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Identifying floating plastic marine debris using a deep
learning approach
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Abstract
Estimating the volume of macro-plastics which dot the world’s oceans is one of the most pressing environmental concerns of our
time. Prevailing methods for determining the amount of floating plastic debris, usually conducted manually, are time demanding
and rather limited in coverage. With the aid of deep learning, herein, we propose a fast, scalable, and potentially cost-effective
method for automatically identifying floating marine plastics. When trained on three categories of plastic marine litter, that is,
bottles, buckets, and straws, the classifier was able to successfully recognize the preceding floating objects at a success rate of ≈
86%. Apparently, the high level of accuracy and efficiency of the developed machine learning tool constitutes a leap towards
unraveling the true scale of floating plastics.
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Introduction

One of the biggest environmental challenges currently threat-
ening our ecosystems is marine debris and especially pollution
from plastics (Eriksen et al. 2014; Suaria and Aliani 2014).
Plastics are entering the marine environment through various
channels, such as being carried by wind, shipping, coastal
activities, or through effluent water discharge (Woodall et al.
2014). Consequently, the world’s oceans contain an enormous
amount of plastic debris. More precisely, the five subtropical
gyres harbor the largest accumulations of plastics in compar-
ison to other ocean zones (Cózar et al. 2014). The Great
Pacific Gyre alone, also known as the Great Pacific Garbage
Patch (GPGP), is believed to contain at least 79 thousand tons
of marine plastics that are floating in an area of 1.6 million
km2 (Lebreton et al. 2018)—roughly the size of Mongolia.

Boat surveys constitute the primary means for retrieving
information about plastics floating on (or near) the water
surface, such as, estimating their type and density (Barnes
et al. 2009). Meanwhile, vessel surveys are time demand-
ing, expensive, and limited in coverage because of the sub-
sequent processing of the material and data that are collect-
ed, notwithstanding the risk of tainting observations with
human errors. Attempting to identify floating debris, other
researchers have proposed a sensing platform fitted with an
onboard camera (Wang et al. 2015). However, devising an
automated way for detecting and classifying marine debris,
grounded on a deep learning approach, offers some added
advantages. Such a method holds the potential to save
valuable search time, lower expedition costs, and increase
the level of accurately identifying large-size plastic debris.
To automate the process of macro-plastic detection, we
employ a machine learning method, like deep learning,
which can yield a high level of accuracy.

Deep learning, which belongs to the family of machine
learning methods, constitutes a tool that powers many as-
pects of today’s society and finds applications ranging
from content filtering in web searches to object identifica-
tion and speech recognition. Domains of the scientific
community, the business world, and governments are uti-
lizing deep learning techniques mainly owing to their ex-
cellent performance and ability to conduct novel tasks.
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Applying deep learning methods in the context of marine
debris research can help create faster and more accurate
tools (LeCun et al. 2015) for detecting and classifying
floating litter.

Several methods are prevalent in sampling macro-plas-
tics, measuring > 20 mm in diameter (Barnes et al. 2009),
from the marine environment. Among them are visual ob-
servations from boat expeditions which aim to pinpoint the
areas with the largest accumulation of marine macro-
plastic (Chambault et al. 2018). Other surveys, such as
aerial scans, gather airborne imagery from seashores in-
cluding remote islands. The collected aerial visual material
is pieced together to construct mosaics of images which
help manually identify coastal debris bigger than 0.5 m2

(Moy et al. 2018). More recently, the deployment of drones
for conducting airborne surveys has gained considerable
traction. Drones are suitable for surveying small coastal
areas of remote locations as a way of visually sampling
and monitoring the abundance of plastic litter (Deidun
et al. 2018; Hengstmann et al. 2017).

