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Abstract
Chlorination in a drinking water treatment plant is the critical process for controlling harmful pathogens. However, the reaction of
chlorine with organic matter forms undesirable, harmful, and halogenated disinfection by-products. Carbonaceous disinfection
by-products, such as trihalomethanes (THMs) and haloacetic acids (HAAs), are genotoxic or carcinogenic and are reported at
high concentration in drinking water. This study is aimed at developing a mathematical model for predicting concentration levels
of THMs and HAAs in drinking water treatment plants in South Korea because no previous attempts to do so have been reported
for the country. The THMs concentration levels ranged from 29 to 39 μg/L, and those for the HAAs from 6 to 7 μg/L. Multiple
regression models, i.e., both linear and nonlinear, for THMs and HAAs were developed to predict their concentration levels in
water treatment plants using datasets (January 2015 to December 2016) from three treatment plants located in Seoul, South
Korea. The constructed models incorporated principal factors and interactive and higher-order variables. The principal factor
variables used were dissolved organic carbon, ultraviolet absorbance, residual chlorine, bromide, contact time, chlorine dose and
temperature for treated water, and pH for both raw and treated water at the plant. The linear models for both THMs and HAAs
were found to give acceptable fits with measured values from the water treatment plants and predictability values were found to
be 0.915 and 0.772, respectively. The models developed were validated with a later dataset (January 2017 to July 2017) from the
same water treatment plants. In addition, the models were applied to two different water treatment plants. Application and
validation results of the constructed model showed no significant differences between predicted and observed values.

Keywords Multiple regression analysis . Carbonaceous disinfection by-products (C-DBPs) . Trihalomethanes (THMs) .

Haloacetic acids (HAAs) . Interactive variable . Validation

Introduction

The disinfection process is one of the crucial steps in drinking
water treatment plants (DWTPs) to reduce waterborne dis-
eases by inactivating harmful pathogens and microorganisms.
Chlorine is widely used as a disinfectant in South Korea and
elsewhere because it is highly efficient in preventing

p a t h o g e n s a n d m i c r o o r g a n i s m s a n d c o s t -
effectiveness(Abdullah et al. 2003; Uyak et al. 2005).
However, chlorine reacts with natural organic matter (NOM)
present in source water and forms undesirable carbonaceous
and nitrogenous disinfection by-products (C- and N-DBPs)
(Sérodes et al. 2003; Chowdhury et al. 2010; Maeng et al.
2018). Epidemiological studies conducted repeatedly in labo-
ratory animals have shown that ingestion of chlorinated by-
products containing water causes bladder, colon, and rectal
cancer (Morris et al. 1992; WHO 2005; Brown et al. 2011).
In addition, toxicological studies have shown that ingestion of
certain DBPs causes cancer in the liver and kidneys, as well as
adverse reproductive and developmental disorders in laboratory
animals (Babaei et al. 2015; Krasner et al. 2017). Among all the
DBPs formed, C-DBPs, i.e., trihalomethanes (THMs) and
haloacetic acids (HAAs) are found in higher concentration levels
in DWTPs (Richardson et al. 2007; Hua et al. 2015) and are
considered potentially carcinogenic (Golfinopoulos et al. 1998;
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Golfinopoulos and Arhonditsis 2002; Uyak et al. 2005;
Platikanov et al. 2012). Moreover, bromine-containing species
are reported to bemore geno- and cytotoxic than their chlorinated
form and are of concern (Krasner et al. 2017). These DBPs can
enter the human body through ingestion of drinking water, inha-
lation, and dermal contact during regular indoor activities such as
showering, bathing, swimming, and cooking (Chowdhury et al.
2010; Chowdhury et al. 2011; Domínguez-Tello et al. 2017).
Thus, several DBPs are regulated by international regulatory
agencies worldwide. The US Environmental Protection Agency
developed a Disinfectants/DBP (D/DBP) rule in 1998 and set
minimum contaminant levels of 80 μg/L for THMs (Uyak
et al. 2005; Singh and Gupta 2012) and 60 μg/L for HAAs
(Ged et al. 2015). The formation of THMs and HAAs depends
on the quality of the source water and the treatment process, i.e.,
chlorine dose, contact time between chlorine and organicmatters,
pH, water temperature, and other factors (Sadiq and Rodriguez
2004; Fooladvand et al. 2011). Continuous monitoring through-
out the operation of DWTP is needed to ensure compliance with
the guidelines. More than 100 predictive models have been de-
veloped because of active research on DBPs (Chowdhury et al.
2009; Domínguez-Tello et al. 2017). These models are based on
either laboratory or field scale data and have shown varying
levels of predictive capabilities.Most of themathematicalmodels
developed are empirical in nature and are site specific, which
means their predictive capabilities for different environmental
conditions and treatment processes remain inappropriate
(Elshorbagy et al. 2000; Uyak et al. 2007; Ata et al. 2015). On
the other hand, seasonal, locational, and temporal factors, and the
complexity of the reaction between organic matter and chlorine
and the formation of DBPs makes it very difficult to develop
mechanistic models (Semerjian et al. 2009; Kulkarni and
Chellam 2010). Most of the models lack interacting parameters
(Sohn et al. 2004). Mathematical models that are developed and
based on real DWTPs and distribution systems, and which con-
sider all the water quality parameters and operating variables that
can predict THMs and HAAs, are very useful tools as alterna-
tives to field measurements. Laboratory tests for the measure-
ment of DBPs are very time consuming and expensive.
Predictive models can provide quick and reasonable estimates
and can help in making decisions to optimize the treatment pro-
cess (Westerhoff et al. 2000; Mukundan and Van Derson 2014;
Lin et al. 2018).

