerebral mitochondria-enriched fraction

A half gram of cerebrum tissue was homogenized on ice in 10
volumes of isolation medium (10 mMHEPES buffer with pH:
7.0 containing 68 mM sucrose, 220 mM mannitol, 0.1% se-
rum albumin, and 10 mM KCl). After centrifugation of the
homogenate at 1000g for 10 min, the supernatant was then
centrifuged at 11500g for 10 min to separate a myelin-rich
supernatant from a pellet consisting of synaptosomes and free
mitochondria. The pellet was resuspended in the isolation me-
dium without albumin. The mitochondria-enriched fractions
were preserved on ice for 15 min until the experiments were
performed (Franco et al. 2007).

Assessment of cerebral mitochondrial function

Mitochondrial function was evaluated using MTT reduction
assay (Mosmann 1983). The reaction proceeds if the mito-
chondrial preparation is functionally intact. This assay de-
pends on the activity of the mitochondrial dehydrogenases to
metabolize 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazo-
lium bromide (MTT) to a formazanwhich was quantified with
a spectrophotometer at 550 nm. Data were expressed as a
percentage of control.
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Detection of Nrf2 by western blot technique

Expression of Nrf2 in the brain was determined by
western blot. Briefly, brain tissue (50 mg) was homog-
enized using a Polytron homogenizer in 1.5 ml cold
lysis buffer (50 mmol/L Tris-HCl, pH 8.0, 150 mmol/L
NaCl, 1% NP 40, 0.5% sodium deoxycholate, 0.1%
SDS, and 0.5 mmol/L phenylmethyl sulfonyl fluoride).
The homogenate was centrifuged for 20 min at 4 °C
and the supernatant was collected. Samples were stored
at − 80 °C until use. Western immunoblotting is a tech-
nique used for the detection of proteins. The method is
based on the separation of specific antibody-protein
complex from one another according to their size by
gel electrophoresis. The gel is placed next to a mem-
brane and the proteins are moved by electrical current
to the membrane where they adhere. The membrane is
then stained with an antibody that could be detected
(Harlow and Lane 1999). Proteins were visualized by
enhanced chemiluminescence (ECL plus; Amersham,
Arlington Heights, IL, USA) and measured using densi-
tometry and Molecular Analyst Software (Bio-Rad,
Richmond, CA, USA). Protein level was expressed rel-
ative to beta-actin.

Determination of NQO1 and INOS gene expression
by real-time polymerase chain reaction (RT-PCR)

Based on the manufacturer’s instruction, total RNA was iso-
lated from brain tissue homogenates using RNeasy
Purification Reagent (Qiagen, Valencia, CA). The RNA was
qualified by a UV spectrophotometer. RNAwas reverse tran-
scribed into cDNA using high-capacity cDNA reverse tran-
scription kit (Fermentas, USA). Real-time quantitative PCR
amplification and analysis were achieved using 2x SYBR
Green PCR Master Mix (Applied Biosystem with software
version 3.1 (StepOne™, USA). The primers in a Table 1 were
designed using the software PRIMER3 and sequence data
from the NCBI database. The relative expression of studied
genes was calculated in comparison to reference β-actin gene
using the comparative threshold cycle method (Livak and
Schmittgen 2001).

Assessment of cerebral DNA fragmentation %

The brain DNA fragmentation was measured as described by
Burton (1956) depending on colorimetrical quantitation upon
staining with diphenylamine (DPA). The DNA fragmentation
% was calculated according to the following equation:

DNA fragmentation%

¼ Optical density of supernatant

Optical density of sedimentþ optical density of supernatant
� 100

Preparation and assessment of histological sections

Left hemispheres of brain samples were fixed in neutral
buffered formalin solution for 48 h. Then, they were
processed according to Bancroft and Gamble (2002).
Five microns tissue thickness of prefrontal cerebral cor-
tex was mounted on clean glass slides and stained by
hematoxylin and eosin and examined under a light mi-
croscope in a blind manner to avoid examiner bias
(Olympus Bx-40, Olympus Optical Co. Ltd., Japan).
The following indices were assessed: congestion,
pericellular edema, perivascular edema, and pyknosis.
Quantitative morphometric estimation was prepared
using an image analyzer (Leica Imaging System Ltd.,
Cambridge, England). Using the measuring field menu,
the optical density, area, and area percentage were esti-
mated using the image analyzer. The video images were
digitalized using “Lecia Qwin 500C” which is a Leica’s
Windows-based image analysis tool kit fitted to an IBM
compatible personal computer with a color monitor.
Scoring of tissue sample was represented as the mean
score ± SE of ten different fields after statistical analy-
sis by one-way ANOVA followed by the Tukey post
hoc test for multiple comparisons.

