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Abstract
This study investigates the impacts of different geological units on groundwater quality of an aquifer in southern Iran. The
Kriging interpolation technique with a Gaussian semivariogram model was employed to prepare groundwater maps for different
water quality constituents. In the next stage, two different models based on fuzzy analytic hierarchy process (AHP) and
Dempster–Shafer theory (DST) were used to evaluate the overall water quality index based on the World Health
Organization’s drinking water standard in different parts of the aquifer. The DST model was able to generate water quality maps
with 99.5%, 99%, and 95% confidence levels. The water quality maps were subsequently compared with the geology map of the
area to determine the effects of different soil types on the water quality of the aquifer. Both methods showed poor water quality
indices in the areas with an Asmari formation containing elevated levels of chloride and sodium ions. Comparison of water
quality maps generated by the fuzzy-AHP and DSTmodel revealed that the DSTcould more reliably handle the uncertainty in the
water quality data, and thus was able to generate more accurate water quality maps. Increasing the confidence level in the DST
model yielded water quality maps with a decreased overall water quality index. Results of this study could assist water manage-
ment practices to generate water quality maps for their groundwater resources with confidence levels commensurate socio-
economic importance of the region.
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Decision-making

Introduction

Groundwater is considered as an indispensable water source
for potable, agricultural, and industrial purposes in arid and
semi-arid areas. The increased population and industrializa-
tion over the recent years have intensified the water extraction
from aquifers, deteriorating the quality of groundwater re-
sources (Amer et al. 2012). Groundwater resources in arid
and semi-arid areas are typically located in the vicinity of salt
domes. Dissolution of minerals from the salt domes into the
groundwater can significantly decrease the quality of these
limited freshwater (Islam et al. 2017). Hence, monitoring the
groundwater quality variations in both spatial and temporal
scales is of great importance in water-scarce regions.

In recent years, various data-driven models including arti-
ficial neural networks (ANNs), adaptive-network-based fuzzy
inference system (ANFIS), support vector regressions
(SVRs), locally weighted projection regressions (LWPRs),
and relevance vector machines (LVMs) have been employed
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to simulate the groundwater quality (Bieroza et al. 2018;
Diamantini et al. 2018; Rowles et al. 2018; Todorov et al.
2018; Villa-Achupallas et al. 2018; Wu et al. 2018). Among
them, ANFIS and ANN systems have been proven to be
promising in water resources quality modeling (Cordoba
et al. 2014; Gazzaz et al. 2012; Lallahem and Hani 2017;
Nadiri et al. 2017; Najah et al. 2013; Sarkar and Pandey
2015). Kuo et al. (2004) used three different ANN systems
to model the groundwater quality variations in Taiwan. Their
results indicated that including the data set’s maximum and
minimum values in the training process could increase the
forecast accuracy of the model. Khalil et al. (2005) used
ANN, SVM, LWPR, and RVM systems to predict groundwa-
ter quality in Sumas-Blaine aquifer, north-western
Washington State. They reported that the learning algorithm
in RVM, SVM, and LWPR could filter the noise from the
inputs, whereas insufficient training of ANNs could lead to
overfitting. Khashei-Siuki and Sarbazi (2015) used ANFIS,
ANN, inverse distance weighted (IDW), kriging, and co-
kriging geostatistical models to predict groundwater quality
in Mashhad plain, Iran. They reported that compared with
other methods, the ANN system could more accurately predict
the spatial groundwater quality variations.

Rahimi and Mokarram (2012) used a linear fuzzy method
coupled with GIS to generate fuzzy groundwater quality maps
for an aquifer in southwestern Iran. Their results indicated that
the coupled system could accurately map the aquifer’s spatial
water quality variations. Mokarram and Sathyamoorthy
(2016) investigated the quality of groundwaters in western
Iran, based on both concentrations of inorganic constituents
and landform classes. Their results indicated that a trained
fuzzy system based on the analytic hierarchy process (AHP)
could successfully predict water quality of water resources
based on the study site’s digital elevation model (DEM).

Discrete water quality measurements might follow a spe-
cific statistical distribution system. Hence, an appropriate un-
certainty model that best suits the system’s statistical distribu-
tion should be used for uncertainty manage purposes. Non-
definite model components, stemmed from either the nature of
the data or model principles, can decrease the reliability of the
model’s outputs, increasing the uncertainty in the decision-
making process. Different methods including the Bayesian
theory (Gershman and Blei 2012), fuzzy theory (Zadeh
1965), and Dempster–Shafer (Shafer 1976) have been
employed to incorporate the uncertainty in the decision-
making process. Fuzzy systems are able to consider different
principle and categorizations in the decision-making process
(Venkatramanan et al. 2015).

The Dempster–Shafer theory (DST) is particularly of inter-
est as it can consider both observational and epistemological
uncertainties. The mathematical theory of evidence was first
introduced by Dempster in 1976 (Dempster 1968; Dempster
2008) and it was developed by Shafer in 1976 (Shafer 1976).

This theory is the generalized form of the Bayesian theory that
simultaneously considers both uncertainty and inaccuracy in
the system (Chaabane et al. 2008). This theory is of significant
importance as it is capable of considering conditions or events
with different probabilities. This theory uses a probability in-
terval, ranging from the lowest probability, known as belief, to
the highest probability (plausibility) for considering uncertain-
ty in a system. The DST can be used as a tool to analyze
uncertainty in the imprecise probability theory (Helton
1997). The theory of interval statistical models (Cumming
and Fidler 2005) and the interval probability theory
(Dempster 2008) are two methods providing upper and
lower probability bounds for imprecise probabilities. Only a
few studies have used the DST in the areas of water resources
and groundwater management. Neshat and Pradhan (2015)
used the DST and GIS for risk assessment of groundwater
pollution. They were able to present groundwater pollution
riskmaps based on the DST. Rahmati andMelesse (2016) also
used the DST for predicting groundwater quality in Khuzestan
province, Iran. The results showed that the DST model is
suitable for the determination of groundwater quality.

Extensive fieldwork and the high cost required for reg-
ular water quality monitoring of large aquifers can limit
the availability of high-quality data from the entire extents
of the aquifer. Hence, the use of flexible methods based
on DST or fuzzy theory can substantially befit the ground-
water management practices to handle the uncertainties
associated with non-inclusive, patchy but still precious
water quality data, and to reliably estimate the groundwa-
ter quality of the entire area.