The implementation of machine learning techniques in
search of marine debris is a rather new research direction.
According to the directive on monitoring marine litter in
the European Seas (MSFD Technical Subgroup on Marine
Litter 2013), the development of computerized camera
surveys is considered of low maturity and is still at the

development stage. Other initiatives, such as the Joint
Research Center (JRC) Floating Litter Monitoring

Fig. 1 The VGG16 model architecture as applied to the bottleneck
method. The image on the left depicts a floating bottle (middle) in sea-
water. Algorithm VGG16 accepts as input RBG images of marine debris

of resolution 224 × 224. Figures 4096 and 1000 denote the number of
nodes while the neural network executes 3 × 3 convolutions

Fig. 2 Flowchart depicting the overall structure of the transfer learning
approach proposed in this research
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Application, are a software tool that collects data of debris
in river estuaries. Users of this application can capture
pictures of litter located at a river from an elevated posi-
tion (e.g., a bridge) and tag the object class from a drop-
down list of items and size categories (González-
Fernández and Hanke 2017). To the best of our knowl-
edge, our paper puts forward one of the first attempts to
implement a machine learning method for detecting and
classifying floating macro-plastic debris.

Herein, we propose a Convolutional Neural Network
(CNN) approach that is able to train itself on images of
plastic objects larger than a few centimeters, also known
as, macro-plastics. Subsequently, the method can automat-
ically predict the class of new images of macro-plastic
objects floating at sea with very high accuracy. The under-
lying intention was to create a prototype device to be
mounted onboard marine vessels. With the aid of a camera,
the system would be able to scan the sea surface and auto-
matically detect and recognize floating macro-plastic de-
bris without calibrating the images geometrically.
Considering the sheer size of our oceans and the large
volume of macro-plastic debris, it is imperative that intel-
ligent systems take over the gargantuan task of localizing
floating plastic marine debris rather than relying on manual
and time-consuming means.

Materials and methods

An unconventional machine learning tool, like deep learn-
ing, is a representation-learning method that feeds a com-
puter with raw data and allows the automatic discovery of
the representations needed for classification or detection
purposes. This depiction mastering method exhibits multi-
ple levels of abstraction, which consist of relatively simple
but non-linear modules (Simonyan and Zisserman 2014).
Each module transforms the representation at one level and
feeds the raw data into a depiction at a higher and more
abstract level. Interestingly, these manipulations allow the

method to undertake more complex functions and tasks
(LeCun et al. 2015). The research study described in this
paper utilizes a CNN architecture as suggested recently
(Kylili et al. 2018). The CNN is a deep, feed-forward net-
work that trains easily generalized networks with full con-
nectivity between adjacent layers (LeCun et al. 1990;
LeCun et al. 1998). The layers of the CNN architecture
are divided into two types: (a) convolutional layers and
(b) pooling layers. In the convolutional layer, the units
are organized into feature maps, within which each unit is
connected to local patches in the feature maps of the pre-
vious layer through a set of weights. All feature maps are
sharing the same set of weights. As for the pooling layers,
they compute the maximum of a local patch of units in one
feature map (LeCun et al. 2015).

The CNN architecture used in this paper is the Visual
Geometry Group-16 (VGG16) model pre-trained on the
large-scale ImageNet dataset (Simonyan and Zisserman
2014). Due to this pre-training, the model has learned cer-
tain image features from this large dataset. Making use of
transfer learning, these assimilated image features are ap-
plied to the debris image classification problem. This is
achieved by removing the fully connected layer from the
VGG16 model while training it by means of an image
dataset related to our classification problem. The new im-
age’ attributes, called bottleneck features, are then used to
train the fully connected layer to tackle the specific debris
classification problem described herein.