The aim of this study was to develop a mathematical model
for predicting THMs and HAAs, based on multiple regression
analysis and using water quality parameters of both raw and
treated water and operational conditions from three DWTPs
located in Seoul, South Korea. Models were validated using
more recent data from the three treatment plants and were
applied to two different DWTPs for evaluating their predict-
ability capability. Most of the mathematical models that were
reported previously lack principal factors such as dissolved
organic carbon (DOC), bromide ion (Br−), and chlorine dose

(Chowdhury et al. 2009; Bond et al. 2014). Besides these,
most of the models do not consider interactive variables (ef-
fect of two or more varying together). The THM models sug-
gested by Amy et al. (1987), Golfinopoulos et al. (1998) and
Uyak et al. (2005) have good predictability (R2 = 0.90, 0.98,
and 0.98, respectively) and are based on raw water character-
istics. Raw water characteristics do not represent treated water
characteristics. In addition, the models do not consider reac-
tion time and chlorine dose. The objective of this study was to
develop models that would address the shortcomings that
existed in previously published research works. In addition,
this work is the first of its kind to develop mathematical
models using multiple regression analysis for both THMs
and HAAs in South Korea. The model developed in this re-
search can be considered robust because both raw water and
treated water characteristics, along with most of the water
quality and operational parameters with interactive parame-
ters, are incorporated.

Materials and methods

Description of DWTPs

Seoul has a population of 10.178 million and is served by six
DWTPs (SMG 2017). The Han River, which is the second
longest river, serves as the main source of raw water to all
these DWTPs. More than 3 million m3 of water is needed
daily for citizens residing in Seoul from all six DWTPs
(Fig. 1). Each day, a total of 4.44 million m3 of water is proc-
essed and supplied by all DWTPs, as shown in Table S1. The
Seoul Metropolitan Government (SMG) monitors water qual-
ity and operation parameters every day to ensure compliance
with the National Drinking Water Standard Guideline for the
safety of the citizens. The treatment process combines con-
ventional processes, i.e., prechlorination, coagulation, floccu-
lation, sedimentation, filtration, and postchlorination, with ad-
vanced treatment processes, i.e., ozonation and powdered ac-
tivated carbon treatment (Fig. S1).

Mathematical model development

For the purpose of the model development, water quality and
operational data for both raw water and treated water were
collected from 2015 to 2016 for three DWTPs (Gangbuk,
Gwangam, and Yeongdeungpo). Data obtained were based
on monthly analyses of water samples. These datasets includ-
ed 120 and 66 measured values for THMs and HAAs, respec-
tively, along with other water quality and operational param-
eters. Water quality parameters include DOC, ultraviolet ab-
sorbance (UV254), Br

− ion concentration, temperature and re-
sidual chlorine, THMs, and HAAs for treated water. Likewise,
operational parameters such as pH and prechlorine dose for
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raw water, postchlorine dose, pH, temperature, and contact
time were included. The models, which included at least five
principal factors, i.e., predictor variables of the seven (DOC,
UV254, Br