However, the use of differences in principles and method-
ologies used in Bayesian or Dempster–Shafer or fuzzy theo-
ries might result in different water quality predictions and thus
different water quality maps, particularly when predictions
with higher confidence levels are demanded.

Only a few studies have attempted to characterize the dif-
ferences in water quality maps obtained from different theo-
ries. The current study compares the DST and fuzzy AHP
methods for predicting water quality in Firoozabad aquifer,
southern Iran. A prolonged drought in this region, combined
with over-extraction from groundwater wells, and salinization
from different geological units including salt dome have sig-
nificantly influenced the groundwater quality of this aquifer.
In addition, different geological formations including salt
domes have significantly influenced the groundwater quality
of this aquifer. This study compares the water quality maps
with different confidence levels generated based on the DST
and fuzzy AHP methods to investigate the effects of different
geological units in the region on salinity and overall water
quality index of the aquifer.

To date, no specific functional toolbox has been developed
for incorporating DST in GIS and remote sensing packages.
Hence, this study employed the imprecise probability
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propagation (IPP) Toolbox in MATLAB R2017a for applying
the DST to raster image data sets.

Methodology

Study site

This study focuses on Firoozabad aquifer with a surface area
of 566.25 km2, located in a semi-arid climate (between 28°
36′–28° 57′ N and 52° 16′–52° 46′ E) in southern Fars
Province, Iran (Fig. 1). This aquifer is an important freshwater
source for drinking water and agriculture applications in the
region.

The lowest and highest elevations in the study site are 1134
m and 2885 m, respectively. The water quality of this aquifer
is influenced by salt domes covering an area of 2.43 km2 in the
south and east of aquifer (Fig. 2a). These domes with an av-
erage height of 220 m (1320 m above sea level) are results of
Hormuz series evapotranspiration during late-Precambrian to
the middle-Cambrian period which are now exposed to the
Earth surface. Saline springs can also be found in the vicinity
of the salt dome. Figure 2a shows different geological forma-
tions in the study area. Table 1 summarizes the surface area of
different landforms in Firoozabad aquifer. As shown in Fig. 2a
and Table 1, the quaternary (alluvial terraces) and OMas
(Asmari) geological units with areas of 281.62 km2 and
119.82 km2, respectively cover a majority of surface area of
the study site.

In order to evaluate the groundwater quality over the study
period (23 September 2017–21 March 2017), water samples
from 150 different monitoring wells (Fig. 2b) were obtained in
a monthly manner and were subjected to water quality analy-
sis to measure Cl−, Na+, total dissolved solids (TDS),

electrical conductivity (EC), Ca2+, Mg2+, SO4
2−, and Th con-

centrations in samples (Fars Regional Water Authority, 2016).
Three samples were collected from each sampling point, and
the average of the three concentrations for each water quality
constituent was reported.

Geostatistical analyses

Interpolations for different water quality data, i.e., Cl−, Na+,
TDS, EC, Ca2+, Mg2+, SO4

2−, and Th concentrations, were
performed based on the ordinary Kriging method using
ArcGIS v.10.5 (ESRI 2018), which subsequently were used
as the input data for DST and fuzzy-AHP methods. The ordi-
nary kriging is a promising interpolation technique for data
sets with special autocorrelation or directional bias. The ordi-
nary kinging method interpolates the sample values in unmea-
sured locations based on the influence of surrounding mea-
sured values. In the kriging method, the influence of surround-
ing measured values can be determined based on the
semivariance of data’s spatial distribution. The semivariance
(γ) for water quality parameter Z measured at different loca-
tions can be determined as (Oliver and Webster 1990):

γ hð Þ ¼ 1

2n
∑n

i¼1 Z xið Þ−Z xi þ hð Þ½ �2 ð1Þ

where h is the distance between the sampling locations of xi
and xi + h, Z(xi) and Z(xi + h) are the measured values of
variable Z at the corresponding locations, and n is the number
of pairs of sample measurements.

Basic spatial parameters including nugget and partial sill
for different semivariogram models including circular, spher-
ical, exponential, and Gaussian were calculated. Nugget de-
fines the micro-scale variability and measurement error of

Fig. 1 Location and digital elevation model of Firozabad aquifer (study area), and location of the salt dome in the south of the aquifer (source: http://
earthexplorer.usgs.gov)
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collected data points, whereas partial sill indicates the amount
of variation in the data (López-Granados et al. 2002).

Preliminary evaluations showed that among different
models (circular, spherical, exponential, and Gaussian
models), the Gaussian model could best describe the distribu-
tion of data points; hence, semivariance model based on the
Gaussian model was used for interpolation purposes.

Fuzzy analytic hierarchy process (AHP)

Membership functions (MFs) were used to prepare fuzzy
maps for water quality parameters. In general, a fuzzy set of
Z in B can be defined as:

Z ¼ b;μA bð Þ j b∈Bf g ð2Þ
where μA(b) is called the membership function of b in B. The
MF linearly maps each element of b to a membership value
between 0 and 1, indicating the lowest and the highest degrees
for a membersh ip , respect ive ly (Mokarram and

Sathyamoorthy 2016; Shobha et al. 2013). Fuzzy maps for
each input data in the study area were prepared based on the
World Health Organization’s (WHO) drinking water quality
standard (WHO, 2017). According toWHO, an elevated level
for each water quality parameter indicates a decreased water
quality (Shobha et al. 2013). The fuzzy rule equation for each
parameter was defined as:

1; x≤v
Q−x=Q−i
0; x > Q

8<
: v < x≤Q ð3Þ

In Eq. (3),Qwas determined based on the permissible limit
for each parameter in the WHO’s drinking water quality stan-
dard (WHO 2017). Table 2 summarizes the limits used based
on WHO’s water quality standard for each water quality
parameter.

