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Abstract
The construction of The Three Gorges Reservoir has changed land use structure and reconstituted landscape pattern as imparts
significant influence upon the land use structure and ecological environment of Three Gorges Reservoir Regions. The ecological
safety of reservoir area is extremely dependent on unique location and special geological conditions of Zhongxian County, the
center of Three Gorges Reservoir Regions in Chongqing, and therefore, ecological environment of reservoir area will be changed
with the transition of land use in Zhongxian County. Based on land use data in 2000, 2005, 2010, this paper chooses influencing
factors from aspects of natural topographic and geomorphological conditions, accessibility to economic development and land
use expansion, and then establishes Logistic-CA-Markov (Logistic-Cellular Automata-Markov) and WLC-CA-Markov
(Weighted Linear Combination- Cellular Automata- Markov) models so as to simulate spatial pattern of land use of
Zhongxian County. The results demonstrate that WLC-CA-Markov model established here has better controllability and higher
simulation precision (the kappa coefficient is 0.9295). In the future development of Zhongxian County, the area of grassland and
plow land will be reduced continuously, the area of construction land will be expanded obviously mostly because of the added
area both near the water and in the north of Zhongxian county, the area of woodland will be increased to a little extent, the area of
water area and unused land has gentle change. In the sustainable scenario, the area of grassland will be reduced slightly, the area
of water area keeps steady, the area of plow land is reduced but higher than red line of plow land, the area of construction land is
increased with significantly smaller increase amplitude than that in the natural development scenario, and the woodland is
increased. This scenario coordinates ecological environment with economic development of regional society and turns out to
be the best development scenario of land use.
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Introduction

Since the beginning of the twenty-first century, problems such
as rapid population growth and waste of land resources have
been occurring frequently in the ecologically sensitive areas in
the Three Gorges Reservoir Region (Shi 2011; Zhou et al.
2011). As an important ecological protection area in the wa-
ters of the Yangtze River, the Three Gorges Reservoir Area of
Chongqing (TGRAC) has self-evident ecological value. As
the core zone of the TGRAC, Zhongxian’s land use structure
has undergone dramatic changes. In addition, with the rapid
development of a market economy as well as the vigorous
advancement of the urbanization process, Zhongxian’s eco-
logical environment has been impacted by human activity.
For Zhongxian, how to transform land use types and how to

Responsible editor: Marcus Schulz

* Dongjie Guan
guandongjie_2000@163.com

Zulun Zhao
769301533@qq.com

Jing Tan
287343201@qq.com

1 College of Architecture and Urban Planning, Chongqing Jiaotong
University, No.66 Xuefu Rd., Nan’an Dist., Chongqing 400074,
China

2 Institute ofMountain Resource, GuizhouAcademy of Sciences, No.1
Shanxi Rd., Yunyang Dist., Guiyang 550001, China

Environmental Science and Pollution Research (2019) 26:20669–20688
https://doi.org/10.1007/s11356-019-05127-9

http://crossmark.crossref.org/dialog/?doi=10.1007/s11356-019-05127-9&domain=pdf
http://orcid.org/0000-0002-7857-0957
mailto:guandongjie_2000@163.com


select land use patterns concern the guarantee of land for coor-
dinated urban and rural development and affect intensive land
use, thereby posing a threat to its ecological safety. On the other
hand, whether the trend of land use changes in Zhongxian is
reasonable affects the economic output of land and the results of
different transformation models, i.e., environmental benefit
stress. How to reasonably use land resources, how to adjust
the relationships between different types of land, how to under-
stand current land use conditions and how to determine future
land use development have become urgent problems requiring
in-depth study (Van and Verburg 2013; Long and Qu 2018).

Land use and land cover change (LUCC) is an important
factor that affects the ecological environment and has become a
central issue in global change and sustainable development re-
search (Bathrellos et al. 2008; Samat et al. 2011; Li et al. 2017;
Dang and Kawasaki 2017). LUCC is a very complex dynamic
process driven by natural and human factors with a very complex
mechanism (Xu et al. 2015;Wang et al. 2018a). Land use process
modeling and simulation are among the main approaches for
studying LUCC and are important tools for investigating the
driving mechanisms of land use, supporting urban planning
and policy formulation and evaluating the effects of land use
on the ecological environment (He et al. 2017; Kuang 2011).
The continuous development of geographic information technol-
ogy, satellite remote sensing technology and data processing
techniques has resulted in a continuous increase in the number
of sources and resolution and accuracy of basic land use data and
helped gradually advance their processing and management
methods, allowing LUCC research to evolve from focusing on
the effects of global climate change to focusing on LUCC pro-
cesses of various spatial scales and their drivingmechanisms and
effects on resources, the environment and ecological conditions
(Hao and Ren 2009; Li et al. 2017; Zhang et al. 2018). In regard
to land use simulation, Guan et al. (2011) dynamically simulated
future spatiotemporal land use changes in the Japanese city of
Saga by introducing the natural and socioeconomic factors af-
fecting land use into the cellular automata (CA)–Markov model.
Peraltarivero et al. (2014) established various models based on
Geographic Information Systems (GISs) and used them to study
dynamic land use change in the Huasteca region between 1976
and 2007. In regard to the driving forces for land use, Loehr
(2010) compared how external costs affected land use changes
in Germany, China and Cambodia. Yang et al. (2012) proposed a
spatiotemporal model for land use change analysis based on
Markov chains, CA and ant colony optimization (ACO), in
which ACO and CA are used to manage the spatial distribution
of land use and Markov chains and CA are used to manage the
total amount of land use cover. They used that model to simulate
land use in the Changping district of Beijing. Wang et al. (2015)
established a new differential evolution DE–CA model and
employed a DE algorithm to optimize the quantitative structure
of land use. By using the obtained results as the quantitative
restraint condition for the CA model to optimize the spatial