Statistical analysis

All data were expressed in tables and figures as the mean ±
standard error (SE). Statistical analysis was performed by one-
way analysis of variance (ANOVA) followed by the Tukey

Table 1 Primers used for real-time quantitative PCR

Primer sequence Code

iNOS Forward: 5-GACCAGAAACTGTCTCACCTG-3
Reverse:5- CGAACATCGAACGTCTCACA-3

Gene ID: 18126
Accession number of chromosome: NC_000077.6

NQO1 Forward: 5′-AGGCTGGTTTGAGCGAGT-3′
Reverse: 5′-ATTGAATTCGGGCGTCTGCTG-3′

Gene ID: 24314
Chromosome: NC_005118.4

β-actin Forward: 5-ATGAGCCCCAGCCTTCTCCAT-3
Reverse: 5-CCAGCCGAGCCACATCGCTC-3

Gene ID: 11461
Accession Chromosome: NC_000071.6

Environ Sci Pollut Res (2020) 27:19169–19184 19173



post hoc analysis using SPSS software, version 24 (IBM,
Armonk. NY, USA). Values of p ≤ 0.05 were considered
significant.

Results

TEM characterization of TiO2-NPs

The measurement indicated that the average size of
nanoparticles was 90 nm (range 40–140 nm). The
TEM revealed that the TiO2-NPs droplets were almost
spherical in shape with a homogeneous nanometric size
distribution (Fig. 1(a, b)).

Chemical analysis of Moringa ethanol extract
by GC-MS

The ethanol extract of the seeds of Moringa oleifera
showed 11 major peaks from the chromatogram of the
extract (Fig. 2(a)). These peaks indicate the presence of
11 major compounds (1-11) in the extract as listed in
Table 2. The molecular formula, weight, and the peak
area percentage of constituents were shown in the table.
The seeds upon analysis were found to be rich in fatty
acids, esters, terpenes, and phenols. The major chemical
constituents in the extract included phenolic compounds
(eugenol and aceteugenol), anti-inflammatory terpenes,
and sesquiterpenes (copaene, humulene, cadinene,
ocimene), fatty acids (hexadecanoic acid, trans-13-
octadecenoic), and others (Table 2 and Fig. 2(a)).

Preliminary quantitative phytochemical analysis

Results of the preliminary quantitative analyses of phyto-
chemical constituents of MSE were as follows: total phenolic
content 22.45 ± 0.12 mg/100 g GAE, total flavonoid content
13.61 ± 0.08 mg/100 g GAE, and total antioxidant capacity
26.96 ± 0.08 mg/100 g GAE (Fig. 2(b)).

In vitro H2O2 scavenging activity of MSE

MSE showed a potent H2O2 scavenging activity as compared
with standard ascorbic acid. The maximum antioxidant activ-
ity by H2O2 assay was observed at 100 μg/ml. The percentage
of inhibition produced by MSE at a concentration of
100μg/ml was greater than the scavenging activity of ascorbic
acid at 5, 10, and 25 μg/ml (Fig. 2(c)).

Toxicity test of MSE

Acute oral administration of MSE up to 500 mg/kg revealed
no adverse effects in the experimental animals, including pos-
sible alterations such as food intake, unusual body growth,
reduced activity, diarrhea, bleeding, or death. Therefore, no
lethal dose was determined.