An analytical hierarchy process (AHP) was used in order to
overly the fuzzy maps and subsequently preparing the overall
drinking water quality index map (Fig. 3). AHP is a multi-
criteria decision-making method based on a pair-wise

Table 2 Fuzzy limits
considered for each
water quality parameter
based on WHO’s
drinking water quality
standard

Parameter Limit

Ca2+ (mg L−1) 200

Cl− (mg L−1) 200

Mg2+ (mg L−1) 150

Th (mg L−1) 500

Na+ (mg L−1) 200

SO4
2− (mg L−1) 200

TDS (mg L−1) 500

EC (dS m−1) 0.3

Fig. 2 a Geological formations in the study area and b location of monitoring wells used for water quality analysis

Table 1 Surface area of different landforms in Firoozabad aquifer

Formation Description Area (km2) Area (%)

OMas Asmari 119.82 21.16

Mn Mishan 4.17 0.74

Mr Razak 115.93 20.47

Kb Bangestan 32.90 5.81

EK Pabdeh-Gurpi 5.39 0.95

Mgs Gachsaran 6.43 1.14

Qt2 Quaternary 281.62 49.73

Total 566.25 100.00
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comparison matrix (Saaty 1980). The matrix is called consis-
tent if the transitivity (Eq. (4)) and reciprocity (Eq. (5)) rules
are respected:

bij ¼ bim:bkj ð4Þ

bij ¼ 1

bji
ð5Þ

where i, j, and m are all of the alternatives of the matrix.
In a consistent matrix (Eq. (5)), all the comparisons bij obey

the equality aij = pi/pj, where pi is the priority of the alternative
i. A detailed description of the fuzzy AHP method can be
found in Bellman and Zadeh (1970).

Dempster–Shafer

The detection framework

Dempster-Shafer theory (DST) was used to prepare water
quality maps with different confidence levels. The DST is
based on the beliefs that are concluded from evidence such
that the belief structure of the control theory is related to the
classical probability model (Shafer 1976). Suppose, θ is a
finite set of elements, where an element can be a hypothesis,

an objective, or a system status. θ set is called the detection
framework that can be determined by Ω(θ):

θ ¼ a; b; cf g and Ω θð Þ
¼ ϕ af g; bf g; cf g; a; bf g; a; cf g; b; cf g; a; b; cf gf g

ð6Þ

Φ is an empty set that denotes the perfect status of the
system. A = {a, b} is the subset of θ, indicating A ⊂ θ.
Therefore, A presents a system malfunction in a or b, and θ
represents the system malfunction in a, b, or c (Shafer 1976).

Mass function, focal elements, and core elements

In order to show the reliability of any subset of the decision-
making framework, the mass function is defined. The mass
function is shown by m and is defined as Eqs. (7), (8), and (9)
(Shafer 1976):

m : Ω θð Þ→ 0; 1½ � ð7Þ
Ω θð Þ ¼ 0 ð8Þ
∑A⊂Ω θð Þm Að Þ ¼ 1 ð9Þ

where m mass function is called a function of the basic prob-
ability assignment (BPA).

Fig. 3 Uncertainty in the belief
space in Dempster–Shafer theory

Table 3 Meaning of different
belief intervals in the DST model Interval Description

[0, 0] Certainly no support is made of the hypothesis

[1, 1] The theory should be fully supported

[0, 1] The information is absolutely unknown, and no interpretation can be made based on the evidence

Interval Supporting the theory and decision-making

[0.3, 1] Intend to support the theory

[0, 0.6] The support from the theory is decreased

19356 Environ Sci Pollut Res (2019) 26:19352–19364



Equation (8) means that the scope of this function is on the
entire set of the detection framework that is (Ω2) and its range is
[0 1]. The function m(A) represents the proportion of the share
owned by of the set A from all the relevant and available evi-
dence and support for the claim about a particular element of θ.

In evaluating a condition in which the system suffers from
a defect,m(A) can be represented as a degree of belief that has
been obtained as a result of the observations related to a par-
ticular defect. Different evidence and information create vari-
ous degrees of belief with respect to the manifested defect.
Each subset A from θ is called a focal element such that
m(A) > 0. Moreover, c is defined as a core element of the mass
function in θ as represented in Eq. (10) (Shafer 1976).

c ¼ Um Að Þ≠0A ð10Þ

The belief function is defined as Eq. (11):

Bel Að Þ ¼ ∑B⊂Am Bð Þ and Bel : Ω θð Þ→ 0; 1½ � ð11Þ

The plausibility function is determined as Eq. (12):

Pl Að Þ ¼ 1−Bel A
� �

¼ ∑B∩A≠Φm Bð Þ where Pl : Ω θð Þ→ 0; 1½ � ð12Þ

where Bel(A) function measures the total amount of probabil-
ity that should be among the set A elements. As shown in Fig.

3, Bel(A) denotes the significant certainty of the belief A, or in
other words, it shows the lower limit for probability A. The
function PI(A) measures the maximum amount of probability
that can be distributed among the elements of A. PI(A) de-
scribes the degree of the general belief related to A and is
regarded as the upper limit function for probability A (Shafer
1976). Belief Interval [Bel(A) PI(A)] reflects the uncertainty
belief space and the space size PI(A) − Bel(A) describes the
unbeknownst related to set A (Fig. 3). Table 3 summarizes the
meaning of different belief intervals in DST (Shafer 1976).

Fig. 4 Flowchart used for generating the groundwater quality maps based on fuzzy-AHP and DST methods

Table 4 Concentrations of different quality parameters obtained from
150 monitoring wells during for the study period

Parameter Range Mean Standard deviation

Ca2+ (mg L−1) 1.5–596 195 89

Cl− (mg L−1) 25.12–437 84 45

Na+ (mg L−1) 1.82–458 51 45

Mg2+ (mg L−1) 3.2–569 137 80

SO4
2− (mg L−1) 0.12–584 137 77

TH (mg L−1) 72.5–437 180 77

TDS (mg L−1) 55–945 295 117

EC (dS m−1) 0.39–1.75 0.71 0.15

Environ Sci Pollut Res (2019) 26:19352–19364 19357



The plausibility function is related to the belief function by
a mediator function called doubt function as shown in Eq. (13)
(Shafer 1976):

Pl Að Þ ¼ 1−Bel A
� �

Pl Að Þ ¼ 1−Doubt Að Þ

(
ð13Þ

where A is the complement of A and Doubt(A) represent the
doubt function for set A.