Figure 1 depicts the level of the VGG16 model at which
the bottleneck features are stored from an image of a plas-
tic bottle floating at sea. The gray color layer (Fig. 1) rep-
resents the convolutional layer while the Rectified Linear

Fig. 3 Plots display the training and test accuracy (left) and respective loss (right) over 50 epochs

Table 1 Summary of the
levels of accuracy
attained by the CNN

Results

Training accuracy (%) ≈ 100

Test accuracy (%) ≈ 99

Validation accuracy (%) ≈ 86
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Unit (RELU), which constitutes its activation function, is
given by:

f xð Þ ¼ max 0; xð Þ ð1Þ

where x is the output weight. Activation functions are es-
sential in neural networks as they endow non-linear properties
to a neural system. The red color layer displays the maximum
pooling type of layers where the sample-based discretization
process occurs. The light blue color indicates the fully con-
nected layers with the RELU being their activation function
(Fig. 1). Finally, the brown color refers to the layer within
which the Softmax function is implemented. Here, the
Softmax function determines the probability of each target
class over all of the possible target classes C, such that:

f xð Þi ¼
exi

∑C
j e

x j
ð2Þ

The marine debris image classification problem presented in
this work distinguishes between three categories of litter, namely,
plastic bottles, plastic buckets, and plastic straws. Samples of
these images will be presented in the BResults and discussion^
section. One of the major challenges of the real-world image
classification problem is the need for a large enough dataset
key to the training process. Typically, several thousand of images
are used in the training process, which lend a high level of accu-
racy to the classification approach (Sun et al. 2017). However, in
real-world applications such as the one presented in this paper,
large datasets are not always available. For instance, each of the
three categories used in this research consisted of 250 images,
hence, making it difficult to recognize marine debris with an
extremely high level of classification accuracy. To overcome this
issue, we have used data augmentation. That is, the number of
images is increased through the adoption of geometrical transfor-
mations, e.g., zooming, shifting, flipping, rotation, etc. In other
words, using data augmentation, we can populate a larger

Fig. 4 Matrix of images demonstrates the ability of the bottleneck method classifier to correctly recognize plastic bottles, buckets, and straws

Fig. 5 The performance of the marine debris classifier in the absence of a regularizer and featuring different regularizers
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database emanating from a relatively small image collection. In
aggregate, the augmented dataset reached a total of 4000 images
in each category.

Subsequently, this large dataset was randomly split in two
subsets: (a) the training set and (b) the test set which consisted
of 3200 and 800 images per category, respectively. As its
name implies, the training set was used to train the model
and the test set to test the model’s performance. During the
model’s training stage, a set of weights was generated and
employed in the validation process. For the record, the vali-
dation phase assesses the generalized performance capabilities
of the classifier. It accepts as input new images of plastic
marine debris drawn from the validation set with the ultimate
goal of identifying all input images. Simply put, the classifier
created from this method can recognize images that the trained
model never encountered or trained on them before. The pre-
ceding process is summarized in Fig. 2.

Results and discussion

The classifier presented in the previous section was trained on
9600 images (training set) and tested on 2400 images (test
set). The performance of the classifier was assessed in terms
of the training accuracy, the test accuracy, and the validation
accuracy. Here, training accuracy refers to the accuracy of
training the classifier on the training set, whereas the test ac-
curacy relates to the accuracy from testing the classifier on the
test set. Lastly, the validation accuracy is defined to be the rate
of successfully classifying a newly seen image embedded in
the validation set. Moreover, the respective losses were re-
corded and taken into account when determining the perfor-
mance of our method. Figure 3 displays the performance of
the model with respect to accuracy (left plot) and loss (right
plot). The accuracy and loss results were obtained from the
training and test sets over 50 epochs. The number of epochs
indicates the times that the entire dataset is passed forward and
backward through the network and this process refines the
model weights so as to yield the best possible classification
outcome. Converging trends between training accuracy and
loss reinforces the credibility of results.