−, chlorine dose, temperature, contact time, and pH)
showed high predictability for THMs and HAAs (Ged et al.
2015). In addition, the effect of two or more variables
(interactive) and higher-order variables needed to be incorpo-
rated. Multiple regression analysis was carried out using
Minitab 18 statistical software (Minitab, LLC, USA) and
Excel (Microsoft Office 2016’s), to develop both linear and
nonlinear (power) models. For the THMs, a forward selection
process was used, and for the HAAs, a backward elimination
process was carried out. Before multiple regression analysis,
the statistical significance of each direct, quadratic, and inter-
active predictor variable was verified using a Pearson correla-
tion matrix at a 95% significance level. The models investi-
gated here include the principal factors, and interactive and
higher-order factors for both linear and nonlinear forms. The
principal factor models are direct and in their very simplest
form (Chowdhury et al. 2011). The generalized form of the
mathematical models for predicting the THMs and HAAs
values are presented in Eqs. 1 and 2, where y represents the
THMs and HAAs, β represents the model coefficient, x rep-
resents the predictor variables, and ε represents the residuals
or errors.

y ¼ β0 þ ∑k
j¼1β jx

0
ij þ ε ð1Þ

y ¼ β0 � ∑k
j¼1x

0
ij
β j þ ε ð2Þ

where i = 1, 2, …, n and j = 1, 2, …, k. The n > k and x′ij
denotes the ith observation of independent variable xj. The
independent variables x′ij includes principal factors (e.g.,
DOC, pH, and T), interactive variables (effect of two or more
varying together e.g., T × t, UV×DOC× logClT) and higher-

order variables (e.g., quadratic i.e., T2, Cl2). The models for
both THMs and HAAswere developed based on the particular
values of the independent variables x′ij (xi1, xi2,…,xik).
Equations 1 and 2 are the generalized form of the linear and
nonlinear models, respectively, for prediction of both THMs
and HAAs. Their goodness-of-fit and performance were com-
pared by performing F tests, Student’s T test, the coefficient of
determination (R2), the standard error (SE, Eq. 3), the mean
square error (MSE, Eq. 4), and the Durbin–Watson statistic (d,
Eq. 5).

SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

1 Observed−Predictedð Þ2
n

s
ð3Þ

MSE ¼ 1

n
∑n

1 Observed−Predictedð Þ2 ð4Þ

d ¼ ∑n
1 en−en−1ð Þ2
∑n

1e2n
ð5Þ

In Eq. 5, e is the residual value and is calculated by
subtracting the predicted value from the observed value.

To determine the significance of the difference between the
measured and predicted values, an F test was performed. For
the F value > 0.5, Student’s T test with equal variance was
performed. In contrast, if the F value < 0.5, Student’s T test
with unequal variance was performed. If the p value from the
T test is < 0.05, the two datasets, i.e., measured and predicted,
do not have statistical similarities or are not equivalent. On the
other hand, if the p value is > 0.05, the two datasets are equiv-
alent or do not have significant statistical differences.

Model validation and applicability

The validation process determines or confirms how sound and
effective the models are. In this study, it shows the stability

Fig. 1 Study area with all five
drinking water treatment plants
considered
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and reasonableness of the THM and HAA models. For vali-
dation and applicability, the developed models were subjected
to two different types of tests: (i) comparisons of measured
and predicted values by performing internal evaluations, i.e.,
on more recent or additional datasets from the same DWTPs
on which the models were based (calibration), and (ii) com-
parisons of measured and predicted values by performing ex-
ternal evaluations, i.e., on datasets from different DWTPs. The
developed models were used to predict both THMs and HAAs
for the additional datasets (January 2017 to July 2017) obtain-
ed from three DWTPs, as well as external datasets (January
2016 to December 2016). Analyses were done to calculate the
R2, SE, and MSE values. A T test was performed on the pre-
dicted models to determine the biases by calculating the t
value and t critical or p value. The values were compared
and if t-calculated < t-critical or the p value > 0.05, bias was
considered not significant and vice versa.