The methodology used in this research is summarized
in Fig. 3.

To date, there is no specific functional toolbox for
implementing the DST in GIS and remote sensing packages.
In this study, a model based on DST was implemented using
imprecise probability propagation (IPP) Toolbox inMATLAB
R2017a. As the design of this toolbox is based on linear ma-
trices, some modifications were performed to be able to pro-
cess raster image data sets. As all input image data needed to
be of the same size, hence images with a pixel size of 1 km ×
1 km were prepared. In the next step, in order to increase a

high computation speed, windows of 4 × 4 pixels were select-
ed and subjected to the DST model analysis. This loop was
continued until the DST model was implemented on entire
pixels.

Model comparison

In order to evaluate the effects of salt domes on aquifer’s
water, groundwater quality maps based on both fuzzy AHP
and DST models were prepared. In both models, the overall
water quality index for models was defined based on WHO’s
drinking water quality standard (Table 2). Figure 4 represents
the flowchart used for comparing the water quality maps gen-
erated by the fuzzy AHP and DST models. The DST model
could generate water quality maps with three confidence
levels of 99.5%, 99%, and 95%.

Water quality data from 150 monitoring wells were used in
this study. The data from 110 monitoring wells were used for
generating the water quality maps based on both the DST and
fuzzy AHPmethods (train point in Fig. 2b).Water quality data

Fig. 5 Example semivariogram with a Gaussian model fitted to the TDS observations in the study area

Table 5 Parameters in different semivariogrammodels employed for generating interpolationmaps using the krigingmethod for different water quality
constituents

Parameter Circular Gaussian Spherical Exponential

Nugget Sill Nugget/
Sill

RMSE Nugget Sill Nugget/
Sill

RMSE Nugget Sill Nugget/
Sill

RMSE Nugget Sill Nugget/
Sill

RMSE

TDS 0.73 0.82 0.89 0.80 0.24 1.01 0.24 0.79 0.41 0.79 0.52 0.80 0.55 0.66 0.83 0.81

Th 0.62 0.68 0.91 0.80 0.53 0.58 0.91 0.80 0.61 0.89 0.69 0.80 0.69 0.74 0.93 0.82

Ca2+ 0.10 0.89 0.11 0.92 0.30 0.98 0.31 0.91 0.05 0.94 0.05 0.90 0.21 0.77 0.27 0.93

Mg2+ 0.43 0.91 0.47 0.61 0.33 0.94 0.35 0.60 0.43 0.93 0.46 0.60 0.54 0.82 0.66 0.62

Na+ 0.42 0.53 0.79 0.90 0.80 0.85 0.94 0.90 0.87 0.98 0.89 0.90 0.89 0.97 0.92 0.91

Cl− 0.49 0.77 0.64 0.77 0.45 0.88 0.51 0.76 0.48 0.78 0.62 0.78 0.58 0.70 0.83 0.78

SO42− 0.54 0.63 0.86 0.91 0.33 0.65 0.51 0.89 0.51 0.56 0.91 0.91 0.62 0.75 0.83 0.92

EC 0.43 0.60 0.72 0.56 0.08 0.87 0.09 0.53 0.41 0.60 0.68 0.56 0.51 0.58 0.88 0.62
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from 40 different monitoring wells (test point in Fig. 2b) were
used to evaluate the water quality maps by the two models.

Root mean squared error (RMSE) was used to evaluate the
performance of different interpolation models. RMSE can be
defined as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑N

i¼1 S xið Þ−Ŝ̂ xið Þ� �2r
ð14Þ

where Ŝ (xi) is the estimated value, S(xi) is the observed value,
and N is the number of values in the dataset.

Results and discussion

Geostatistical analysis

Table 4 summarizes the range of concentrations observed for
different water quality parameters in 150 monitoring wells
during September 23, 2017–March 21, 2017.

High spatial variations were observed for most of water
quality parameters. This suggests the effects of specific geo-
logical units on water quality of the aquifer. The ordinary
kriging interpolation method was used to evaluate the spatial
variations of water quality parameters across the aquifer.
Table 5 represents the RMSE between the measured and fitted
semivariogram models in 40 test points for each water param-
eter. Among different theoretical models, the Gaussian model
was found as the best fit. Table 5 also represents the calculated
semivariogram parameters for each water parameter. The nug-
get values indicate the magnitude of spatial variability (includ-
ing measurement errors) in data at scales smaller than sam-
pling distances, and the sill values reflect to the total variance
observed in data. The difference between the sill and the nug-
get (i.e., partial sill) for each parameter indicates the amount of
variance that could be explained by the observations obtained

from the sampling points with specific distances from each
other (Karl and Maurer 2010; Oliver and Webster 1990).
The nugget to sill ratio indicates the fraction of the total var-
iation that cannot be described by observed spatial depen-
dence of the variable (Karl and Maurer 2010). Figure 5 shows
an example Gaussian semivariogram model fitted to the ob-
served TDS data.

As shown in Table 5, the Gaussian model typically exhib-
ited smaller nugget to sill rations and yielded relatively lower
RMSE values for all water quality constituents compared with
other models. This means that the Gaussian exhibited higher
spatial correlations at longer distances and less interpolation
errors for all water quality constituents. Therefore, the ordi-
nary kriging method based on a Gaussian semivariogram
model was used for analyzing the spatial variations of differ-
ent water quality constituents in the study area (Fig. 6).