pattern of land use, they successfully achieved a proper combi-
nation of the quantitative structure and spatial pattern of land use
(Wang et al. 2011). Based on the current research status, CA
models have outstanding advantages in land use simulation and
thus have become themainstreammodels for land use simulation
(Xu et al. 2016; He et al. 2017; Parsa and Salehi 2016). CA
models can be used to simulate complex land use patterns based
on simple local transformational rules and can also be satisfacto-
rily coupled with GISs and remote sensing data to significantly
improve the capabilities of existing GISs to analyze complex
natural phenomena and model spatiotemporal dynamics (He et
al. 2008). Research on land use prediction models has gradually
evolved from focusing on single models to focusing on the com-
bination of multiple models and comprehensively considering
various factors (e.g., natural, social and economic factors), ren-
dering simulations of land use change processes more accurate
(Liu et al. 2017).

Amidst this backdrop, this paper presents a case study of
Zhongxian. Based on land use data for Zhongxian for 2000,
2005 and 2010 in combination with various factors, including
natural terrain and geomorphological conditions, accessibility
to economic development and land use expansion, a weighted
linear combination WLC–CA–Markov model and a logistic–
CA–Markov model with various transformational rules were
established to simulate land use distribution patterns in
Zhongxian in various scenarios (natural development, ecologi-
cal protection and sustainable development), and the optimal
land use pattern was determined. The results of this study pro-
vide a scientific basis for the reasonable use of regional land and
formulation of structural optimization and land policies.

Study area and data sources

Study area

Situated on the northern bank of the Yangtze River in central
Chongqing (30°03′03^N–30°35′35^N, 107°32′42″E–108°14′
00″E) (Fig. 1), Zhongxian borders Wanzhou District and
Shizhu County to the east, Fengdu County to the south,
Dianjiang County to the west, and Liangping County and
Wanzhou District to the north. In 2010, Zhongxian
encompassed a total land area of 2182.911 km2, of which
903.271 km2 (41.38%) were farmland, 1098.880 km2

(50.34%) were forestland, 27.912 km2 were grassland,
98.536 km2 were waters, 54.298 km2 were construction land,
and 0.0144 km2 were unused land. Zhongxian has high land
use efficiency with low development potential for unused land.
Agricultural land (farmland and forestland) is the major land
use type in Zhongxian, whereas the proportion of construction
land in Zhongxian is relatively small. The internal land use
structure in Zhongxian is unreasonable. The Yangtze River sep-
arates the land of Zhongxian into two parts (one in the south
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and one in the north), which affects economic development.
Between 2000 and 2015, Zhongxian experienced a significant
decrease in the proportion of farmland and a dispersed land
distribution pattern with land with steep slopes and at high
altitudes that was difficult to develop and use, as well as exten-
sive land use with a high ratio of unused land and low economic
benefits from land in its rural settlements.

Data sources

The land use data originated from the land use data for
Chongqing, Sichuan, Guizhou and Yunnan for 1990 shared by
the Chinese Academy of Sciences (CAS) as well as the phase 3
interpreted data (resolution: 30 m) of the Project of Survey and
Evaluation of Changes in Ecological Environments Across
China During the Ten-year Period from 2000 to 2010 based on

remote sensing data that was jointly conducted by theMinistry of
Ecology and Environment of China and the CAS. The land use
data for 2015 originated from the Resources and Environmental
Science Data Center of the CAS (http://www.resdc.cn). The five
phases of land use data were integrated and classified based on
the Level 1 classification standard into data for construction land,
forestland, grassland, farmland, waters, and unused land.

The digital elevation model (DEM) data (spatial resolution:
30 m) originated from the Geospatial Data Cloud platform. The
population and gross domestic product (GDP) data originated
from the National Earth System Science Data Sharing
Infrastructure platform (http://www.geodata.cn)-a national
science and technology infrastructure platform. The
temperature and precipitation data originated from the
Resources and Environmental Science Data Center of the
CAS (http://www.resdc.cn). The road and administrative
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center data were obtained by processing the data contained in
the transport network and administrative maps of Zhongxian.