Results and discussion

The occurrence of THMs and HAAs

The range and average levels of THMs and HAAs in treated
water from the three DWTPs are summarized in Fig. 2 and
data were collected from 2015 to 2016. The formation of
THMs is ranked for the DWTPs as Gangbuk DWTP >
Gwangam DWTP > Yeongdeungpo DWTP. For the HAAs,
there were no significant differences between the three
DWTPs. The observed maximum values of THMs were
33 μg/L, 39 μg/L, and 29 μg/L for Gwangam, Gangbuk,
and Yeongdeungpo, respectively. Very low values for HAAs
were observed in all three DWTPs. The maximum values
were found to be 6 μg/L, 6 μg/L, and 7 μg/L in Gwangam,
Gangbuk, and Yeongdeungpo, respectively. The measured

value for THMs were higher and dispersed compared with
HAAs throughout the year because of high hydrophobic fac-
tion of NOM compared with hydrophilic fraction (Bond et al.
2012). Figure 3 shows seasonal variations of THMs and
HAAs in treated water. For THMs, high values were observed
during summer (June to August) and at the beginning of the
autumn season (September) for all three DWTPs, especially in
Gangbuk DWTP. This may be because of temperature chang-
es and organic matter present in the source water. Although
the temperature in autumn is slightly lower than in summer,
the water is rich in organic matter. The main reason could be
the rapid decay of vegetation (Kumari and Gupta 2015).
Similarly, lower values were observed during the winter sea-
son (December to February). In contrast, HAA values were
observed to be higher during spring (March to May). The
major HAA species to contribute to the higher concentrations
is dichloroacetic acid (DCAA)(Rodriguez et al. 2004) and
shows high concentration levels during spring. In addition,
DCAA is not affected by the pH levels of the source and
treated water. The decrease in the concentration of HAAs
during the summer and autumn seasons may be attributed to
microbial activities. It has been reported that microorganisms
do degrade HAAs over time (Zhou and Xie 2002; Rodriguez
et al. 2004).

Correlation of independent variables with THMs
and HAAs formation

In this research, the models were built by considering princi-
pal factors and interactive and higher-order variables. The
correlation matrices for both THMs’ and HAAs’ formation
with selected variables were obtained using Pearson’s corre-
lation test and are shown in Table 1. A positive and very strong
correlation was observed for temperature (quadratic form) and
an interactive variable (UV254, temperature, reaction time, and
total chlorine dose, i.e., UV254 × T2 × t × ClT) with THMs for-
mation (r = 0.888 and 0.878, respectively). This indicated that
higher-order and interactive variables have the largest influ-
ence on the formation of THMs. Besides this, the temperature
is the variable which has the highest influence compared with
other variables. This observation was also reported in other
studies (Babaei et al. 2015; Kumari and Gupta 2015). The
increase in temperature increases the reaction rate between
organic matter and residual disinfection. Temperature acts as
an energy source and activates the reaction (Kumari and
Gupta 2015). Negative and very good correlations were ob-
served between pHavg (average value of raw water and treated
water pH) and THMs formation (r = − 0.709). The residual
chlorine (ClR) and postchlorine dose (Clpost) showedmoderate
correlation (r = 0.581 and 0.509, respectively). Compared
with other variables, the Br− concentration does not show
good correlation and was found to be negative (r = − 0.124).
This result may be attributed to the very low concentration of
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Br− in treated water. However, the models that included Br− as
an independent variable exhibit a better degree of accuracy
than the models that excluded Br−(Ged et al. 2015). The
models excluding the Br− concentration resulted in the over-
prediction of THMs for low concentrations of Br− and
underprediction for high concentrations of Br−. The interac-
tive variable with higher order (quadratic form) shows a neg-
ative and very low correlation with THMs formation.
Similarly, an attempt was made to find the correlation of pri-
mary factors and interactive and higher-order variables with
HAAs’ formation in treated water. For HAAs, interactive var-
iables such as log (ClT × DOC/(T × t)) and log (ClT × DOC/
(T × t × pHavg)) show positive and very good correlation (r =
0.707 and 0.706, respectively). For principal factors such as
DOC and pHavg, the correlation was found to be positive and
moderate (r = 0.47 and 0.448, respectively). The ratio of DOC
and residual chlorine (DOC/ClR) and bromide ion and residual
chlorine ((Br + 1)/ClR) shows positive correlation (r = 0.576

and 0.325, respectively). In contrast with THMs, temperature
shows negative and moderate correlation (r = − 0.482) with
HAAs’ formation. The logClR also shows negative and does
not show good correlation (r = − 0.213).