Figures 6a and 4b show the distribution of EC (raging
between 0.39 and 1.7 ds m−1) and Cl− (ranging between
25.12 and 437 mg L−1) in the study area, respectively. The
lowest concentrations of these water quality constituents oc-
curred in northern and northwestern areas. Concentration
Mg2+ ranged between 3.2 and 569 mg L−1 where the highest

Fig. 7 Weights assigned to each water quality constituent for creating the overall water quality index in the fuzzy AHP model

Fig. 8 The average water quality index map generated based on the fuzzy
AHP method for the period of September 23, 2017–March 21, 2017. A
low water quality index (red) indicates a poor groundwater quality and a
high water quality index (blue) indicates a high groundwater quality

�Fig. 6 Maps of different water quality constituents including EC (a),
Mg2+ (b), Na− (c), Cl− (d), SO4

2− (e), TDS (f), Th (g), and Ca2+ (h).
The maps were generated by interpolating the measured values across
the aquifer based on the ordinary kriging interpolation method with a
Gaussian semivariance model

19360 Environ Sci Pollut Res (2019) 26:19352–19364



and the lowest concentrations occurred in southern and west-
ern parts of the aquifer, respectively (Fig. 6c). Na+ in the entire
study area except for small parts of western parts was almost
less than 10mg L−1 (Fig. 6d). The concentration of SO4

2−was

between 0.12 and 589 mg L−1 with the lowest concentrations
in western and northern areas (Fig. 6e). Nearly similar spatial
variations were for TDS and Th concentrations for which the
lowest concentrations occurred in western areas (Fig. 6f and
g). The spatial variation for Ca2+ was slightly different as its
highest concentrations (more than 500 mg L−1) occurred in
northern and northeastern parts (Fig. 6h).

Comparing the overall water quality index based
on fuzzy-AHP and DST methods

Equation (3) was used to defineMF of between [0, 1] for each
water quality parameter. In each MF, the very low and very
high concentrations for each constituent were close to 1 and 0,
respectively. Hence, for Ca2+, Cl−, Mg2+, Th, Na+, EC, SO4

2−,
and TDS concentrations of greater than 200, 200, 150, 500,
200, 3000, 200, and 500 mg L−1, respectively, MFs = 0 were
considered. Figure 7 shows the weight assigned to each water
quality parameter for generating the overall water quality in-
dex based on the fuzzy AHP method (Mokarram and
Sathyamoorthy 2016).

Figure 8 represents the overall water quality map generated
based on the fuzzy AHP system. The map shows the average
index during for the period of September 23, 2017 to
March 21, 2017.

As seen, the fuzzy-AHP water quality index ranged be-
tween 0 and 0.94. In Fig. 8 the blue color (high water quality
index) indicates the areas with a high groundwater quality; the
red color (low water quality index) indicates areas with a low
groundwater quality. As seen, central areas towards the south-
ern parts of the aquifer showed the lowest drinking water
quality index, whereas small areas in the eastern, western,
and northern parts showed a high water quality index.

Figure 9 shows the water quality maps with different con-
fidence levels generated based on the DST model.

Generally five water classes of poor, low, moderate,
good, and high with the overall water quality index ranges
of (0, 0.2), (0.2, 0.4), (0.4, 0.6), (0.6, 0.8), and (0.8, 1),
respectively, were defined in both DST and fuzzy AHP

Fig. 9 The overall water quality index based on the Dempster–Shafer
model with 99.5% (a) confidence level, 99% confidence level (b), and
95% confidence level (c) for the period of September 23, 2017–March 21,
2017

Table 6 The percentage of the area of each class of water quality for
each method

Overall water quality DST Fuzzy AHP

Confidence level

95% 99% 99.5%

Poor (0–0.2) 12.64 13.45 13.84 13.26

Low (0.2–0.4) 26.21 26.54 31.58 29.77

Moderate (0.4–0.6) 25.37 30.23 32.35 34.00

Good (0.6–0.8) 24.93 22.35 18.51 14.52

High (0.8–1) 10.84 7.43 3.71 8.45
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models (Table 6). Table 6 represents the surface area of
the study site covered by each water quality class based
on the fuzzy AHP and DST models.

Based on fuzzy AHP model, the majority of the study area
(34%) was ranked with as moderate (0.4–0.6) water quality. In
Dempster–Shafer models with different confidence levels, the
majority of the study area was ranked as moderate or low
(Table 6). Both fuzzy AHP and DST models recognized the
western areas of the aquifer with a quaternary soil type as the
regions with the highest water quality index.

In general, the results of the DST model showed that (Fig.
9) by decreasing the confidence level, the areas with higher

water quality indices tended to increase. In comparison, the
fuzzy model had a faster computation speed. However, the
DST model was capable of generating water quality maps
with different confidence levels. Therefore, the DST model
can be used for generating management and planning water
quality zoningmapswith preferred confidence levels based on
the economic conditions and importance of the study area.

Formation type could influence the water quality of an
aquifer. Figure 2a was used to evaluate the effects of geolog-
ical formation type in the region on water quality of the aqui-
fer. As seen from Fig. 2a, quaternary sediments cover a ma-
jority of the study area. The coarse-grained sediments have
resulted in a high porosity in and thus a high permeability in
these areas (Panno and Hackley 2010). Hence, relatively
higher water quality indices could be observed in areas with
quaternary sediments. In contrast, the areas with an Asmari
(OMas) formation composed of limestone, salt domes, dolo-
mitic limestone, and marl (Fig. 2a) contain elevated levels of
calcium, sodium, magnesium, and chloride ions (Panno and
Hackley 2010). Razak formation composed of mainly con-
glomerates, marls, and shale with interactions of limestone
(Ghazavi and Emami 2017) can also contribute to the elevated
concentrations of minerals in central and southern areas.
Hence, a poor water quality index could be observed in these
areas. In areas with a Bangestan formation, water quality is
better than the Asmari formation, which could be due to less
salt content of the Bangestan (Panno and Hackley 2010).

Comparison of the geological maps and the water quality
maps prepared based on the DST and fuzzy-AHP models in-
dicates that in areas with Kb (Bangestan) and Mm (Mishan)
formations, both methods yielded moderate water quality in-
dices. In southeastern, and central towards the southern areas,
the OMas formation could affect the quality of groundwater,
and therefore both fuzzy-AHP and DST models showed low
water quality indices in these regions. The elevation of OMas
formation (Asmari) in the eastern and northeastern areas is

Fig. 10 EC values and their
corresponding water quality
indices determined based on
fuzzy-AHP and Dempster–Shafer
theory with confidence levels of
95%, 99%, and 99.5% in 14 ran-
domly select groundwater quality
stations

Table 7 Comparison of water quality index in DST and fuzzy AHP
models based on EC values in randomly selected 14 observation points

Number X Y EC
(dS m−1)