Methods

Analysis of driving factors for land use change
in Zhongxian

Selection of driving factors for land use change in Zhongxian

A large number of factors affect land use change, mainly includ-
ing natural, socioeconomic, accessibility and policy factors
(Aroengbinang and Kaswanto 2015). Natural factors such as
altitude, slope gradient and precipitation mainly reflect land pro-
ductivity and its determinants (Li et al. 2016; Pang et al. 2010).
Socioeconomic factors such as population and economy are
mainly driven by relevant policies (Yu et al. 2011).
Accessibility factors are mainly affected by human construction
activity and policies. Natural and socioeconomic factors are the
primary driving forces for land use change and significantly af-
fect land use (Kleemann et al. 2017). In this study, by taking into
consideration natural terrain and geomorphological conditions,
accessibility to economic development and land use expansion,
slope gradient, elevation, precipitation, temperature, population,
GDP, distance from roads, distance from towns and distance
from water systems were selected as factors affecting land use
change, as in Fig. 2.

To further illustrate the relationships between the influenc-
ing factors and the land use distribution, each factor and the
land use data were subjected to an overlay analysis using
ArcGIS 10.1. Figure 3 shows the distribution of each land
use type with respect to each factor.

Regression analysis of the driving factors for land use change
in Zhongxian

As a type of analytical models used in mathematical statistics,
logistic regressionmodels have been extensively used to study
driving factors for land use (Shu et al. 2014). The following
shows the logistic model proposed in this study:

Log
Pi

1−Pi

� �
¼ β0 þ β1X 1 þ β2X 2 þ⋯⋯βnX n ð1Þ

where Pi is the probability that a certain land use type will
appear in each grid cell; β0 is a constant term; β1, β2..., βn are
the partial regression coefficients of the logistic model, which
determine the quantitative relationships between and quanti-
tative effects of the driving factors; and X1, X2..., Xn are the
driving factor variables.

The data for the influencing factors were standardized using
ArcGIS 10.1 to eliminate their dimensional differences. Then,

each land use type in 2010 was subjected to a regression analysis
using the LogisticModule in IDRISI 17.0. On a 30 × 30-m scale,
the probability, P, for each land use type to appear (P1: grassland;
P2: waters; P3: farmland; P4: construction land; P5: unused land;
and P6: forestland) and the regression equation for each of the
nine driving factors (X1: precipitation; X2: temperature; X3:
GDP; X4: population; X5: distance from roads; X6: elevation;
X7: distance from the administrative center; and X9: distance
from waters) are as follows:

logit(P1) = −8.2761 + 0.703896*X1 + 3.727430*X2 +
0.538227*X3–0.145127*X4–1.267489*X5 + 2.167064*X6+.

1.026549*X7 + 1.506291*X8–0.067997*X9.
logit(P2) = −7.1071 + 2.468027*X1 + 9.184539*X2 +

0.623482*X3–0.580466*X4 + 1.722396*X5–2.833381*X6+.
0.769691*X7–2.726844*X8–143.078477*X9.
logit(P3) = −4.7454 + 1.022051*X1 + 4.434327*X2–

4 . 1 2 4 0 6 2 *X 3 + 1 . 9 2 0 9 6 3 *X 4 – 0 . 3 9 6 8 9 0 *X 5 +
5.080801*X6+.

0.690240*X7–4.718226*X8 + 1.233122*X9.
logit(P4) = −7.2083–0.244913*X1 + 5.159169*X2 +

3.574057*X3 + 2.552039*X4–6.342338*X5 + 4.907209*X6–
1.558156*X7–2.430970*X8+ 0.906418*X9.

logit(P5) = −19.8656–2.378513X3 + 0.719825X4 +
11.339201X5–4.196382X6 + 15.212837X7+ 6.618604X8 +
0.124018X9.

logit(P6) = −4.8719 + 1.056975*X1 + 2.070273*X2–
0 . 2 3 7 3 3 9 *X 3 – 2 . 8 9 5 6 9 8 *X 4 + 0 . 0 8 8 2 4 0 *X 5 +
7.095712*X6+.

0.090904*X7 + 5.986750*X8 + 0.832643*X9.
The relative operating characteristic (ROC)method proposed

by Pontius was employed to examine the goodness of fit (GoF)
of the logistic regression model (Pontius and Schneider 2001).
When the ROC value falls in the range of 0.5–1.0, the GoF of
the regression model increases as the ROC value increases.
When the ROC value exceeds 0.75, the GoF of the model is
relatively high, suggesting that the model can meet the require-
ments. The results show that the ROC values of the logistic
model for grassland, farmland, construction land, forestland,
waters and unused land are 0.7877, 0.8525, 0.8854, 0.8863,
0.9864 and 0.9845, respectively. The ROC value for each land
use type is greater than 0.75, suggesting a relatively high GoF
and that the driving factors selected in this study can explain the
spatial distribution of land use types to varying degrees.

Prediction of land use change based
on the CA–Markov model

The CA–Markov model is a type of complex dynamic model
established by combining CA and the Markov model and can be
used to simulate the spatiotemporal evolution of complex sys-
tems (Kasetkasem et al. 2005; Aaviksoo 1995; Yang et al. 2014).
The transformational rules of CA control changes in spatial po-
sitions, while the Markov area transformation matrix controls
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temporal changes. The combination of CA and theMarkovmod-
el can facilitate dynamic simulation of land use (Fu et al. 2017).
In addition, data for economic, social and natural factors can also
be added into the CA–Markov model to allow the prediction to
be more consistent with actual development (Subedi et al. 2013;
Halmy et al. 2015; Mondal et al. 2016).