Mathematical models for DBPs within DWTPs

The variables (principal factors and interactive and higher-
order) that were considered for the mathematical models
are shown in Table 2. Before selecting variables, different
variables and their combinations were tried to develop both
linear and nonlinear models with the best statistical outputs
and the accuracy of predictions vs observed values for
THMs and HAAs (Table S2). Based on the results, both
linear and nonlinear models for THMs and HAAs were
developed and a comparative analysis (statistical test)
was carried out to determine the best model.

Table 1 Correlation of THMs and HAAs with independent variables (principal factors and interactive and higher-order variables)

THMs predictor variables Correlation
coefficient (r)

HAAs predictor variables Correlation
coefficient (r)

UV × T2 × t ×ClT 0.878 logClR − 0.213
T2 0.888 DOC 0.47

pHavg − 0.709 (DOC – 100)(if DOC > 1000)
a 0.508

Clpost 0.509 (DOC/ClR) 0.576

ClR 0.581 ((Br + 1)/ClR) 0.325

Br + 2 − 0.124 pHavg 0.448

(UV×DOC×logClT)
2 − 0.07 (T – 5)(if T > 5)

b − 0.482
log (ClT × DOC/(T × t)) 0.707

log (ClT × DOC/(T × t × pHavg)) 0.706

Significant value is set at 0.05
a DOC values greater than 1000 were optimized by subtracting 100 from the original value, whereas values less than or equal to 1000 were used as is
b Temperature (T) values greater than 5 °C were optimized by subtracting 5 from the original value, whereas values less than or equal to 5 °C were used as is
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Trihalomethane models

The linear and nonlinear models for THMs are shown in Eqs.
6 and 7, respectively.

THMs ¼ β0 þ β1 UV� DOC� logClTð Þ2 þ β2 Br þ 2ð Þ þ β3 ClRð Þ2 þ β4 ClPostð Þ2 þ β5 pHavg

� �
þ β6 Tð Þ2

þ β7 UV� T 2 � t � ClT
� �

;

ð6Þ

THMs ¼ β0 � UV� DOC� logClTð Þ2
� �β1 � Br þ 2ð Þβ2 � ClRð Þ2

� �β3 � Clpost
� �2� �β4 � pHavg

� �β5

� Tð Þ2
� �β6 � UV� T2 � t � ClT

� �β7 ;

ð7Þ

where THMs, DOC, Br + 2, ClR, Clpost, and ClT are in
μg/L, T is in degrees Celsius, t is in hours, and β0, β1,
β2, β3, β4, β5, β6, and β7 are model statistical coefficients.
The effects of bromide ion were expressed as Br + 2 to
avoid zero prediction values for THMs when the value of
bromide ion was under the detection level. The size of the
sample (n), F test, T test, coefficient of determination (R2),
standard error (SE), mean square error (MSE), Durbin–
Watson statistic (d), and the model statistical coefficients
values are summarized in Table 2. Student’s T test results

for both linear and nonlinear (p value > 0.05, i.e., 1 and
0.803, respectively) show no significant statistical differ-
ence between observed and predicted values. In addition,
the analysis of variance (ANOVA) result showed that both
linear and nonlinear models were statistically significant (p
value = 0.000). The coefficient of determination for the
linear model (R2 = 0.915) was found to be greater than
for the nonlinear model (R2 = 0.852). In contrast, the ob-
served values of SE and MSE for linear models (2.085 and
4.06, respectively) were found to be lower than the values

Table 2 Models coefficients and
statistical analysis results for the
linear and nonlinear models for
prediction of THMs and HAAs