Effect of MSE on behavioral changes in rats

Signs of toxicity such as decreased physical activity, passive
behavior, loss of appetite, and tremors were observed in
TiO2-NPs group as compared with the control one during
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Table 2 Major compounds
identified in ethanol extract of
Moringa using GC-MS showing
retention time (RT), molecular
formula, molecular weight (MW),
and peak area %

Area % MW Molecular
formula

Name of the compound RT No

1.79 106 C8H10 Benzene, 1,2-dimethyl- 5.46 1

1.78 118 C6H14 Ethanol, 2-butoxy-á-butoxyethanol 6.47 2

1.34 120 C9H12 Benzene, 1-ethyl-3methyl 7.95 3

5.03 204 C15H24 Copaene 13.65 4

3.50 136 C10H16 Ocimene 14.80 5

55.15 164 C10H12O2 4-allyl-2-methoxyphenol (eugenol) 16.61 6

7.85 204 C15H24 Humulene 17.77 7

4.62 204 C15H24 Cadinene 19.74 8

5.06 206 C12H14O3 Phenol,2-methoxy-4-(2-propenyl) acetate
(aceteugenol)

22.30 9

6.87 256 C16H32O2 Hexadecanoic acid 30.09 10

4.40 296 C19H36O2 Trans-13-octadecenoic acid, methyl ester 32.11 11

Σ = 97.3*

Environ Sci Pollut Res (2020) 27:19169–19184 19175
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Fig. 2 (a) GC-MS chromatogram of ethanol extract ofMoringa oleifera.
The ethanol extract of the seeds of Moringa oleifera showed 11 major
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the period of the experiment. These behavioral changes
were not obvious in MSE+ TiO2-NPs–treated group.

Effects of MSE on serotonin and dopamine
concentrations and acetyl cholinesterase activity
in brain toxicity

The concentration of serotonin was significantly (p < 0.05)
increased in the TiO2-NPs group when compared to the con-
trol group. The serotonin concentration was significantly
(p < 0.05) decreased in MSE+ TiO2-NPs–treated group when
compared to the TiO2-NPs group (Fig. 3(a)). Dopamine con-
centration was significantly (p < 0.05) increased in the
TiO2-NPs group as compared to the control group. The
dopamine concentration was significantly (p < 0.05) de-
creased in MSE+ TiO2-NPs–treated group when com-
pared to the TiO2-NPs group (Fig. 3(b)). The activity
of acetyl cholinesterase was significantly (p < 0.05) in-
creased in the TiO2-NPs group when compared to the
control group. The acetyl cholinesterase activity was sig-
nificantly (p < 0.05) decreased in MSE+ TiO2-NPs–treat-
ed group when compared to the TiO2-NPs group (Fig.
3(c)). MSE has no adverse effect on the brain cells and
neurotransmitters as indicated by the non-significant
(p < 0.05) difference of serotonin, dopamine concentra-
tions, and acetyl cholinesterase activity in MSE group
and control group (Fig. 3).

Effect of MSE on oxidative stress and antioxidant
parameters in brain toxicity

The effect of MSE on the concentration of GSH, MDA, TAC,
TOS contents, the activity of SOD, and OSI is illustrated in
Fig. 4. The GSH content and activity of SOD were signifi-
cantly (all p < 0.05) decreased in the TiO2-NPs group com-
pared to the control group (Fig. 4(a, b)). Pretreatment with
MSE at the dose of 100 mg/kg for 30 consecutive days sig-
nificantly increased GSH content and SOD activity compared
to the TiO2-NPs group (p < 0.05). Administration of TiO2-
NPs significantly increased MDA and decreased TAC with a
simultaneous increase of TOS contents and OSI as compared
to the control group (all p < 0.05) (Fig. 4(c, d, e, and f)).
Pretreatment with MSE at the dose of 100 mg/kg for 30 con-
secutive days significantly alleviated these parameters as com-
pared to the TiO2-NPs group. In addition, administration of
MSE to normal rats did not change these oxidative/ antioxi-
dant indices compared to rats in the control group.