DST Fuzzy-AHP

Confidence level

99% 99.5% 95%

1 52.37° 28.93° 0.4 0.8 0.78 0.89 0.5

2 52.68° 28.73° 0.4 0.5 0.4 0.58 0.1

3 52.43° 28.86° 0.43 0.6 0.7 0.7 0.5

4 52.53° 28.90° 0.5 0.49 0.47 0.5 0.5

5 52.63° 28.86° 0.53 0.48 0.45 0.6 0.2

6 52.64° 28.83° 0.6 0.42 0.42 0.51 0.58

7 52.49° 28.80° 0.82 0.3 0.25 0.4 0.8

8 52.55° 28.72° 0.83 0.3 0.4 0.4 0.42

9 52.54° 28.84° 0.9 0.4 0.3 0.42 0.42

10 52.66° 28.69° 0.92 0.4 0.4 0.4 0.4

11 52.66° 28.76° 1.2 0.21 0.2 0.22 0.74

12 52.51° 28.78° 1.4 0.2 0.4 0.2 0.6

13 52.50° 28.76° 1.6 0.1 0.31 0.32 0.7

14 52.52° 28.80° 1.7 0.1 0.2 0.22 0.41
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about 1625m higher than the central areas, resulting in a much
higher depth of groundwater table in these areas. This would
reduce the influence of OMas formation on groundwater qual-
ity in eastern and northeastern areas compared with central
and southern areas as the steep slope of the ground results in
a decreased percolation of surface runoff and soil layers be-
neath the OMas and could also decrease the percolation rate of
minerals to the groundwater.

In order to compare the Fuzzy-AHP and DST models, 14
monitoring wells among the 40 test wells (test points in Fig.
2b) were randomly selected and the predicted water quality
indices by fuzzy-AHP and DST models at this points were
compared with measured EC values. The EC values and water
quality indices were determined based on the two models
which are shown in Fig. 10 and Table 7.

According to Fig. 10 and Table 5, by increasing EC water
quality parameters, both methods showed decreased water
quality indices. Moreover, a comparison of the two methods
showed that the DST model was better for water quality and
had better integration. Also, a comparison of EC values in Fig.
10 indicates that the results of the DST model were more
accurate than the fuzzy-AHPmethod in determining the water
quality index.

Conclusions

In this study, fuzzy AHP and Dempster Shafer theory were
used to determine the drinking water quality maps for an aqui-
fer. The results of fuzzy-AHP method showed that most parts
of the study areas had a moderate water quality index, and
eastern and western parts had the best drinking water quality
index. Compared with the fuzzy AHP model, the Dempster
Shafer model had the capability of generating maps with var-
ious confidence levels. However, in comparison with the
Dempster–Shafer model, the Fuzzy AHP model had faster
computation speed. The results of the DSTmodel showed that
by decreasing the confidence level, the areas with higher water
quality indices increased. Comparison of the two models
showed that the DST model could more effectively handle
the uncertainty in the data and thus generated more accurate
water quality maps. One of the advantages of the DST model
is the capability of computing the outputs with different con-
fidence levels. Therefore, this model can be used for generat-
ing water quality zoning maps with confidence levels that best
suits the economic conditions and importance of the study
area.

Acknowledgments The authors would like to thank the personnel of
Agricultural Jihad of Fars province for their kind assistance.

Funding information This study was financially supported by Shiraz
University (238726-116).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

References

Amer, Reda, Robert Ripperdan, Tao Wang, and John Encarnación. 2012.
BGroundwater quality and management in arid and semi-arid re-
gions: case study, Central Eastern Desert of Egypt.^ J Afr Earth
Sci 69: 13–25. https://www.sciencedirect.com/science/article/pii/
S1464343X12000696 (August 24, 2018).

Bellman RE, Zadeh LA (1970) Decision-making in a fuzzy environment.
Manag Sci 17(4):B–141–B–164. https://doi.org/10.1287/mnsc.17.4.
B141

Bieroza MZ, Heathwaite AL, Bechmann M, Kyllmar K, Jordan P (2018)
The concentration-discharge slope as a tool for water quality man-
agement. Sci Total Environ 630:738–749 https://www.sciencedirect.
com/science/article/pii/S0048969718306569 (August 16, 2018)

Chaabane S, Ben M, Sayadi FF, Brassart E (2008) Color image segmen-
tation based on dempster-shafer evidence theory. In: MELECON
2008—14th IEEE Mediterr. Electrotech. Conf., IEEE, pp 862–866
http://ieeexplore.ieee.org/document/4618544/

Cordoba GAC, Tuhovčák L, Tauš M (2014) Using artificial neural net-
work models to assess water quality in water distribution networks.
Procedia Engineering 70:399–408 https://www.sciencedirect.com/
science/article/pii/S1877705814000472 (September 15, 2018)

Cumming Geoff, Fiona Fidler. 2005 BInterval estimates for statistical
communication: problems and possible solutions.^ IASE/ISI
Satellite: 1–7

Dempster AP (1968) A generalization of Bayesian inference. J R Stat Soc
Ser B 30:205–247 https://www.jstor.org/stable/2984504. Accessed
4 Jan 2019

Dempster AP (2008) Upper and lower probabilities induced by a
multivalued mapping. Stud Fuzziness Soft Comput 219:57–72

Diamantini E, Lutz SR, Mallucci S, Majone B, Merz R, Bellin A (2018)
Driver detection of water quality trends in three large European river
basins. Sci Total Environ 612:49–62 https://www.sciencedirect.
com/science/article/pii/S004896971732171X (August 16, 2018)

ESRI (2016) ArcMap 10.5, Redlands, California,USA, : Esri Inc. https://
www.esri.com/en-us/arcgis/about-arcgis/overview. Accessed 4 Jan
2019

Fars Regional Water Authority (FRWA) (2016) https://www.frrw.ir/.
Accessed 4 Jan 2019

Gazzaz NM, Yusoff MK, Aris AZ, Juahir H, Ramli MF (2012) Artificial
neural network modeling of the water quality index for Kinta River
(Malaysia) using water quality variables as predictors. Mar Pollut
Bull 64(11):2409–2420 https://www.sciencedirect.com/science/
article/pii/S0025326X12004043

Gershman SJ, Blei DM (2012) A tutorial on Bayesian nonparametric
models. J Math Psychol 56(1):1–12

Ghazavi M, and Emami N (2017) BLandslides and slope failures due to
saturated soft soil: a case study.^ In Soft soil engineering, pp. 103-
109. Routledge, . https://doi.org/10.1201/9780203739501

Helton JC (1997) Uncertainty and sensitivity analysis in the presence of
stochastic and subjective uncertainty. J Stat Comput Simul 57:3–76

Islam, Abu Reza Md. Towfiqul, Nasir Ahmed, Md. Bodrud-Doza, and
Ronghao Chu. 2017. BCharacterizing groundwater quality ranks for
drinking purposes in Sylhet District, Bangladesh, using entropy
method, spatial autocorrelation index, and geostatistics.^ Environ
Sci Pollut Res 24(34): 26350–26374. https://doi.org/10.1007/
s11356-017-0254-1 (January 15, 2019).