THMs HAAs

Linear Nonlinear Linear Nonlinear

Statistical analysis

Number 120 120 66 66

F Test 1.093 1.263 1.295 1.21

T Test (p value) 1 0.803 1 0.652

R2 0.915 0.852 0.772 0.554

SE 2.085 2.35 0.997 1.113

MSE 4.06 5.52 0.843 1.538

Durbin–Watson 1.554 1.207 2.064 1.662

Model coefficients

β0 85.928 1.156 × 103 2.284 × 103 3.594 × 10−14

β1 −5.2 × 10−4 − 0.032 − 48.812 58.141

β2 −6.2 × 10−2 − 0.026 0.014 − 11.476
β3 1.66 × 10−5 0.199 0.007 1.946

β4 3.87 × 10−6 0.155 − 7.205 10.456

β5 − 10.25 − 4.81 28.069 0.078

β6 7 × 10−3 0.039 297.66 − 4.243
β7 8.42 × 10−5 0.109 0.149 0.339

β8 – – − 5.032 × 103 79.875

β9 – – 5.035 × 103 − 61.297
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for the nonlinear model (2.350 and 5.52, respectively).
This suggests that the linear model performs better than
the nonlinear model for THMs. This result is supported
by the d value. The value of d is preferred to be in the
range between 1.5 and 2.5 for a statistically best-fit model
(Uyak et al. 2007; Kumari and Gupta 2015; Domínguez-
Tello et al. 2017). The value of d was found to be 1.554 for
the linear model and 1.207 for the nonlinear model. This
indicated that the linear model is statistically the best-fit
model. Figure 4 a shows the plot for the observed and
predicted THMs values in the three DWTPs. The model
predicted most of the peak observed values consistently.

Haloacetic acid model

Table 2 summarizes both the linear and nonlinear HAA
models’ statistical coefficient and regression analysis results.

Although the dataset used for these models was relatively
small because of the unavailability of all the independent pre-
dictive variables, and the treated water concentrations were
low, this study still attempted to develop a model for HAAs.
Very limited research has been conducted to develop the HAA
model. The model suggested by Sérodes et al. 2003 has good
predictive capability (R2 = 0.92), but the model did not con-
sider the pH levels and was not validated. Similarly, the model
developed by Nikolaou et al. in 2004 has very low predict-
ability (R2 = 0.28) and did not incorporate TOC, DOC, and
temperature. The ANOVA analysis of the models formulated
in this research shows the models to be statistically significant
(p value = 0.000). The models formulated are as follows:

HAAsþ 2ð Þ ¼ β0 þ β1logClR þ β2DOCþ β3 DOC−100ð ÞFor DOC>1000 þ β4
DOC

ClR

� �
þ β5

Br þ 1ð Þ
ClR

� �

þ β6pHavg þ β7 T−5ð ÞFor T>5 þ β8log ClT � DOC= T � tð Þð Þ þ β9log ClT � DOC= T � t � pHavg

� �� �
;

ð8Þ

HAAsþ 2ð Þ ¼ β0 � logClR
β1 � DOCβ2 � DOC−100ð Þβ3

For DOC>1000 �
DOC

ClR

� �β4

� Br þ 1ð Þ
ClR

� �β5

� pHavg
β6

� T−5ð Þβ7
For T>5 � log ClT � DOC= T � tð Þð Þβ8 � log ClT � DOC= T � t � pHavg

� �� �β9

;

ð9Þ

where β0, β1, β2, β3, β4, β5, β6, β7, β8, and β9 are statistical
model coefficients, HAAs, DOC, Br + 1, ClR, and ClT are in
μg/L, T is in degrees Celsius, and t is in hours. The HAAs
concentration values were expressed as HAAs +2 to avoid
zero values of prediction and to enhance correlation with in-
dependent variables. Student’s T test results for both the linear
and nonlinear models (p value > 0.05, i.e., 1 and 0.652,

respectively) show no significant statistical difference be-
tween the observed and predicted values. It is noted that the
coefficient of determination for the linear model (R2 = 0.772)
is higher than for the nonlinear model (R2 = 0.652). The SE
and MSE were found to be 0.997 and 0.843, respectively, for
the linear model and are lower than for the nonlinear model.
Although the d values for both models are in the range of 1.5

24600 Environ Sci Pollut Res (2020) 27:24594–24603

Observed HAAs ( g/L)

0 1 2 3 4 5 6 7 8 9 10

Pr
ed

ic
te

d 
H

A
A

s (
g/

L
)

0

1

2

3

4

5

6

7

8

9

10

Regression

CI 95%
(b)

R2 = 0.772

Observed THMs ( g/L)

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
te

d 
T

H
M

s (
g/

L
)

0

5

10

15

20

25

30

35

40

45

50

Regression

CI 95%

R2 = 0.915

(a)

Fig. 4 Calibration of predicted vs. observed concentration a THMs linear model and b HAAs linear model



Table 3 Validation and
application of linear models for
THMs and HAAs

Number R2 SE MSE t-value t-critical p value Significant

THM linear Model
Validation 33 0.914 2.308 5.325 − 0.164 1.998 0.87 No
Application
Amsa DWTP 24 0.84 4.293 18.427 1.372 2.013 0.177 No
Guui DWTP 17 0.872 4.033 16.264 1.358 2.037 0.184 No