Effect of MSE on cerebral mitochondrial viability,
Nrf2, NQO1 mRNA expression, INOS mRNA
expression, and DNA fragmentation % in brain
toxicity

The effect of MSE on cerebral mitochondrial viability, Nrf2,
NQO1 mRNA expression, INOS mRNA expression, and
DNA fragmentation % in brain toxicity is illustrated in Fig. 5.
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The cerebral mitochondrial viability was significantly
(p < 0.05) decreased in the TiO2-NPs group compared to the
control group. Pretreatment with MSE at the dose of
100 mg/kg for 30 consecutive days significantly (p < 0.05)
increased the cerebral mitochondrial viability compared to
TiO2-NPs group (Fig. 5(a)). Administration of TiO2-NPs sig-
nificantly reduced Nrf2 concentration and NQO1 mRNA ex-
pressions with a simultaneous increase of INOS and DNA
fragmentation % compared to the control group (all
p < 0.05). Pretreatment with MSE at the dose of 100 mg/kg
for 30 consecutive days significantly increased Nrf2 concen-
tration and NQO1 mRNA expressions and decreased INOS
mRNA expressions and DNA fragmentation % compared to
TiO2-NPs group (all p < 0.05) (Fig. 5(b, c, d, and e)).

Effect of MSE on anti-inflammatory (IL-1β and TNF-α)
and apoptotic (Caspase-3 and Fas) markers in brain
toxicity

IL-1β and TNF-α were significantly (p < 0.05) increased in
the TiO2-NPs group compared to the control group.
Pretreatment with MSE at the dose of 100 mg/kg for 30 con-
secutive days significantly (p < 0.05) decreased the concentra-
tion of IL-1β and TNF-α compared to TiO2-NPs group
(Fig. 6(a, b)). Also, administration of TiO2-NPs significantly
increased the levels of Caspase-3 and Fas compared to the
control group (all p < 0.05). Pretreatment with MSE at the
dose of 100 mg/kg for 30 consecutive days significantly

reduced Caspase-3 and Fas levels compared to TiO2-NPs
group (all p < 0.05) (Fig. 6(c, d)).

Effect of MSE on cerebrum histopathology

The results showed normal histological structures with most
neurons are intact in a cerebrum section of the control group
(Fig. 7(a)) (H&E, bar = 200 μm). The brain of a rat treated with
TiO2-NPs exhibited the presence of distinct large hemorrhagic
area and perivascular and pericellular edema, severe congestion,
and moderate pyknosis (Fig. 7(b)) (H&E, bar = 200 μm). MSE-
treated rats showed a normal histological structure and most
neurons are intact (Fig. 7(c)) (H&E, bar = 200 μm). Cerebrum
sections of rats in MSE+ TiO2-NPs group showed normal his-
tological structure; most neurons are intact with mild congestion
and perivascular edema (Fig. 7(d)) (H&E, bar = 200 μm).

Discussion

The brain is a vital organ with great importance, as it is hard to
regenerate from injury. Accordingly, the neurotoxicity of
nanoparticles should receive great concerns. For this purpose,
we discussed the mechanisms of TiO2 NPs through which
they can harm the brain and how can alleviate their neurotoxic
hazard. Despite the many advantages of nanoparticles, and the
wide applications in the pharmaceutical sciences, drug deliv-
ery (Zahin et al. 2019), food industry, agriculture, and medi-
cine (Shi et al. 2013), they may cause dangerous impacts
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because of their special properties including small size and
high surface area. It has been shown that nanoparticles may
cause damage to the blood-brain barrier (BBB) leading to
increased permeability and entrance of nanoparticles to CNS
leading to neurotoxicity (Sharma and Sharma 2010).

The deposition of TiO2-NPs in the brain induces changes
in the release and metabolism of neurotransmitters. Definitely,
TiO2-NPs–induced brain damage was established by the sig-
nificant upregulation of neurotransmitters (dopamine and se-
rotonin) concentrations and acetyl cholinesterase activity (Fig.
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3(b, a, c)) which is an indicator reflecting the availability of
acetylcholine. These findings were in agreement with Ma
et al. (2010) who reported a significant increase in dopamine
in association with neural damage. On the contrary, Hu et al.
(2010) found that dopamine concentration decreased in brain
tissue in response to TiO2-NPs exposure. In accordance with
our findings, Munoz-Castaneda et al. (2006) reported a signif-
icant increase of serotonin in order to protect cells against
oxidative stress in the brain tissuewhileMa et al. (2010) found
that the serotonin concentration may decrease or not affect in
cerebral damage. Since acetyl cholinesterase is a crucial en-
zyme in the excitatory neurotransmitter acetylcholine catabo-
lism, its measurement is a logical approach to indicate neural
damage as it is responsible for breaking down of acetylcholine
into acetic acid and choline at cholinergic synapses (Worek
et al. 2002). Oral administrations of TiO2-NPs increased ace-
tyl cholinesterase activity (Wang et al. 2008; Hu et al. 2010).
In contrast, some researchers have reported an impaired acetyl
cholinesterase activity in neuronal damage (Ma et al. 2010).