Computationally, the model took about 1 h to conclude
on an Intel Xeon (CPU 2.40 GHz) processor with
NVIDIA (Quadro K4200) graphics card. Collectively, this
is the time necessary to complete the data augmentation
process, to store the bottleneck features extracted from the
training set and the test set, and finally, validate the clas-
sifier. The training accuracy of the model reached a max-
imum of ≈ 100% with a loss of about 1%, while the test
accuracy topped at ≈ 99% with a loss of ≈ 4%, as illus-
trated in Table 1. The test loss constitutes a metric on how
good the predictions of the model are. That is, the smallest
the test loss, the more trustworthy model results are.

It is worth mentioning that the validation dataset
consisted of 55 images of marine debris per category or a
total of 165 validation samples. Interestingly, when the clas-
sifier was tested on the validation image set, it correctly
identified 53 plastic bottles, 55 plastic buckets, and 33 plas-
tic straws. Overall, recognizing a total of 141 out of 165
newly provided images of plastic marine debris resulted in
a validation accuracy of ≈ 86%. Being relatively high, the
validation accuracy lends credibility to the effectiveness of
the proposed classifier. A selection of correctly traced
(labeled) plastic marine debris images is illustrated in Fig. 4.

As part of rigorous effort to scrutinize the trustworthiness
of our classifier, it was deemed necessary to alter some struc-
tural parameters of the algorithmic model. At such, three sce-
narios were examined. The first one compared different types
of regularizers as applied to the context of the training process.
Secondly, a parametric investigation explored the perfor-
mance of the program (code) by varying the number of images

Table 3 Findings of case 2 which utilizes a different number of images
from the test set. It employs the ℓ1_ℓ2 regularizer with 4000 images/
category

Twenty percent (20%) in test set Training accuracy ≈ 99.97%

Test accuracy ≈ 98.87%

Validation accuracy 85.45%

Thirty percent (30%) in test set Training accuracy ≈ 99.98%

Test accuracy ≈ 98.22%

Validation accuracy 83.63%

Forty percent (40%) in test set Training accuracy ≈ 99.99%

Test accuracy ≈ 98.4%

Validation accuracy 83%

Fifty percent (50%) in test set Training accuracy ≈ 100%

Test accuracy ≈ 98.12%

Validation accuracy ≈ 80.6%

Table 2 Results of case 1 which uses different regularizers, 4000
images/category of which 80% in the training set and 20% in the test set

Without a regularizer Training accuracy ≈ 99.97%

Test accuracy ≈ 99.12%

Validation accuracy 86%

Regularizer ℓ1 Training accuracy ≈ 100%

Test accuracy ≈ 99.21%

Validation accuracy 86%

Regularizer ℓ2 Training accuracy ≈ 100%

Test accuracy ≈ 98.79%

Validation accuracy 82.42%

Regularizer ℓ1_ℓ2 Training accuracy ≈ 99.97%

Test accuracy ≈ 98.87%

Validation accuracy 85.45%

Environ Sci Pollut Res (2019) 26:17091–17099 17095



in the test set. Finally, the performance of the classifier was
tested as a function of the number of images generated from
the data augmentation process.

The first case was designed to assess the capabilities of the
classifier by utilizing different regularizers in the structure of
our model which conducted the training process. Regularizers
permit the assignment of Bpenalties^ on the parameters of the
model’s layers or on a layer’s activity during the optimization
of the model. These penalties are added in the categorical
cross-entropy loss function used to optimize the network pa-
rameters. The categorical cross-entropy loss function is de-
scribed by:

Cross−entropy loss ¼ ∑M
C¼1yO;Clog pO;C

� � ð3Þ

where M is the number of image categories, y is a binary
indicator (0 or 1) if class label C is the correct classification for
observationO, andp is the probability observationO is of classC.

Accordingly, a particular regularizer can improve the per-
formance of the classifier and lower the risk of encountering
overfitting in the learning process. Overfitting is the flaw
where the model embraces the details and noise in the training
set, such that it adversely affects the performance of the model
when processing new data. Consequently, the noise and ran-
dom fluctuations in the training data are identified and con-
ceptualized by the model which negatively impacts the
model’s ability to generalize.