The probabilities for land transformation in 2015 were pre-
dicted using the Markov module in IDRISI 17.0 based on the

land use data for 2005 and 2010. The time interval was set to
5. By running the software program, the area transformation
matrix for 2005–2010 and the predicted transformation prob-
ability matrix were obtained (Fig. 4). In Fig. 4, the red areas
represent the land use types with the highest probability of
occurrence. When the probability for a certain land use type
is higher, there is a higher probability of transformation to that
land use type.

High: 64

Low: 0

High: 1644

Low: 33

High: 6190

Low: 0

High: 10043

Low: 0Low: 0

High: 23381

Low: 0

High: 31109

Low: 1

High: 12151

Low: 0

High: 13085

Low: 11325

High: 183

Low: 132

0 5 10 20 30 40
km

a: Slope b: Elevation c: Distance to the nearest road d: Distance to nearest administrative center

e: Distance to the nearest river f: GDP g: Population density h: Amount of precipitation i: Temperature

a b c

d e f

g h i

Fig. 2 The main driving factors of land use change in Zhongxian

Environ Sci Pollut Res (2019) 26:20669–20688 20673



WLC–CA–Markov model

TheWLC–CA–Markovmodel, which is established on the basis
of the CA–Markov model, uses the WLC method to establish a
collection of land transformation suitability maps to simulate
land use. Figure 5 shows the modeling process. The

establishment of a collection of transformation suitability maps
is the most important and complex component of the model.
Whether the collection of transformation suitability maps is rea-
sonable will affect the simulation accuracy of the model. In the
WLC–CA–Markovmodel, waters are considered restricted areas
that cannot be transformed into other land use types. The weights
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of the nine influencing factors were determined using an analyt-
ical hierarchy process (Ying et al. 2007; Kundu et al. 2017).
Subsequently, the obtained suitability maps for the six land use
typeswere combined using the Collection EditorModule to form
a collection of land use transformation suitability maps (i.e.,
transformational rules) needed for the CA–Markov model
(Fig. 6).

Logistic–CA–Markov model

The logistic model proposed in this study clarifies the relevance
between the land use types and each factor and renders the
transformational rules more convincing. The logistic–CA–
Markov model established in this study obtains a collection of
transformation suitability maps for CA by using the proposed
logistic model to fit each land use type to each influencing factor
and then uses the Markov model to simulate future land use in
Zhongxian. Figure 7 shows the modeling process. The transfor-
mation suitabilitymap for each land use typewas obtained using
the logistic model. The transformational rules for the model
were obtained by combining the suitability maps (Fig. 8).

Model validation and comparison

To examine the accuracy of the WLC–CA–Markov and
logistic–CA–Markov models, the land use data for 2015

predicted by the two models were compared with the
actual data (Table 1 and Fig. 9). The model validation
results show that except for unused land, the difference
between the predicted and actual areas of each land use
type is less than 6%, suggesting small model errors.
The unused land encompasses a small area and is dis-
tributed randomly and thus cannot be predicted accu-
rately. The effects of unused land on land use in the
whole region are insignificant. Therefore, the difference
between the predicted and actual areas of unused land
will not affect the evaluation of the quantitative model
validation results.

Based on the value of the kappa coefficient, the WLC–
CA–Markov model is more accurate than the logistic–CA–
Markov model. The errors in the areas predicted by the
WLC–CA–Markov model are smaller than those in the
areas predicted by the logistic–CA–Markov model. The
logistic method used in the logistic–CA–Markov model
linearly fits each land use type to each influencing factor
and performs a regression on all the factors based on one
trend. However, the land use pattern is relatively dis-
persed. As a result, an overall fit cannot illustrate the
relationships between local land use distribution patterns
and the factors. The logistic model reflects only the rela-
tionship between each factor and each land use type in the
entirety of Zhongxian and equalizes multiple local
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relationships or ignores local impact trends. In addition, it
is not easy to add policy-related impacts into the logistic–
CA–Markov model, making it difficult to correct the weights of
the influencing factors to improve model accuracy. By contrast,
based on the distribution of each land use type with respect to
each factor in combination with relevant land policies, the
WLC–CA–Markov model macroscopically determines the
weight of each factor. In addition, in the WLC–CA–Markov
model, the formulation of the collection of land use transforma-
tion suitability maps is relatively highly adjustable, allowing the
model to be combined with the actual conditions and thus ren-
dering the model more scientific, reasonable and consistent with
the socioeconomic development trend. By comprehensively
considering accuracy and the adjustability of transformational
rules, theWLC–CA–Markovmodel was found to be superior to
the logistic–CA–Markov model. Thus, the WLC–CA–Markov
model was employed to simulate future land use change
scenarios.