In this study, the symptoms of toxicity such as behavioral,
physical changes and decreased food intake observed after
TiO2-NPs administration are in parallel with the findings of
Wang et al. (2007). These symptoms are simultaneously

related to our observed results of increased monoamine neu-
rotransmitters (dopamine and serotonin) concentrations and
acetyl cholinesterase activity, which are related to the oxida-
tive stress induced by TiO2-NPs administration.

One of the most important mechanisms of TiO2-NPs–
induced brain damage is ROS production, which has been
implicated in the pathogenesis of neuronal injury (Long
et al. 2007). The brain is highly liable to ROS-induced
injury because of its high energy demands; low levels of
endogenous antioxidants as SOD, catalase, and vitamin C;
and an abundance of polyunsaturated fatty acids, proteins,
and nucleic acids in the neurons (Huerta-Garcıa et al.
2014). Among oxygen free radicals, superoxide anion
(O−

2) plays a critical role in the oxidative chain reaction,
producing a highly reactive oxidant. These free radicals are
removed by antioxidant scavengers, including SOD, gluta-
thione peroxidase, catalase, and GSH. SOD is the first line
of the enzymatic antioxidant defense system, which scav-
enges O−

2 to oxygen (O2) and H2O2, then catalase converts
the H2O2 into water and oxygen, thus preventing the lipid
peroxidation of cell membrane (Niska et al. 2015). Total
antioxidant capacity (TAC) is commonly used to evaluate
the overall antioxidative status in the cells.
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Fig. 7 (a–d) Sections of rat’s cerebral cortex: (a) Control group showed a
normal histological structure, and most neurons are intact (H&E, bar =
200 μm). (b) TiO2-NPs group displayed a distinct large hemorrhagic area
(black arrows), perivascular and pericellular edema (yellow arrow), and
pyknosis (blue arrows) (H&E, bar = 200 μm). (c) MSE group showed a
normal histological structure with most neurons are intact (H&E, bar =
200 μm). (d) MSE+ TiO2-NPs group showed nearly normal histological

structure, mild congestion, and perivascular edema (black arrows) and
most neurons are intact (H&E, bar = 200 μm). Values of the histogram
are means ± SE (n = 20). Data were analyzed by one-way ANOVA
followed by Tukey’s post hoc test for multiple comparisons. a significant
difference in comparison with the control group (p < 0.05). b significant
difference in comparison with the TiO2-NPs group (p < 0.05)



ROS production in the brain is indicated by the increase in
MDA level. Overproduction of ROS in TiO2-NPs–treated rats
consumes GSH and SOD. Kaya and Akbulut (2015) stated
that ROS-induced cellular injury and the damage of cell
membrane could be attributed to the lipid peroxidation and
the conversion of polyunsaturated fatty acids in the cell
membrane to toxic lipid peroxides. This was supported by
our findings, which revealed that TiO2-NPs successfully
induced lipid peroxidation in brain tissue which is indicated
by the increase of MDA and the decrease of GSH concentra-
tions (Fig. 4) in agreement with Hu et al. (2010) and Shi et al.
(2015). In accordance with Hu et al. (2011) and Ma et al.
(2010), a significant decrease of SOD activity and TAC was
detected in the brain of orally exposed rats to TiO2-NPs in
response to excess ROS production and induced lipid perox-
idat ion. A dramat ic increase in the ROS levels
accompanied by the increased levels of TOS and OSI was
observed in the brain of orally exposed rats (Fig. 4).
Therefore, the synthesis of some enzymes was influenced
and the oxidative/antioxidative balance in the brain of TiO2-
NPs treated rats was disrupted, resulting in the lipid and
protein oxidation.