Environ Sci Pollut Res (2019) 26:19352–19364 19363

https://www.sciencedirect.com/science/article/pii/S1464343X12000696
https://www.sciencedirect.com/science/article/pii/S1464343X12000696
https://doi.org/10.1287/mnsc.17.4.B141
https://doi.org/10.1287/mnsc.17.4.B141
https://www.sciencedirect.com/science/article/pii/S0048969718306569
https://www.sciencedirect.com/science/article/pii/S0048969718306569
http://ieeexplore.ieee.org/document/4618544/
https://www.sciencedirect.com/science/article/pii/S1877705814000472
https://www.sciencedirect.com/science/article/pii/S1877705814000472
https://www.jstor.org/stable/2984504
https://www.sciencedirect.com/science/article/pii/S004896971732171X
https://www.sciencedirect.com/science/article/pii/S004896971732171X
https://www.esri.com/en-us/arcgis/about-arcgis/overview
https://www.esri.com/en-us/arcgis/about-arcgis/overview
https://www.frrw.ir/
https://www.sciencedirect.com/science/article/pii/S0025326X12004043
https://www.sciencedirect.com/science/article/pii/S0025326X12004043
https://doi.org/10.1201/9780203739501
https://doi.org/10.1007/s11356-017-0254-1
https://doi.org/10.1007/s11356-017-0254-1


Karl JW, Maurer BA (2010) Spatial dependence of predictions from
image segmentation: a variogram-based method to determine appro-
priate scales for producing land-management information. Eco
Inform 5(3):194–202. https://doi.org/10.1016/j.ecoinf.2010.02.004

Khalil, Abedalrazq, Mohammad N. Almasri, Mac McKee, and Jagath J.
Kaluarachchi. 2005. BApplicability of statistical learning algorithms
in groundwater quality modeling.^Water Resour Res 41(5). https://
doi.org/10.1029/2004WR003608 (August 16, 2018).

Khashei-Siuki A, Sarbazi M (2015) Evaluation of ANFIS, ANN, and
geostatistical models to spatial distribution of groundwater quality
(case study: Mashhad Plain in Iran). Arab J Geosci 8(2):903–912.
https://doi.org/10.1007/s12517-013-1179-8 August 16, 2018

Kuo Y-M, Liu C-W, Lin K-H (2004) Evaluation of the ability of an
artificial neural network model to assess the variation of groundwa-
ter quality in an area of blackfoot disease in Taiwan. Water Res
38(1):148–158 https://www.sciencedirect.com/science/article/pii/
S0043135403005013 (August 16, 2018

Lallahem S, and Hani A (2017) BArtificial neural networks for defining
the water quality determinants of groundwater abstraction in coastal
aquifer.^ In AIP Conf. Proc., AIP Publishing LLC, 20013. https://
doi.org/10.1063/1.4976232.

López-Granados F, Jurado-Expósito M, Atenciano S, García-Ferrer A,
Sánchez de la Orden M, García-Torres L (2002) Spatial variability
of agricultural soil parameters in Southern Spain. Plant Soil 246(1):
97–105. https://doi.org/10.1023/A:1021568415380 January 5, 2019

Mokarram M, Sathyamoorthy D (2016) Investigation of the relationship
between drinking water quality based on content of inorganic com-
ponents and landform classes using fuzzyAHP (case study: South of
Firozabad, West of Fars Province, Iran). Drink Water Eng Sci 9(2):
57–67 https://www.drink-water-eng-sci.net/9/57/2016/ (August 16,
2018)

Nadiri AA, Gharekhani M, Khatibi R, Moghaddam AA (2017)
Assessment of groundwater vulnerability using supervised commit-
tee to combine fuzzy logic models. Environ Sci Pollut Res 24(9):
8562–8577 http://www.ncbi.nlm.nih.gov/pubmed/28194673
(January 15, 2019)

Najah A, El-Shafie A, Karim OA, El-Shafie AH (2013) Application of
artificial neural networks for water quality prediction. Neural
Comput & Applic 22(S1):187–201. https://doi.org/10.1007/
s00521-012-0940-3

Neshat A, Pradhan B (2015) Risk assessment of groundwater pollution
with a new methodological framework: application of Dempster–
Shafer theory and GIS. Nat Hazards 78(3):1565–1585. https://doi.
org/10.1007/s11069-015-1788-5 August 16, 2018

Oliver MA, Webster R (1990) Kriging: a method of interpolation for
geographical information systems. Int J Geogr Inf Syst 4(3):313–
332. https://doi.org/10.1080/02693799008941549 August 9, 2018

Panno S, Hackley K. 2010. BGeologic influences on water quality.^
Geology of Illinois: 337–50.

Rahimi D, MokarramM (2012) 2 International Journal of Environmental
Sciences Assessing the groundwater quality by applying fuzzy logic
in gis environment—a case study in Southwest Iran. Integrated
Publishing Association. http://www.indianjournals.com/ijor.aspx?
target=ijor:ijes&volume=2&issue=3&article=061 (August 16,
2018).

