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Abstract
Recent studies have expanded the interests about microbial community and function following the rapid development of high-
throughput sequencing techniques in the freshwater ecosystem. In this study, we aimed to attain a deep understanding of
microbial community structure and potential nitrogen metabolism in Hulun Lake, a shallow hypereutrophic steppe lake in the
Mongolian Plateau in China. The result demonstrated that cyanobacteria were the most dominant phylum. Network analysis
showed both intra- and inter-phylum co-occurrence were pervasive, and there were modular structures in the microbial assem-
blages. The cluster dominated by proteobacteria wasmainly negatively connected to the cluster dominated by both proteobacteria
and actinobacteria. Cyanobacteria were tightly clustered together and positively connected to these two clusters. The major
nitrogen metabolism pathways were glutamine synthetase–glutamate synthase and assimilatory nitrate reduction, indicating the
nitrogen was mainly retained in the lake by microbial uptake. Cyanobacteria contributed 43.25% gene reads involved in the
overall nitrogen metabolism but mainly contributed to assimilatory nitrate reduction and nitrogen fixation, aggravating the lake
eutrophication. This study adds to our knowledge of microbial assemblages and nitrogen metabolism in the shallow
hypereutrophic lake and provided an insight understanding for the purposes of lake ecosystem’s protection and efficient man-
agement in the Mongolian Plateau.
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Introduction

The major biogeochemical cycles on the earth have been dra-
matically altered by anthropogenic disturbances (Conley

1999; Falkowski et al. 2000). Large quantities of the nutrients
have been delivered into aquatic ecosystems (Savage et al.
2010), stimulating primary production and accelerating eutro-
phication process (Cloern 2001). Excessive nutrient enrich-
ment or eutrophication has been identified as the most impor-
tant threat to aquatic ecosystems all over the world (Smith and
Schindler 2009; Ansari et al. 2011;Woodward et al. 2012) and
is widely associated with water quality degradation, biodiver-
sity loss, and ecosystem function disruption (Rabalais 2002;
Dudgeon et al. 2006).

Microbial community is the important fundamental com-
position of aquatic ecosystem processes and functions (Loreau
2001; Cotner and Biddanda 2002). As the major both pro-
ducers and decomposers in the lake ecosystems, microbial
community plays an important role in biogeochemical cycles,
especially the carbon and nitrogen cycles (Cole et al. 2007;
Cotner et al. 2010; Reverey et al. 2016). Nutrients in freshwa-
ter systems come from various sources which are major deter-
minants of a bacterial community (Jardillier et al. 2005; Elser
et al. 2007; Barlett and Leff 2010). However, the anthropo-
genic nutrient enrichment usually caused excessive
cyanobacteria growth or severe cyanobacterial blooms (Xu
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et al. 2010; Qu et al. 2017), which has caused a critical con-
cern for the environment management authorities. Considered
one of the major reasons of aquatic ecosystem degradation
(Paerl and Huisman 2009; Michalak et al. 2013), meanwhile,
the cyanobacterial bloom also posed high threats to drinking
water supply, fisheries, and food web alteration (Paerl et al.
2011; Zanchett and Oliveira-Filho 2013; Gobler et al. 2016).
Understanding microbial community composition and func-
tional potentials is thus of great interest of ecological process-
es and mechanisms, meanwhile, it also provides an important
insight into the restoration and management of lakes
(Schiewer 1998; Wu et al. 2007; Conty and Bécares 2013).
Specifically, many cyanobacterial taxa are well known for
their ability to fix atmospheric nitrogen, which is a potentially
important route to maintain the demands of nitrogen (N) cycle
during the period of excessive growth (Latysheva et al. 2012;
Cottingham et al. 2015). The role of nutrient supply driving
cyanobacteria in lakes has been extensively studied (Paerl
et al. 2011; Wilhelm et al. 2011; Ma et al. 2015) and, never-
theless, is still obscure. Recently, the high-throughput se-
quencing provides a possible way to deeply understand the
specific nitrogen cycling pathways based on the abundance of
functional genes (Ren et al. 2017; Qu et al. 2017; Price et al.
2018). However, understanding of bacterial co-occurrence
network and the nitrogen metabolism in the cyanobacterial
bloom lake remains limited, especially in the hypereutrophic
stepper shallow lakes.