Results

Land use change in Zhongxian from 1990 to 2015

Construction land in Zhongxian increased rapidly from
8.5237 km2 in 1990 to 87.3859km2 in 2015, with an annual
growth rate of 9.76% (Fig. 10, Table 2). Waters in Zhongxian
increased rapidly from 59.17 km2 in 1990 to 100.10 km2 in
2015, with an annual growth rate of 2.13% (Fig. 10, Table 1).
Forestland in Zhongxian increased rapidly from 1081.05 km2

in 1990 to 1112.18 km2 in 2015, with an annual growth rate of
1.25%. In particular, Unused land in Zhongxian increased
rapidly from 2.78 km2 in 1990 to 0.007 km2 in 2015, with
an annual growth rate of 21.19%. Grassland in Zhongxian
increased rapidly from 30.44 km2 in 1990 to 26.07 km2 in
2015, with an annual growth rate of 0.62%. Farmland in
Zhongxian increased rapidly from 999.72 km2 in 1990 to
855.92 km2 in 2015, with an annual growth rate of 0.62%.
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In addition, the six land use type in Zhongxian were under-
going rapid inter transformation (Fig. 11, Table 3). Farmland and
forestland were the dominant land use types in the region, and
there were relatively intense transformations of farmland to con-
struction land, forestland and waters. Between 1990 and 2015,
53.5169, 125.9994 and 14.2756 km2 of farmland were trans-
formed to construction land, forestland and waters, respectively.
Forestland was mostly transformed to construction land and wa-
ters. While no notable quantitative transformations occurred be-
tween the remaining land use types, spatially, there were discern-
ible changes in the locations of these land use types. For con-
struction land, a significant increase in its area and an evolution
from a central distribution pattern to a dispersed distribution pat-
tern can be observed in Fig. 11. Between 1990 and 2015, the
construction land area increased significantly, most of which was
a result of transformation from farmland and forestland. In terms
of spatial distribution, there was a notable increase in the con-
struction land area on the banks of the Yangtze River, which,
overall, was towards the direction away from the waters. Most of
the increased construction land was distributed in the townships
of Zhongzhou, Wuyang, Xinsheng and Huangjin. Most of the
grassland, farmland, construction land, unused land and forest-
land distributed near the river basin were transformed to waters.
This transformation trend was closely linked to the construction
of the Three Gorges Dam. The impounding of water in the dam
reservoir resulted in an increase in the water levels and the water

surface area. As a result, the nearby land was inundated, and
other land use types were transformed to waters.

Prediction of land use change

Based on the land use data for Zhongxian for 2015, the land
use in Zhongxian in 2020, 2025 and 2030 was predicted using
the WLC–CA–Markov model to investigate future land use
distribution patterns in Zhongxian (Fig. 12).

According to the prediction results, there will be a sig-
nificant increase in the construction land area between
2020 and 2030, mostly occurring near the main stream of
the Yangtze River. As the urbanization process advances,
the villages and towns near waters will become relatively
highly appealing and have a higher cluster effect. Large
numbers of people and enterprises will swarm into these
areas, resulting in a further increase in the construction
land area. By 2030, there will have been an increase in
the construction land area in northern Zhongxian. The ex-
pansion of construction land towards northern and central
Zhongxian will become an inevitable trend due to socio-
economic development. The increase in the construction
land area will come from farmland and grassland. The dis-
tribution of grassland will be in line with the direction of
the Yangtze River. Most of the grassland will be distributed
near the river basin. Most of the forestland will be
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distributed in high-altitude areas in central-western
Zhongxian. There will be a relatively balanced distribution
of the farmland area. The waters will have a relatively
stable area.

Compared to 2015, in 2020, Zhongxian will see an increase
of 0.67 km2 in its grassland area (the increased grassland area

will mostly be distributed in central-southern and eastern
Zhongxian), an increase of 21.80 km2 (annual rate in 2015
and 2010: 4.36 km2) in its construction land area, a decrease
of 39.57 km2 in its farmland area (most of the reduction occurs
due to transformation to construction land, particularly along
the river basin), an increase of 19.90 km2 in its forestland area,
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Fig. 8 A collection of land use transformation suitability maps based on Logistic-CA-Markov model

Table. 1 The model validation
results of the WLC–CA–Markov
and logistic–CA–Markov models

Land use
types

Actual area
(km2)

WLC-CA-Markov Logistic-CA-Markov

Predicted
area(km2)

Error
range(%)

Kappa
index

Predicted
area(km2)

Error
range(%)

Kappa
index

Grassland 26.0709 26.9373 3.32 0.9295 27.3153 4.77 0.9027
Waters 100.1039 98.3416 −1.76 119.3516 19.23

Farmland 855.9245 857.8317 0.22 848.6978 −0.84
Construction

land
87.3858 82.9562 −5.07 80.6183 −7.74

Unused land 0.0072 0.0096 33.33 0.0141 95.18

Forestland 1112.1846 1116.632 0.4 1106.717 −0.49
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and an decrease of 1.77 km2 in the area of its waters.
Relatively significant land use changes will occur between
2020 and 2025. Compared to 2020, in 2025, Zhongxian will
see a decrease of 0.17 km2 in its grassland area, an increase of
24.10 km2 in its construction land, a decrease of 37.91 km2 in
its farmland area, an increase of 14.01 km2 in its forestland
area, and a relatively insignificant change in the areas of its
waters and unused land. Compared to 2025, in 2030,
Zhongxian will see a continuous decrease in its grassland area,
albeit to a relatively small extent, an unchanged area of its
waters, a continuous increase of 22.08 km2 in its construction
land area, an increase of 12.54 km2 in its forestland area, and
an unchanged unused land area. Between 2015 and 2030,
overall, Zhongxian will see a slight decrease in the areas of
its grassland, waters and unused land, increases of 67.99 and
46.44 km2 in its construction land area and forestland area,
respectively, and a decrease of 111.91 km2 in its farmland

area. The large area of construction land needed for future
development in Zhongxian will mostly come from farmland.