Mitochondria possess many vital cellular functions, such as
regulating the synthesis and breakdown of many metabolites,
production of adenosine triphosphate (ATP) by oxidative
phosphorylation, and production and getting rid of ROS
(Brand and Nicholls 2011). One of the novel results is the
toxic effect of TiO2-NPs on cerebral mitochondria. Our results
showed that TiO2-NPs decreases mitochondrial viability (Fig.
5(a)). One of the most obvious causes of mitochondrial dam-
age is the generation of mitochondrial ROS (de Moura et al.
2010). Li et al. (2013) concluded that the non-mitochondrial–
created ROS can increase the generation of mitochondrial
ROS. Deposition of TiO2-NPs in the mitochondria was re-
ported by Huerta-Garcıa et al. (2014). TiO2-NPs–induced mi-
tochondrial damage could be explained by the excess ROS
production which opens the mitochondrial membrane perme-
ability transition pore, and subsequently triggers the apoptotic
signaling cascade (Fleury et al. 2002). Similarly; several stud-
ies have evidenced that ROS have a potent role for induction
of mitochondrial dysfunction and subsequent apoptotic cell
death (Yoo et al. 2012).

Our results suggest that Nrf-2 has a central role in down-
regulation of antioxidant defense of the brain cells during
TiO2-NPs–induced toxicity and this suggestion was indicated
by the significant decrease of Nrf-2 levels (Fig. 5(b)) with a
simultaneous decrease in NQO1 expression (Fig. 5(c)) in
TiO2-NPs–treated rats when compared to the control rats.
This finding was in agreement with McCoy and Cookson
(2011) who reported that overproduction of ROS is accompa-
nied by downregulation of Nrf-2 and NQO1 mRNA expres-
sions. The significant low levels of Nrf-2 lead to a significant
elevation of INOS mRNA expression (Fig. 5(d)) in

accordance with Shih et al. (2005) in TiO2-NPs group. Other
study indicated that TiO2-NPs administration increases INOS
mRNA expression which is responsible for the overproduc-
tion of nitric oxide (NO) in the brain (Chen et al. 2018). NO as
a free radical could be oxidized by O−

2 to peroxynitrite
(ONOO−) radical that causes oxidation of lipids (Wang et al.
2008) and disturbance of the many vital properties of cell
resulting in cytolysis and cell death which is a logic fate of
the induced lipid peroxidation (Pradeep et al. 2009). The pres-
ent data revealed that exposure to TiO2-NPs causes DNA
damage as evident from the data of DNA fragmentation %
illustrated in Fig. 5(e). The increase in DNA fragmentation
% could be attributed to the oxidative reactions induced by
TiO2-NPs (Trouiller et al. 2009).

Pro-inflammatory mediators are associated with ROS gen-
eration (Ansar et al. 2017), which are inconsistent with our
results in which the oxidative stress following the exposure to
TiO2-NPs increased the brain concentrations of the pro-
inflammatory cytokines, IL-1β and TNF-α. These findings
may suggest the inflammatory response-induced “neurotoxic-
ity of” TiO2-NPs. DNA fragmentation and damage could be
attributed to the release of inflammatory cytokines (Totsuka
et al. 2014) and lipid peroxidation (Harangi et al. 2004). Thus,
TiO2-NPs genotoxicity is probably due to the exaggerated rise
in lipid peroxidation. DNA fragmentation is an important fea-
ture of cell apoptosis; therefore, we, next, evaluated the apo-
ptotic markers in TiO2-NPs exposed rats.

Xia et al. (2008) defined apoptosis as a process of pro-
grammed cell death which regulates cell renovation and get
rid of injured cells. Dysregulation of cell apoptosis causes cell
death, impairment of tissues, and organ dysfunction (Elmore
2007). There are two major pathways involved in cell apopto-
sis: The intrinsic (mitochondrial), by the opening of mitochon-
drial permeability transition pore with the liberation of
cytochrome C and the extrinsic (death receptor) by stimulating
the death receptor, which is a member of tumor necrosis factor
receptors superfamily. Both of them end with the activation of
caspase-3 which is the main apoptotic protein (Elmore 2007).
Caspase-3 is an inactive cytoplasmic zymogen, which
upon activation will trigger cell apoptosis via a signal trans-
duction pathway. Fas is a death receptor that is greatly
expressed in several cell types and rapidly mediates apoptosis
in response to certain stimuli. In agreement with Yoo et al.
(2012), our findings showed that TiO2-NPs induced upregu-
lation of Fas and subsequent caspase-3 activation and apopto-
tic cell death. Our results suggest that TiO2-NPs activate both
the intrinsic pathway of cerebral apoptosis via damaging the
cerebral mitochondria and decrease mitochondrial viability,
and the extrinsic pathway via Fas activation.