Hulun Lake is the large freshwater shallow lake located in the
steppe of northeast China. Due to climate change and anthropo-
genic activities, Hulun Lake is gradually changing from meso-
trophic condition, eutrophic condition to hypereutrophic condi-
tion. The cyanobacterial bloom in summer had been reported
(Zhai et al. 2013; Liang et al. 2016). As the largest freshwater
lake in the Inner Mongolian Plateau, the National Wetland
Nature Reserve and a Wetland of International Importance
(Ramsar 2002) study of eutrophication in Hulun Lake is press-
ing. In this study, using high-throughput Illumina sequencing of
16S rRNA, we aimed to address these questions: (1) what is the
microbial structure when dominated by cyanobacteria? (2) how
do the cyanobacteria co-occur with other bacteria? and (3) what
is the gene abundance for specific nitrogen cycling pathways?
By understanding the microbial community structures and the
potential nitrogen metabolism pathways in the lake with
cyanobacteria bloom, this study can provide an insight into the
eutrophication process in lakes.

Methods

Study area

Hulun Lake (48° 33′–49° 20′ N, 116° 58′–117° 48′ E) is located
in Hulun Buir of the Inner Mongolian Steppe in northeast China

(Fig. 1). As the fifth largest lake and the fourth largest freshwater
lake in China, Hulun Lake has a surface area of 2043 km2, an
average perimeter of 447 km, and an average depth of 5.7 m in
the wet season. Hulun Lake is located in the semi-arid high
latitude westerly region belonging to the temperate continental
climate region, with the mean annual air temperature, precipita-
tion, and evaporation of − 0.2 °C, 290 mm, and 1600 mm, re-
spectively (Xie et al. 2015; Lu et al. 2016). In the short spring and
autumn period, the strong wind blow usually provides high ef-
fects on the sediment deposition. In the winter season, the lake
surface is covered by ice and experienced an anaerobic environ-
ment about 170–180 days. Hulun Lake is mainly fed by precip-
itation and more than 80 tributaries (Li et al. 2013; Cai et al.
2016). The two major tributaries are the Wuerxun River and
Kherlen River (Fig. 1). The Kherlen River originates from the
Khentii Mountains in Mongolian People’s Republic with a
length of 1090 km in Mongolia and 206 km in China. The
Wuerxun River flows from Beier Lake, the sister lake of
Hunlun Lake located in the China-Mongolia border region.
The watershed of Hulun Lake belonged to the typical steppe
grassland type and mainly covered by Stipa krylovii Roshev,
Caragana stenophylla Pojark, and Artemisia frigida Willd (Liu
et al. 2011). During the past decade, the rapid land use change,
steppe degradation in thewatershed, and thewater contamination
of its tributaries have caused the severe nutrient enrichment in
Hulun Lake (Zhai et al. 2011; Wang et al. 2012), the
cyanobacteria bloom was reported recently (Zhai et al. 2013;
Liang et al. 2016).

Field sampling and analysis

Fieldwork was conducted and totally 15 sites were sampled in
July 2016. The conductivity, dissolved oxygen, and water
temperature were measured by using a handheld multiparam-
eter water quality monitor (YSIModel 85) in situ. The pHwas
measured by using handheld YSI Pro 10. Microbial commu-
nity samples were collected from the surface water samples at
a depth of 0.5 m. A total of 600 ml water were filtered with
Whatman Nylon membrane (pore size 0.2 μm) and immedi-
ately stored and transported in liquid nitrogen. In the lab, the
microbial samples were stored at − 80 °C refrigerator shortly
until DNA extraction. Meanwhile, surface water samples were
collected and transported immediately to the laboratory at the
portable incubator 4 °C filled with ice cubes at each site. Total
nitrogen (TN), total phosphorus (TP), soluble reactive phos-
phorus (SRP), ammonium (NH4

+), nitrate (NO3
−), and dis-

solved organic carbon (DOC) were analyzed to provide the
nutrient status of Hulun Lake (Table 1).