Simulation of land use in various scenarios

Based on the future land use development trend and policy
adjustment in Zhongxian, three scenarios are set, namely, a
natural development scenario, an ecological protection scenar-
io and a sustainable development scenario. In the natural de-
velopment scenario, no restrictions are imposed on land use
development in Zhongxian; the current socioeconomic devel-
opment trend and land use evolution pattern are followed, and
free transformations between land use types are allowed. In
the ecological protection scenario, restrictions are imposed on
the transformation of waters, grassland land and forestland
within the ecological conservation zones in Zhongxian to con-
struction land, unused land and farmland. In addition, the
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distances from construction land to waters are increased to
prevent urban development from affecting the ecological en-
vironment of the waters. Moreover, the transformation of
farmland land to construction land is also slowed. In the sus-
tainable development scenario, consideration is given to both
ecological and economic development. Some waters, grass-
land and forestland can be transformed to construction land,

the transformation of farmlandwith a slope gradient of 0–6° to
other land use types is prohibited, high-quality farmland is
protected, the rate of expansion of construction land is con-
trolled, and construction within the construction land control
zones is prohibited.

Predictions were made on land use conditions in the three
scenarios. Figure 13 shows the land use conditions in

In 2010 In 2015

Construction land

Unused land

Forestland

Waters

Farmland

Grassland

Land use types

0 5 10 20 30 40
km

Fig. 10 Spatial distribution of land use type in Zhongxian from 1990 to 2015

Table. 2 Land use change in Zhongxian from 1990 to 2015 (km2)

Land use type Urban land(km2) CAL* ACL** ACR***

1990 2000 2005 2010 2015

Grassland 30.4525 30.538 28.7943 27.9117 26.0707 −4.3818 −0.1753 −0.6195
Waters 59.2141 59.3422 78.0682 98.5361 100.104 40.8899 1.6356 2.1224

Farmland 1000.194 996.1621 961.5299 903.2711 855.9244 −144.2695 −5.7708 −0.6211
Construction land 8.5323 11.7622 25.6433 54.2981 87.3859 78.8536 3.1541 9.7526

Unused land 2.7791 2.7779 0.0266 0.0144 0.0072 −2.7719 −0.1109 −21.1980
Forestland 1081.738 1082.328 1088.849 1098.88 1112.185 30.4466 1.2179 0.1111

Notes

*Change area of land use type.

**Annual change of land use type.

***Annual change rate of land use type.

Environ Sci Pollut Res (2019) 26:20669–20688 20681



Zhongxian in 2020 and 2025. Table 4 shows the area of each
land use type in each of the three scenarios.

Under the natural development scenario. Compared to
2015, in 2020, Zhongxian will have a grassland area of
26.74 km2, a slightly reduced water area, a significantly re-
duced farmland area (by approximately 40 km2) (most of the
reduced farmland area will have been transformed to construc-
tion land), a most significantly increased construction land
area, a slightly reduced unused land area, and an increased
forestland area. Between 2020 and 2030, Zhongxian will see
the most significant changes in its farmland and construction
land areas. The farmland area will decrease at an excessive
rate, whereas the construction land area will increase rapidly.

Under the ecological protection scenario. Compared to
2015, in 2020, Zhongxian will have inconspicuously changed
areas of grassland and waters, an increased forestland area (by
35.85 km2), a reduced farmland area (by 39.94 km2) (most of
the reduced farmland area will have been transformed to for-
estland), an increased construction land area (by 5.66 km2)
(the increase in construction area will have originated from
farmland alone), and a slightly increased unused land area.
Overall, in the ecological protection scenario, the farmland
and forestland areas will have undergone the most significant
fluctuations by 2020, primarily due to the implementation of
the Returning Farmland to Forestland project. A stable area of
waters is favorable to ecological regulation on the banks of the
Yangtze River. However, according to this trend, compared to
2020, in 2030, Zhongxian will see a sharp decrease of
45.23 km2 in its construction land area (the decrease will have
occurred near the waters), a decrease of 3.99 km2 in its

forestland area, and a decrease of 45.23 km2 in its farmland
area. Overall, Zhongxian will see an increase in its ecological
land area, indicating environmental improvement. However, a
significant expansion of waters will be detrimental to econom-
ic development in Zhongxian and pose a threat to production
and people’s living conditions.

Under the sustainable development scenario. Compared
to 2015, in 2020, Zhongxian will see a decrease of
0.56 km2 in its grassland area, a decrease of 19.75 km2 in
its farmland area, an increase of 10.09 km2 in its construc-
tion land area, and an increase of 15.35 km2 in its forest-
land area. Compared to 2020, in 2030, Zhongxian will see
an increase, albeit relatively insignificant, of 0.23 km2 in
its grassland area, an increase of 21.96 km2 in its construc-
tion land area, respectively, and a decrease of 40.20 km2 in
its farmland area. Overall, Zhongxian will see the most
significant decrease in its farmland area (most of the re-
duced farmland will have been transformed to construction
land and forestland). Most of the increase in construction
land area will not have occurred near Zhongxian but in-
stead in the region north of it. The increase in forestland
area will facilitate ecological environmental protection.