Our results concerning the preliminary quantitative analy-
ses of phytochemicals in MSE indicated the presence of
higher contents of total phenolic, total flavonoid, and total
antioxidant capacity (Fig. 2(b)). Furthermore, MSE showed
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a potent H2O2 scavenging activity (Fig. 2(c)). Administration
of MSE improves the cerebral functions as manifested by the
normal behavior and physical activity of the rat throughout the
study as well as the significant decrease of serotonin, dopa-
mine concentrations, and acetyl cholinesterase activity in
MSE + TiO2-NPs group when compared to TiO2-NPS group.
Chiefly, the administration of MSE considerably alleviated
TiO2-NPs cerebral oxidative damage as indicated by the de-
creased lipid peroxidationMDA, TOS, and OSI levels and the
increased GSH concentration, SOD activity, and TAC levels.
The neuroprotective effects of MSEmight occur partly via the
flavonoids (Youdim and Joseph 2001).

The nuclear factor-erythroid-2-related factor 2 (Nrf2), which
is an important transcription factor, plays a central role in de-
fense against oxidative stress. Nrf2 is a key leucine zipper tran-
scription factor that regulates the expression of antioxidant en-
zymes and plays a serious role in protecting the cell against
oxidative stress and inflammation (Dinkova-Kostova et al.
2018). In normal cells, Nrf2 is impounded in the cytoplasm by
the cytosolic inhibitor Kelch-like ECH associated protein1
(Keap1). In response to oxidants, the release of Nrf2 from the
Keap1-Nrf2 complex takes place by disrupting the protein-
protein interactions or by promoting the degradation of Keap1
in cells. Once released, the active Nrf2 translocates into the
nucleus (Kobayashi et al. 2006). In the nucleus, Nrf2 forms a
heterodimer with other transcription factors, such as small Maf
protein (musculoaponeurotic fibrosarcoma proteins) (Itoh et al.
1997), that facilitates the interaction of Nrf2with the antioxidant
response element (ARE) located in the promoter region of target
genes. Nrf2-ARE increase the transcription of the cytoprotective
phase 2 detoxification enzyme genes such as NQO1, GSH,
glutathione -S-transferase (GST), haemoxygenase-1 (HO-1),
SOD, catalase, GPx, and thioredoxin (Rajappa et al. 2017). In
this respect, Nrf2 increases the expression of both γ-
glutamylcysteine ligase (GCL) required for the biosynthesis of
GSH (Wild et al. 1999), and enzymes involved in the produc-
tion of NADPH via HMP shunt to maintain GSH in a reduced
state (Wu et al. 2011). Furthermore, Nrf2-ARE downregulate
the expression of pro-inflammatory mediators such as
cyclooxygenase-2 (COX-2) and iNOS (Shih et al. 2005).

NQO1, a member of the NAD(P)H dehydrogenase
(quinone) family, is a highly inducible cytosolic homodi-
meric flavoprotein enzyme-mediated by Nrf2 in response
to oxidative stress. NQO1 catalyzes the reduction and de-
toxification of quinones to hydroquinones, and thus pro-
tects cells from oxidative damage (Wu et al. 2013). In
addition, NQO1 acts as a component of the redox system
producing antioxidant forms of vitamin E and CoQ10 in
the plasma membrane (Siegel et al. 1997). Other effective
roles of NQO1 include its ability to generate NAD+ (Pink
et al. 2000), function as a direct superoxide reductase
(Zhu et al. 2007) and protect proteins from proteosomal
degradation (Moscovitz et al. 2012).