DNA extraction, PCR, and sequencing

The microbial community was measured and analyzed
through 16S rRNA genes. Following manufacturer protocols
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of the PowerSoil DNA Isolation Kit (MoBio, Carlsbad, CA,
USA), genomic DNA of microbe was extracted. The 16S
rRNA genes covering V3 to V4 regions were amplified using
primers 806R and 338F (Invitrogen, Vienna, Austria). The
polymerase chain reaction (PCR) was performed according
to the standard procedures of Applied Biosystems 2720
Thermal Cycler (ABI, USA). By using a 1× TAE buffer, am-
plified DNA samples were verified by 1.0% agarose gel elec-
trophoresis and purified using the Gel Extraction Kit (Qiagen,
Hilden, Germany). The final sequencing process mainly based
on a MiSeq sequencing platform (Illumina, USA). By using
the software of QIIME (Caporaso et al. 2010), sequencing
data were cleaned. Then, operational taxonomic units
(OTUs) were clustered based on the complete linkage algo-
rithm at an identity level of 97% sequence.

Statistical analysis

The relative abundances of the OTUs were calculated at each
sampling site. Spearman correlation was used to calculate the
pairwise correlation between OTUs. For the purpose of

focusing on the most commonly occurring OTUs and decreas-
ing the effects of rare OTUs, only those with relative abun-
dance higher than 0.01% were analyzed by applying the
Hmisc package in R program (version 3.3.2). Based on the
statistical analysis, the significant (P < 0.001) and robust cor-
relations (Spearman’s correlation coefficient of |R| > 0.75)
remained. This filter cutoff values allow us to focus on the
strongest correlations. The network visualization was made
using Cytoscape (version 3.4.0). Each edge represents a robust
and significant correlation and each node represents an OTU.
A set of integrative metrics were calculated and compared to
describe the network topology. For example, the average num-
ber of neighbors explains the complex pairwise connections.
And the average path length describes node distribution. The
subnetwork of cyanobacteria was extracted from the overall
network. This subnetwork provided more detailed informa-
tion about those nodes and edges which directly interacted
with the nodes of Cyanobacteria. The modular structure of
the networks was also analyzed and visualized using the
clusterMaker in Cytoscape. To get insight into the nitrogen
metabolism pathway, we used PICRUSt to identify the

Fig. 1 Study area position, watershed location, and sample sites. Microbial samples and water samples were collected at 15 sites in July 2016. Hulun
Lake located in northeast China close to the borders of China, Mongolia, and Russia

Table 1 The basic water
chemistry in Hulun Lake (SD is
the standard deviation)

Cond pH DOC TN NO3
− NH4

+ TP PO4
3

−
N:P

μS/cm mg/L mg/L mg/L mg/L mg/L mg/L

Maximum 1467 9.20 26.49 1.542 1.304 0.082 0.181 0.116 24.17

Minimum 1260 9.10 21.85 1.336 1.089 0.054 0.130 0.046 18.33

Mean 1392 9.16 23.14 1.453 1.201 0.066 0.152 0.083 21.31

SD 66 0.05 1.34 0.059 0.062 0.010 0.013 0.017 1.44
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functional genes encoding the necessary enzymes associated
with the specific nitrogen-cycling pathway based on Kyoto
Encyclopedia of Genes and Genomes (KEGG) database.

Results

Bacterial community composition and structure

In our study, 3787 bacterial OTUs with 190,671 sequences
were obtained. Totally, 39 bacterial phyla were detected in
Hulun Lake samples. The most dominant phylum was
Cyanobacteria (relative abundance of 39.1%) followed by
Proteobacteria (20.2%), Bacteroidetes (12.2%), and
Actinobacteria (12.2%) (Fig. 2). The top three orders were
Nostocales (relative abundance of 13.0%), Synechococcales
(11.1%), and Stramenopiles (8.6%), which were affiliated
with Cyanobacteria (Fig. 3). In Hulun Lake, TN concentration
was 1.453 ± 0.059 mg/L and TP concentration was 0.152 ±
0.013 mg/L (Table 1). Compared with the trophic classifica-
tion boundary (Dodds andWhiles 2010), Hulun Lake was in a
hypertrophic status enriched by both nitrogen and
phosphorus.