Overall, four cases were examined, namely, ℓ1, ℓ2, ℓ1_ℓ2, and
the absence of a regularizer. Symbol ℓ1 refers to Ridge regression
(Hastie et al. 2013) that attaches a penalty on the weights similar
to Laplace’s distribution. Regularizer ℓ2 is the Lasso regression
(Hastie et al. 2013) that forces the weights to adopt a Gaussian
pattern. Denoted by ℓ1_ℓ2, this regularizer combined the two
previous regression methods. Case four (4) was run without a
regularizer. All cases utilized 4000 images, per category, as ob-
tained from the data augmentation procedure. Of these 4000
images, 20% were dedicated to the test set. The performance of
the proposed classifier using different regularizers is depicted in

Fig. 5. Although the case lacking a regularizer yields the highest
test accuracy, yet its increasing loss over the epochs seems to
point to overfitting. For that reason, this case was discarded from
our investigation. The case which blended the Ridge and the
Lasso regressions seems to perform better than using each re-
gression method distinctively. Notably, regularizers ℓ1_ℓ2 and ℓ1
produced the best performance results. When both the test accu-
racy and the loss curves were considered, regularizer ℓ1_ℓ2 was
selected as it fared slightly better than regularizer ℓ1, as demon-
strated in Table 2.

The second line of investigation varied the number of im-
ages of the test set. Specifically, as part of a parametric anal-
ysis, the percentage of the images fed into each test set com-
prised 20%, 30%, 40%, and 50% of each augmented image
set. In all cases, the augmented data for each image category
amounted to 4000 images whereas each case utilized
regularizer ℓ1_ℓ2. For the 20% case, 3200 images were used
as a training set and 800 images as a test set. In an analogous
fashion, for the 30% case, the training set consisted of 2800
images while the training set included 1200 images.
Correspondingly, for the 40% case, 2400 images made-up
the training set and 1600 the test set. Finally, in the 50% case,

Fig. 6 Left graph displays the test accuracy, over 50 epochs, by increasing the proportion of the images used as test set from 20 to 50%, in increments of
10%. Right plot demonstrates the respective test loss, which increases for the same test set

Fig. 7 Validation accuracy of the proposed classifier when recognizing
new images of marine plastic debris. The equation of the straight line
demonstrates the decreasing trend in the validation accuracy as the
number of images in the training set is reduced
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the number of images, as shown in Table 3, was equally split
into 2000 in the training and 2000 in the test set.

The left graph in Fig. 6 shows the fluctuations in the testing
accuracy over the number of epochs for all four cases which
utilized 20%, 30%, 40%, and 50% of the augmented image set
as a test set. Since the training accuracy for all cases reached a
value of almost 100%, for comparison purposes, we focused
on the test set accuracy. Likewise, because the training loss
was almost negligible, it was decided to exclude these find-
ings from Fig. 6.

As anticipated, the smallest the size of the image set, which
made-up the test set, the better was the performance of the
model. This result emerged because the training set had a
larger pool of images. Further increase in the number of im-
ages in the test set led to a small drop in the test accuracy. This
behavior was reasonable and expected as the method’s accu-
racy improves when the classifier processes more representa-
tions of images in the training set and trains on them.

The same observation is supported by Fig. 7 which dis-
plays the validation accuracy as a function of the number of
images of the test set. Here, validation accuracy refers to the
number of correctly identified images of plastic marine debris.

By fixing the fraction of images in the training set to 0.8 with
the remaining 0.2 allocated to the test set, the validation accu-
racy reached its highest value at ≈ 86%. In other words, our
method successfully identified 141 out of the 165 images that
formed the validation set.