Discussion

The best land use scenario

In the natural development scenario, compared to 2015, in
2020, Zhongxian will see a dramatic decrease in the farmland
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Fig. 11 Temporal and spatial variation of land use in Zhongxian
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area to 816.35 km2, which is smaller than the red-line farm-
land area stipulated in Zhongxian’s Overall Plan for Land
Use. As a result, grain production will decrease and will not

meet the supply requirement. An imbalance between supply
and demand will affect the stability of socioeconomic devel-
opment in Zhongxian. Although the grassland and forestland

Table. 3 Transition matrix of
land use in Zhongxian from 1990
to 2015 (km2)

Land use types Grassland Waters Farmland Construction land Unused land Forestland

Grassland 20.7704 1.9867 2.2374 1.1732 0 4.2736

Waters 0.0287 58.6947 0.3162 0.0087 0 0.1217

Farmland 3.9466 14.2756 801.9813 53.5169 0 125.9994

Construction land 0.0025 0.8926 0.0045 7.6207 0 0.0034

Unused land 0 2.1186 0.0062 0.0018 0.0072 0.6423

Forestland 1.3225 22.1359 51.379 25.0646 0 981.1442

In 2020 In 2025

In 2030

Grassland

Land use types

Waters

Farmland

Construction land

Unused land

Forestland

0 5 10 20 30 40
km

Fig. 12 Future land use simulation in Zhongxian
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Fig. 13 Land use simulation of various scenarios in Zhongxian
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areas will increase, they will decrease over a long-term period
of development because they will be occupied by construction
land. There will be a significant decrease in the farmland area
and an imbalanced ratio of the total farmland area to the pop-
ulation. This trend will lead to rapid socioeconomic develop-
ment, a dense population along the main stream of the Yangtze
River, a deteriorating ecological environment, a reduction of
farmland, and a tense man–land relationship; consequently,
the trend will be deleterious to sustainable development in
Zhongxian as a whole. The ecological environmental

protection scenario focuses on ecological protection, controls
construction land, and restricts the development of primary
and tertiary industries. In this scenario, population growth will
inevitably lead to an excessively high population density in
the current construction land zones and will place a heavier
load on the urban system, thereby causing problems such as
traffic congestion and an adverse urban environment.
Increasing the ecological land area will protect the environ-
ments of other villages and towns in Zhongxian but will also
add, instead of lessen, the pressure on Zhongxian. This

Table. 4 Simulation of land use in three scenarios in Zhongxian in 2020 and 2025(km2)

Scenarios Years Grassland Waters Farmland Construction land Unused land Forestland

Natural development scenario 2020 26.7415 98.3368 816.3542 109.1856 0.0046 1132.0854

2025 26.5759 98.3127 778.4477 133.2896 0.0006 1146.0859

Ecological protection scenario 2020 25.876 99.7212 815.9831 93.0817 0.0141 1148.0363

2025 25.2377 162.7262 802.857 47.8549 0.0009 1144.0418

Sustainable development scenario 2020 25.5149 99.998 836.1758 97.4744 0.0141 1127.5376

2025 25.7466 99.8013 795.9732 119.4326 0.0141 1141.7462

Table. 5 Comparison of different land use simulation models

Study area Method / Model Years Prediction accuracy / Kappa
coefficient

Scenarios Author

Zhong county Logistic-CA-Markov,
WLC -CA-Markov

2015–2030 kappa coefficients: 0.9027
kappa coefficients: 0.9295

(a)Natural development (b)Ecological pro-
tection (c)Sustainable development

This study

Sangong
watershedin
Xinjiang

Combining SD model
with CLUE-S model

2004–2030 The values of the kappa statistic
are 0.83, 0.84 and 0.81 in 1987,
1998 and 1994

(a)Reference scenario (b)Economic scenario
(c)Ecological scenario

Luo et al.
(2010)

the Stubai
Valley

SPA-LUCC 1973–2003 Overall accuracy: 73% (a)Continuation of previous LUCC
(b)Reduction of use and (c)Diversification of

use

Schirpke
et al.
(2012)

Guangzhou
city

Patch-Logistic-CA 2012–2020 Mean pattern-level similarity of
79.66% to actual development
patterns

(a)Diffusion scenario (b)Business-as-usual
(c)Coalescence scenario

Chen et al.
(2014)

Erhai Lake
Basin

Agent-based model, ant
colony optimization

2010–2020 Maximum accuracy: 78.01% – Xu et al.
(2015)

Shenzhen city Monte Carlo approach,
CA-ANN model

2004–2020 Overall accuracies: greater than
81.91%, kappa coefficients:
greater than 0.71

– Li and Li
(2015)

Dawa County
and
Liaoning
Province

Differential
evolution-cellular
automata (DE-CA)
model

2005–2020 Overall accuracy: 84.56%
Kappa coefficient: 0.7860

– Wang et al.
(2015)