Bacteria co-occurrence network

In the network analysis, the overall interaction patterns were
explored in this hypereutrophic steppe lake (Fig. 4a). In addi-
tion, to get insights into co-occurrence interactions between
Cyanobacteria and other bacteria, we extracted the
cyanobacterial subnetwork (the network contained the nodes
of Cyanobacteria and the nodes which directly interacted with
the nodes of Cyanobacteria, Fig. 4b) from the overall network.
The overall network contained 784 nodes and 6761 edges
(Fig. 4a), and the cyanobacterial subnetwork contained 363
OTUs (145 OTUs belonging to Cyanobacteria) and 2156
edges (Fig. 4b). Moreover, the results showed that the positive
correlations (co-occurrence interactions between OTUs) were

dominant, containing 639 OTUs and 6574 edges (Fig. 4a).
The negative correlations (co-exclusion interactions between
OTUs), however, only contain 91 OTUs and 187 edges (Fig.
4a). The result of community cluster using clusterMaker
showed community clusters of the microbial assemblages in
Hulun Lake (Fig. 4c). It showed that the Cyanobacteria were
tightly clustered together in Cluster-2 (Fig. 4c). Cluster-1 was
dominated by Proteobacteria and Cluster-3 was dominated by
both Actinobacteria and Proteobacteria (Fig. 4c). Cluster-1
and Cluster-3 were connected mainly by negative correlations,
while Cluster-2 was connected to Cluster-1 and Cluster-3
mainly by positive correlations (Fig. 4a, c).

A total of six topological parameters, describing the OTUs
interactions, compactness, diversity, and modularity, were cal-
culated and compared between the real networks and random-
ly generated networks (Table 2). The higher values of real
network diameter, network centralization, network heteroge-
neity, characteristic path length, and clustering coefficient
were confirmed in comparing with the random networks
(Table 2). The results confirmed that both the overall network
and cyanobacterial subnetwork showed a more clustered to-
pology. Moreover, the modularity values were 0.935 and
0.924 at the overall network and Cyanobacterial network, re-
spectively. The modular network suggested when the modu-
larity value is higher than 0.4 (Newman 2006). And the results
exhibited relative high modularity in Hulun Lake (Table 2).

Potential nitrogen metabolism

In this study, we probe into nitrogen cycling from the func-
tional genes in a hypereutrophic lake, such as nitrogen fixa-
tion, nitrate reduction, nitrification, denitrification, and ammo-
nium assimilation. Overall, cyanobacteria contributed 43.25%
reads involved in nitrogen metabolism. Reads associated with
nitrogen fixation represented 5.54% of the sequences assigned
to N metabolism (Fig. 5). Reads associated with assimilatory
nitrate reduction and dissimilatory nitrate reduction represent-
ed 10.31% and 6.50% of the sequences assigned to N

Fig. 2 The average relative
abundance (bar) of the microbial
community and the standard
division (whisker) were shown at
the phylum level. The dominant
phyla with an average relative
abundance ≥ 1% were showed,
and the unclassified, unidentified,
and the ones with an average
relative abundance < 1% were
showed in the group BOthers^
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metabolism, respectively (Fig. 5). Cyanobacteria contributed
76.87% in gene sequences encoding enzymes that catalyze the
assimilatory nitrate reduction. In our study, 3.82% associated
reads contributed to the denitrification process from nitric ox-
ide to nitrogen (Fig. 5). Cyanobacteria only contributed 2.13%
in gene sequences encoding enzymes that catalyze denitrifica-
tion. In our study, reads associated with GDH and GS-
GOGAT represented 7.00% and 40.54% of the sequences
assigned to N metabolism, respectively. Cyanobacteria con-
tributed 27.03% and 36.42% in gene sequences encoding en-
zymes that catalyze GDH and GS-GOGAT pathways,
respectively.

Discussion

Cyanobacteria dominated the microorganism
composition and its possible nitrogen
and phosphorus resources

In general, Proteobacteria, Bacteroidetes, and Actinobacteria
always dominated the bacteria phyla in lake water columns
(Zwart et al. 2002; Kirchman 2002). In Hulun Lake, however,
Cyanobacteria became the most abundant phylum. This result
was in line with the previous studies of microorganisms in
Hulun Lake (Zhao et al. 2007; Chen et al. 2012; Liang et al.
2016). The high relative abundance of Cyanobacteria usually
stimulated by the high nutrient concentrations in lakes and
streams (Smith et al. 1999; Guildford and Hecky 2000), espe-
cially the high P concentration (Rejmankova and Komarkova
2000; Xu et al. 2010; Ho andMichalak 2015). Through fixing
dissolved N2 gas and releasing it into the water column in the

forms of biological available, Cyanobacteria expanded the
nitrogen pools in lake ecosystems (Howarth et al. 1988;
Cottingham et al. 2015). The phosphorus (P) usually is a lim-
iting factor for the community development of phytoplankton
(Schindler 1977); however, some cyanobacterial taxa can uti-
lize the P in sediments and increase available pools of phos-
phorus in the freshwater lake (Schindler et al. 2008; Zhu et al.
2013). Moreover, the microorganism can scavenge P and tie it
up in biomass, resulting in legacy P stocks, which can sustain
a high level of primary productivity for decades (McMahon
and Read 2013). Meanwhile, the frequently disturbed sedi-
ment and particles falling from the atmosphere may also pro-
vide more phosphorus resources and need to be considered.