The third and final test was intended to define the capa-
bilities of our method. To do so, the number of images was
altered considering data augmentation manipulations,
which expanded the image pool for each distinct image
category: plastic straws, buckets, and bottles. As already
mentioned in the BMaterials and methods^ section, for
deep learning techniques to generate superior test and val-
idation accuracy results compared to other methods, they
must be trained on large datasets. To test this assertion, the
number of images in each category was increased from
1000 to 4000 in increments of 1000. Each case was run
with regularizer ℓ1_ℓ2 while the test scenario encompassed
20% of the augmented images, as illustrated in Fig. 8.

Referring to the left graph (Fig. 8), one can observe that
the larger the number of images in the initial image

Fig. 8 The left graph indicates the test accuracy along progressing epochs for an increasing number of images ranging from 1000 to 4000, as generated
by data augmentation. The right plot depicts the respective test losses

Fig. 9 Plot of classifier validation accuracy versus an increase in the
number of images obtained from data augmentation. The case of 4000
images for each image category exhibits the highest validation accuracy
of ≈ 86%

Table 4 Results obtained from case 3 which employs data
augmentation to generate a variable number of images. It uses the ℓ1_ℓ2
regularizer and dedicates 80% of the images to the training set and 20% to
the test set, respectively

4000 images Training accuracy ≈ 99.97%

Test accuracy ≈ 98.87%

Validation accuracy 85.45%

3000 images Training accuracy ≈ 100%

Test accuracy ≈ 98.11%

Validation accuracy 84.24%

2000 images Training accuracy ≈ 100%

Test accuracy ≈ 98.42%

Validation accuracy 83.63%

1000 images Training accuracy ≈ 100%

Test accuracy ≈ 96.83%

Validation accuracy ≈ 82.42%
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category, the better was the test accuracy of the method.
Owing to the larger image set, the classifier becomes more
efficient in discovering marine debris. Similarly, a compa-
rable trend can be noticed in Fig. 9 where the validation
accuracy improves as the number of images per category
increases. The process of collecting unique marine images
proved particularly tedious. Employing data augmentation
helped partly alleviate the problem and improved the abil-
ity of the proposed classifier in identifying plastic debris.
Still data processing limitations constrained the image pool
to 4000 snapshots. Table 4 summarizes the results of the
training accuracy and validation accuracy based on
regularizer ℓ1_ℓ2.

Conclusions

Motivated by the need to tackle the problem of marine
debris, we have applied the transfer learning method (Pan
and Yang 2010) as a way of recognizing macro-plastic
objects larger than a few centimeters, floating at the sea-
water surface. Having parametrically tested the perfor-
mance of the abovementioned method, an augmented
dataset of 4000 marine debris images was generated as a
preferable image population. Eighty percent of these im-
ages was used to construct the training set while the re-
maining 20% was reserved for the test set. Justified by its
superior performance, regularizer ℓ1_ℓ2 was used to pro-
cess new floating plastic images. Remarkably, the method
yielded a training accuracy of 100% at a loss of 1%.
Similarly, a test accuracy of ≈ 99% was attained at a loss
of ≈ 4%. Of major interest was the performance of our
classifier, which when trained on the same three categories
of plastic marine litter (plastic bottles, plastic buckets, and
plastic straws) was able to successfully identify new plastic
objects with a validation accuracy of ≈ 86%.

The deep learning method proposed herein can help auto-
mate the process of recognizing marine debris, which is cur-
rently mostly done manually. Not only is the method capable
of enhancing the detection accuracy, it can also expedite the
process of identifying plastic litter. In the nearby future, we
plan to improve the competency of the classifier to realize an
even higher classification accuracy as well as to distinguish
between more classes of marine debris, such as, plastic bags
and nets. An increase in the number of images is envisaged to
boost the accuracy of the technique proposed herein to iden-
tify marine debris. Depending on the number of images, a
trade-off is sought between the accuracy of the deep learning
method and the computational time. Concluding, we are plan-
ning to validate the capabilities of the classifier under real sea-
state conditions by building and installing a prototype device
onboard a marine vessel.
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