Rahmati O, Melesse AM (2016) Application of Dempster–Shafer
Theory, spatial analysis and remote sensing for groundwater

potentiality and nitrate pollution analysis in the semi-arid region of
Khuzestan, Iran. Sci Total Environ 568:1110–1123 https://
linkinghub.elsevier.com/retrieve/pii/S004896971631350X (August
16, 2018)

Rowles LS et al (2018) Perceived versus actual water quality: community
studies in Rural Oaxaca, Mexico. Sci Total Environ 622(623):626–
634 https://www.sciencedirect.com/science/art icle/pii/
S0048969717333673 (August 16, 2018)

Saaty TL (1980) The analytic hierarchy process: planning, priority set-
ting, resource allocation. McGraw-Hill International Book Co.
https://books.google.com/books/about/The_Analytic_Hierarchy_
Process.html?id=Xxi7AAAAIAAJ.

Sarkar A, Pandey P (2015) River water quality modelling using artificial
neural network technique. Aquatic Procedia 4:1070–1077 https://
www.sciencedirect.com/science/article/pii/S2214241X15001364
(September 15, 2018)

Shafer G (1976) Dempster-Shafer theory. Int J Approx Reason 21(2):1–2
Shobha G, Gubbi J, Raghavan KS, Kaushik LK, Palaniswami M (2013)

A novel fuzzy rule based system for assessment of ground water
potability: A case study in South India. Magnesium (Mg) 30(35-41):
10. https://www.semanticscholar.org/paper/A-novel-fuzzy-rule-
based-system-for-assessment-of-%3A-Shobha-Gubbi /
d7aeee145da74107fb10986a452101e5e15b9532

Todorov D, Driscoll CT, Todorova S, Montesdeoca M (2018) Water
quality function of an extensive vegetated roof. Sci Total Environ
625:928–939 https://www.sciencedirect.com/science/article/pii/
S0048969717335118 (August 16, 2018)

Venkatramanan S, Chung SY, Rajesh R, Lee SY, Ramkumar T, Prasanna
MV (2015) Comprehensive studies of hydrogeochemical processes
and quality status of groundwater with tools of cluster, grouping
analysis, and fuzzy set method using GIS platform: a case study of
Dalcheon in Ulsan City, Korea. Environ Sci Pollut Res 22(15):
11209–11223 http://www.ncbi.nlm.nih.gov/pubmed/25779109
(January 15, 2019)

Villa-Achupallas M, Rosado D, Aguilar S, Galindo-Riaño MD (2018)
Water quality in the tropical Andes hotspot: the Yacuambi River
(Southeastern Ecuador). Sci Total Environ 633:50–58 https://www.
sciencedirect.com/science/article/pii/S0048969718309240 (August
16, 2018)

World Health Organization (WHO) (2017) Guidelines for drinking-water
quality: fourth edition incorporating the first addendum. http://www.
ncbi.nlm.nih.gov/pubmed/28759192 (October 24, 2018).

Wu Z, Wang X, Chen Y, Cai Y, Deng J (2018) Assessing river water
quality using water quality index in Lake Taihu Basin, China. Sci
Total Environ 612:914–922 https://www.sciencedirect.com/science/
article/pii/S0048969717323148 (August 16, 2018)

Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

19364 Environ Sci Pollut Res (2019) 26:19352–19364

https://doi.org/10.1007/s11356-017-0254-1
https://doi.org/10.1029/2004WR003608
https://doi.org/10.1029/2004WR003608
https://doi.org/10.1007/s12517-013-1179-8
https://www.sciencedirect.com/science/article/pii/S0043135403005013
https://www.sciencedirect.com/science/article/pii/S0043135403005013
https://doi.org/10.1063/1.4976232
https://doi.org/10.1063/1.4976232
https://doi.org/10.1023/A:1021568415380
https://www.drink-water-eng-sci.net/9/57/2016/
http://www.ncbi.nlm.nih.gov/pubmed/28194673
https://doi.org/10.1007/s00521-012-0940-3
https://doi.org/10.1007/s00521-012-0940-3
https://doi.org/10.1007/s11069-015-1788-5
https://doi.org/10.1007/s11069-015-1788-5
https://doi.org/10.1080/02693799008941549
http://www.indianjournals.com/ijor.aspx?target=ijor
http://www.indianjournals.com/ijor.aspx?target=ijor
https://linkinghub.elsevier.com/retrieve/pii/S004896971631350X
https://linkinghub.elsevier.com/retrieve/pii/S004896971631350X
https://www.sciencedirect.com/science/article/pii/S0048969717333673
https://www.sciencedirect.com/science/article/pii/S0048969717333673
https://books.google.com/books/about/The_Analytic_Hierarchy_Process.html?id=Xxi7AAAAIAAJ
https://books.google.com/books/about/The_Analytic_Hierarchy_Process.html?id=Xxi7AAAAIAAJ
https://www.sciencedirect.com/science/article/pii/S2214241X15001364
https://www.sciencedirect.com/science/article/pii/S2214241X15001364
https://www.semanticscholar.org/paper/A-novel-fuzzy-rule-based-system-for-assessment-of-%3A-Shobha-Gubbi/d7aeee145da74107fb10986a452101e5e15b9532
https://www.semanticscholar.org/paper/A-novel-fuzzy-rule-based-system-for-assessment-of-%3A-Shobha-Gubbi/d7aeee145da74107fb10986a452101e5e15b9532
https://www.semanticscholar.org/paper/A-novel-fuzzy-rule-based-system-for-assessment-of-%3A-Shobha-Gubbi/d7aeee145da74107fb10986a452101e5e15b9532
https://www.sciencedirect.com/science/article/pii/S0048969717335118
https://www.sciencedirect.com/science/article/pii/S0048969717335118
http://www.ncbi.nlm.nih.gov/pubmed/25779109
https://www.sciencedirect.com/science/article/pii/S0048969718309240
https://www.sciencedirect.com/science/article/pii/S0048969718309240
http://www.ncbi.nlm.nih.gov/pubmed/28759192
http://www.ncbi.nlm.nih.gov/pubmed/28759192
https://www.sciencedirect.com/science/article/pii/S0048969717323148
https://www.sciencedirect.com/science/article/pii/S0048969717323148

	Application...
	Abstract
	Introduction
	Methodology
	Study site
	Geostatistical analyses
	Fuzzy analytic hierarchy process (AHP)
	Dempster–Shafer
	The detection framework
	Mass function, focal elements, and core elements

	Model comparison

	Results and discussion
	Geostatistical analysis
	Comparing the overall water quality index based on fuzzy-AHP and DST methods

	Conclusions
	References