Complex network with high modularity

In Hulun Lake, the co-occurrence network of microbial
assemblages represented a relatively complex structure
with high modularity. Network analysis has been used to
reveal relationships among individual and provides a use-
ful tool to understand the structure, modularity, and inter-
action in the highly complex microbial communities
(Newman 2006; Fuhrman 2009; de Menezes et al. 2015).
The network also provided a deep insight into microbial
co-occurrence patterns, community stability, and resilience
(Barberan et al., 2012; Faust and Raes 2012; Freedman and
Zak 2015). The more complex of the co-occurrence pat-
terns, the more sustainable to human disturbance.
Numerous studies have demonstrated that diverse hetero-
trophic microbes occurred within cyanobacterial blooming
lakes and rivers (Berg et al. 2009; Wilhelm et al. 2011; Cai
et al. 2013; Bagatini et al. 2014). However, we still have a

Fig. 3 The relative abundance of
microorganisms at the order level.
The orders that have an average
relative abundance higher than
1% were showed in the graph
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limited understanding of microbial co-occurrence, seasonal
variation, and responses to global climate change in the
hypereutrophic steppe lake. Modularity usually is one of
the important characteristics to understate the tightly-
connected nodes (or individuals in the aquatic ecosystems)
in the large complex system (Newman 2006), providing
further understanding of microbial interactions across the
view of whole lake ecosystems and to enhance understand-
ing of their co-occurrence and co-exclusion relationships
(de Menezes et al. 2015; Qu et al. 2017; Ren et al. 2017).

In the Hunlun Lake study, the widely positive correlations
were identified across different phyla of the microbial
community. The symbiotic relationship and competition
relationship usually showed more intensive species inter-
actions than with the rest of the species in the community
(Tonkin et al. 2018). And highly interconnected species
grouped into a module represented as one of the character-
istics of the eutrophic and hypereutrophic freshwater lakes
or reservoirs (Newman 2006; Conty and Bécares 2013;
Freedman and Zak 2015; Lee and Biggs 2015).

Fig. 4 The edge-weighted
interactions network based on the
Spearman correlation coefficient
between OTUs. The blue line and
black line indicate positive (co-
occurrence) and negative
association (co-exclusion),
respectively. The node size
indicates the relative abundance.
(a) the overall network; (b) the
cyanobacterial subnetwork; (c)
the result of community cluster
using ClusterMaker app
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Microorganisms play a key role in nitrogen
metabolism

Microbial community plays a key role in nitrogen metabo-
lism, which is a complex process that involves various nitro-
gen chemical forms (Ollivier et al. 2011). Usually, under-
standing the nitrogen metabolism processes is important
and would be the first step in order to properly manage
aquatic ecosystems and prevent eutrophic lakes (Paerl and
Otten 2013; McMahon and Read 2013; Ma et al. 2015). In
the lake with cyanobacterial bloom, it is also interesting to
compare the contributions of cyanobacteria and other bacte-
ria to nitrogen metabolism (Rabalais 2002; Lehman 2011;
Paerl et al. 2011), Cyanobacteria, mostly Nostoceae,
Rivulariaceae, Scytonemataceae, and Stigonemataceae, and
the other few organisms those which could carry out the
nitrogen fixation process (Burris and Roberts 1993;
Bernhard 2012). In our study, Cyanobacteria contributed
49.32% in gene sequences encoding enzymes that catalyze
nitrogen fixation. Low concentration of ammonium and N:P
ratios can stimulate some N2-fixing bacteria (Meeks et al.
1983; Smith et al. 1999; Guildford and Hecky 2000). The

assimilatory process is a microbial process that starts with
the reduction of NO3

− to NO2
− and then to NH4

+, which is a
kind of inorganic nitrogen and can easily be bioavailable to
the cell to incorporate nitrogen into biomolecules, then can
be transformed by nitrification (Richardson and Watmough
1999). It has been widely reported that nutrient enrichment,
such as the increasing the concentration of NO3