HAAs linear Model
Validation 18 0.794 0.841 0.778 − 0.601 2.032 0.552 No
Application
Amsa DWTP 12 0.684 2.971 8.83 − 1.786 2.074 0.088 No
Guui DWTP 16 0.704 1.037 1.076 − 0.861 2.042 0.396 No
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Fig. 5 Predicted vs. observed concentration a THMs validation, b HAAs validation, c THMs application Amsa DWTP, d HAAs application Amsa
DWTP, e THMs application Guui DWTP, and f HAAs application Guui DWTP



to 2.5, the model selection was made based on the R2, SE, and
MSE values. Based on the statistical analysis, the linear model
was adopted in this research study. Figure 4 b shows the pre-
dicted vs observed HAAs.

Validation of THM and HAA model

To demonstrate or confirm the effectiveness of the models
(Eqs. 6 and 8) for which they are intended, the models must
be validated. For validation, data from the same DWTPs for
January 2017 to July 2017 were used. The concentration of
THMs and HAAs were predicted using new independent
datasets and were compared with measured values. Analyses
were done to determine R2, SE, and MSE for the validation
dataset and the results are summarized in Table 3. The R2 for
THMs and HAAs were found to be 0.914 and 0.794, respec-
tively, for the validation dataset. Both models showed a good
correlation with the measured and predicted values. The bias
of both THM and HAA models was demonstrated using
Student’s T test. The t-critical values for a two-tailed test at
the significance level of 0.05 were found to be 1.998 and
2.032 with degrees of freedom of 64 and 34, respectively.
The t-calculated values for THMs (− 0.164) and HAAs (−
0.601) from the T test results were found to be less than the
t-critical. Moreover, the p values for both THMs (0.87) and
HAAs (0.552) were greater than 0.05. This suggests that the
measured and predicted values did not display significant dif-
ferences. The plots between measured and predicted values
are shown in Fig. 5a, b for THMs and HAAs, respectively.

Application of THMs and HAAs to different DWTPs

The models developed were applied in two different DWTPs
(Amsa and Guui) to evaluate their suitability, soundness, and
effectiveness. The data from these two DWTPs were not used
during model development and validation. The statistical re-
sults are shown in Table 3. A similar approach to the model
validation was applied for the application of the models to
these two DWTPs. Both THM and HAA models showed
slight decreases in performance, as indicated by the coefficient
of determination values. The values obtained were 0.840 and
0.872 for the THM model, and 0.684 and 0.704 for the HAA
model at the Amsa and Guui DWTPs, respectively. Compared
with the HAA model, the THM model showed better perfor-
mance. The T test was performed to determine bias. For both
DWTPs, the t-calculated values were found to be less than t-
critical, and the p values were also greater than 0.05. The t-
calculated values obtained for the THMmodel were 1.372 for
the AmsaDWTP and 1.358 for the Guui DWTP. Likewise, for
the HAA model, the values obtained were − 1.786 for the
Amsa DWTP and − 0.861 for the Guui DWTP. These statis-
tical results suggest that the measured and predicted values do
not display significant differences. The measured and

predicted value plots for the THMs and HAAs for the Amsa
and Guui DWTPs are shown in Fig. 5c–f. However, the data
generation for this model application study was limited.
Overall, the models for both THMs and HAAs showed mod-
erate to very good predictability.

Conclusion

This research study developed predictive models for both
THMs and HAAs. Stepwise multiple regression analysis
was used to develop both models. The approach used for the
model development provided critical information regarding
predictor variables. The quadratic form (temperature) and in-
teractive variable (UV254, temperature, reaction time, and total
chlorine dose, i.e., UV254 × T2 × t × ClT) for THMs formation,
and interactive variables such as log (ClT × DOC/(T × t)) and
log (ClT × DOC/(T × t × pHavg)) for HAAs, showmore signif-
icance effects than their respective principal variables. The
incorporation of higher-order and interactive variables en-
hances the predictability of the models. This study also indi-
cated that a better understanding of the effects of interacting
and higher-order variables is needed. For both THMs and
HAAs, linear models were found to show better performance
than nonlinear models. The validation and application of
models showed no significant differences between measured
and predicted values. These models may be useful in the iden-
tification of strategies and decision-making to improve the
treatment and disinfection process of drinking water in
South Korea and to other places with similar climatic condi-
tions and treatment processes.
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