Our study proved that the administration of MSE has sig-
nificantly increased Nrf2 level that improves the antioxidant
and cytoprotective responses indicated by the subsequent sig-
nificant increase of NQO1 expression, mitochondrial viability
%, and cerebral antioxidant activity with a significant decrease
of INOS mRNA levels and DNA fragmentation % in MSE +
TiO2-NPs group when compared to TiO2-MPs group.
Certainly, MSE has a powerful antioxidant activity (Vongsak
et al. 2013) as it is a rich source of antioxidants such as flavo-
noids and phenolics (Ghiridhari et al. 2011) that proves that
MSE could induce Nrf2-mediated antioxidant response.
Furthermore, Nrf2 improves mitochondrial function and
availability of substrates (NADH and FADH2/succinate)
which are essential for the function of Nrf2-upregulated anti-
oxidant enzymes and cellular respiration (Dinkova-Kostova
and Abramov 2015).

Nrf2 activation in MSE + TiO2 NPs group caused a signif-
icant reduction of IL-1β and TNF-αwhen compared to TiO2-
NPs group. These findings are in accordance with Liu et al.
(2013) who reported that Nrf2 decreases toxin-induced liver
injury by reducing pro-inflammatory cytokines such as IL-1β
and TNF-α.

One of our novel results is the anti-apoptotic effect of MSE
on TiO2-NPs–induced cerebral apoptosis which is manifested
by a significant reduction of caspase-3 and Fas. This effect
could be attributed to the activation of Nrf2 byMSE. Liu et al.
(2013) reported that activation of Nrf2 protects the cell from
cellular apoptosis by decreasing the mRNA levels of apopto-
sis executors.

One of the most important phenolic compounds of MSE is
eugenol (4-allyl-2-methoxyphenol) (55.15%) (Table 2), which
is considered a chain-breaking antioxidant (Fujisawa et al.
2005). A recent study has shown that eugenol is an activator
of Nrf2 (Rajappa et al. 2017). It was recorded that the liver
was protected by eugenol pretreatment as indicated by preven-
tion of lipid peroxidation, protein oxidation, and DNA strand
break and also by decreasing inflammatory markers and im-
proving the antioxidant status in thioacetamide-induced hepat-
ic injury (Yogalakshmi et al. 2010). Other compounds present
in MSE which have anti-inflammatory and antioxidant activ-
ities are terpenoids and sesquiterpenes including humulene
(Fernandes et al. 2007) and cadinene (Kundu et al. 2013).
Terpenoids can be considered the most potent Nrf2-inducer
(Dinkova-Kostova et al. 2005) through induction of the phase
2 response and suppression of the INOS induction in mouse
macrophages (Hond et al. 2002). Alpha-humulene reduced the
production of INOS induced by the injection of carrageenan in
rats (Fernandes et al. 2007).

Based on our results, the ability ofMSE to upregulate Nrf2/
NQO1 pathway in the brain adds a new hypothetic mecha-
nism to MSE as Nrf2 activator.

Our results of histopathological examination of the ce-
rebrum section of a rat treated with TiO2-NPs showed
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large distinct hemorrhagic area, perivascular, pericellular
odema, severe congestion, and moderate pyknosis (Fig.
7(b)). The formation and progression of brain injury are
attributed to ROS production which is substantially in-
creased by TiO2-NPs. Administration of MSE with
TiO2-NPs showed moderate perivascular, pericellular
odema, and no hemorrhage nor pyknosis can be seen
(Fig. 7(d)). It is meaningful to remark that the administra-
tion of MSE only showed no pericellular odema with
most neurons are intact (Fig. 7(c)). This shows the harm-
less effect of MSE in the brain cells. That finding was in
confidence with the biochemical parameters which clari-
fied that MSE only caused no significant changes in
oxidative/antioxidant parameters, pro-inflammatory and
apoptotic markers as compared to the control group.

Conclusion

Observed results in this study have proved that Moringa seed
extract is a potential neuroprotectant. The possible underlying
mechanism may occur partly via Nrf2 activation. The protec-
tive effect of Nrf2 is accompanied by the induction of genes
involved in antioxidant defense, increased cerebral mitochon-
drial viability, and inhibition of pro-inflammatory and apopto-
tic mediators against TiO2-NPs cerebral toxicity. Further stud-
ies concerning other mechanisms of moringa active compo-
nents are still required.
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