− could stim-
ulate the growth rate of microorganisms. The functional
genes including necessary enzyme-coding sequences re-
quired for nitrate reduction would increase significantly
(Kirchman 2002; Förster et al. 2003). The other pathway
retaining the bioavailable nitrogen in the form of ammonium
is the dissimilatory nitrate reduction to ammonia (DNRA)
(Tiedje et al. 1982; Zumft 1997). However, DNRA is also
a competing process to denitrification, which is the dominant
pathway to the removal of nitrogen from freshwater ecosys-
tems by microorganisms (Tiedje et al. 1982; Seitzinger
1988). In our study, the denitrification was relatively low
and only about 3.82% of the reads associated to denitrifica-
tion. And Cyanobacteria only contributed 2.13% in gene
sequences encoding enzymes that catalyze denitrification
(Fig. 5).

Table 2 Topological parameters
of the overall microbial network
and the cyanobacterial
subnetwork

Overall network Cyanobacterial subnetwork

Random Real Random Real

Number of nodes 784 784 363 363

Network diameter 4 13 4 13

Network centralization 0.015 0.075 0.025 0.078

Network heterogeneity 0.239 1.078 0.291 0.780

Characteristic path length 2.653 4.238 2.649 4.258

Clustering coefficient 0.022 0.432 0.035 0.470

Modularity 0.385 0.935 0.388 0.924

Fig. 5 A simplified nitrogen cycling schematic based on KEGG nitrogen
metabolism pathway. The interconnected biogeochemical pathways
major included (1) nitrogen fixation from nitrogen to ammonia, (2)
nitrification from ammonia to nitrate, (3) both dissimilatory and
assimilatory nitrate reduction at the reverse direction from nitrate to
ammonia, (4) denitrification from nitrite to nitrogen, (5) anammox from

both nitrite and ammonia to nitrogen, and (5) nitrate reduction through the
GDH and GS-GOGAT. The nitrogen forms ranged from the oxidation
states in nitrate (+5) to reduction states in ammonium (− 3). Based on
KEGG database, the percentages of gene reads associated with each stage
of nitrogen cycles were predicated using PICRUSt
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The ammonia/ammonium incorporation pathways, the gluta-
mine synthetase–glutamate synthase (GS-GOGAT) pathway and
the NADP-dependent glutamate dehydrogenase (GDH), were
well known in microorganisms. (Tempest et al. 1970). In our
study, Cyanobacteria contributed 36.42% and 27.03% in gene
sequences encoding enzymes that catalyze the GS-GOGAT and
GDH pathways, respectively. The pathways of GS-GOGAT
(ammonium-glutamine-glutamate) and GDH (ammonium-
glutamate) provide important nitrogen resources for the synthesis
of N-containing compounds in microorganisms (Stadtman
2001). Although it is also well known that the GS-GOGAT
pathway usually dominated the glutamate synthesis when the
concentration of NH4

+ is low (Helling 1998), and it may highly
related with cyanotoxins releasing (Banerjee et al. 2017).

Conclusion

This study explored the microbial community structure and po-
tential function in Hulun Lake, a shallow hypereutrophic steppe
lake, the fifth largest lake and the fourth largest freshwater lake in
China. The most dominant phylum was Cyanobacteria (28.9%)
which most likely be stimulated by the high nutrient concentra-
tions and a relative lowN:P ratio. Based onmicrobial community
and its functional data, a bacterial co-occurrence network and
potential pathways of nitrogen cycling in the form of the simpli-
fied model were showed. The microbial assemblages in Hulun
Lake exhibited a modular structure and co-occurred with other
bacteria. Themajor pathwayswereGS-GOGATand assimilatory
nitrate reduction, which highlight the importance of nitrate reduc-
tion and glutamate synthesis. The lower abundance of gene reads
associated with the denitrification pathway suggested that the
nitrogen in the water column is mainly retained in the lake.
Based on metagenomic comparisons of cyanobacteria and other
bacteria, cyanobacteria contributed more to the abundance of
functional genes than OTUs. Most of the gene reads involved
in assimilatory nitrate reduction and a half in nitrogen fixation
were contributed by cyanobacteria. Eutrophication process and
excessive growth of Cyanobacteria have been treated as one of
the greatest threats to inland water during the past several de-
cades. This result shed light on community structure and nitrogen
metabolism of microbial assemblages in a hypereutrophic lake.
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