Hong Kong CLUE-S and Markov
model

2000–2018 Overall accuracy: 81.53%
Kappa coefficient: 0.7753

(a)The baseline scenario (b)The open space
scenario (c)The residential scenario
(d)The balanced scenario

Zheng et al.
(2015)

Foshan city Markov-logistic-CA 2005–2025 Kappa coefficients: between 0.78
to 0.80

(a)Business as usual (b)New transportation
(c)Growth with limits

Han and Jia
(2017)

Dongying city CA-Markov model 1995–2025 Kappa coefficient: 0.61 – Wang et al.
(2018b)

the Ahvaz
region of
south-west
Iran

DoTRules and random
forest, CA model

1985–2015 Overall accuracy: DoTRules
(75.4%)

and random forest (75.8%)

– Roodposhti
et al.
(2018)
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measure will not be able to attend to both areas. According to
this trend, there will be an excessively dense urban population
and a poor urban environment in Zhongxian, particularly in
Zhongzhou Township. By contrast, other villages and towns
will have a vast but sparsely populated area with a pleasant
environment and will see a reduction in industrial activity. In
addition, these villages and towns will rely heavily on primary
industries, have insufficient construction land to attract invest-
ment, and derive poor economic benefits from the land. Their
gap in economic development from other districts and
counties in Chongqing will widen. In the sustainable develop-
ment scenario, the barycenter of construction land will move
northward. In addition, the northern areas will develop the
citrus industry vigorously, focus on simultaneous economic
and environmental development, protect the core ecological
protection zones, and develop some ecological land into con-
struction land and thereby lessen the farmland pressure while
ensuring the red-line farmland area in Zhongxian, guarantee-
ing food security, mitigating the tense man–land relationship,
and reducing the environmental pressure. Spatially, there will
be a relatively balanced increase in the construction land area
in each village and town. As the leader in economic develop-
ment, Zhongzhou Township will stimulate the coordinated
development between the villages and towns and will help
narrow the gap between urban and rural areas. The sustainable
development model will facilitate future development in
Zhongxian.

Here, the three scenarios for Zhongxian are analyzed
from the ecological environment and economic develop-
ment perspectives. In the natural development scenario,
Zhongxian considers both ecological environmental pro-
tection and economic development. However, the rate of
increase in the construction land area is too high, and
the extent of decrease in the farmland area is too large.
In 2020, the total farmland area in Zhongxian will be
smaller than the red-line area and will thus be undesir-
able for development. The ecological protection scenario
focuses only on ecological protection and has no stim-
ulating effect on economic development. The sustainable
development scenario strengthens the protection on
farmland, particularly basic farm fields; optimizes the
agricultural land structure; and protects the ecological
environment of Zhongxian. By 2020, the total farmland
area will be no smaller than 829.60 km2; the scale of
urban and rural construction land within the whole
county will be controlled within 137.40 km2; and the
farmland and construction land areas will be 836.18
and 97.48 km2, respectively, thus meeting the require-
ments stipulated in the plan. The sustainable develop-
ment scenario strictly controls the scale of construction
land; focuses on the unified, coordinated development
of urban and rural construction land; moves the
barycenter of construction land to the northern areas

(which is favorable for the protection of ecological wa-
ters in the southeast); and facilitates the integration of
collective construction land. Therefore, the sustainable
development scenario is the best land use model.

Comparison of different land use simulation models

Models of land use changes are useful tools for analyzing the
driving forces and processes of land use changes, and the
decision-making for land use planning. In the past 10 years,
researchers have developed many different models of land use
simulation depending on their objective and background. But
no single model is capable of seizing all crucial processes of
land use change at different scales. Each LUCC model has its
own potentials and constrains (Luo et al. 2010). Summarized
in Table 5 shows the accuracies, study areas, scenarios of land
use change simulations conducted by different scholars using
various models. All of them are not single, but coupled
models, which reflect the updating trend of coupled models
in land use simulations. In this study, we determine influenc-
ing factors from the aspects of natural topographic and geo-
morphological conditions, accessibility to economic develop-
ment and land use expansion, and then establish Logistic-CA-
Markov and WLC-CA-Markov models so as to simulate spa-
tial patterns of land use in Zhongxian County. The results
illustrate that the WLC-CA-Markov model established here
has better controllability and higher simulation precision (the
kappa coefficient is 0.9295) than other coupled models. From
Table 5 we can find that Han and Jia (2017) also adopted the
Logistic-CA-Markov model, but in their simulation results,
the kappa coefficient did not exceed 0.8, therefore, we boldly
suppose that the difference between the study area and the
driving factor could affect the simulation accuracy of the mod-
el significantly.

Although our WLC-CA-Markov model has a good overall
kappa accuracy in the simulation process, it falls lack of fully
reflecting the variety of LUCC in the study area. One reason
for this is that land use change is a complex process, and more
comprehensive influence factors need to be considered in or-
der to accurately demonstrate the mechanism. In addition, CA
models are spatially explicit and temporally dynamic simula-
tion methods, nevertheless, the lack of an ability to access
individual characteristics is a limitation when LUCC to be
simulated is involved in the integrated systems. In future en-
deavor, more influence factors and individual characteristics
should be considered deliberately.

Conclusions

There were frequent transformations between various land use
types in Zhongxian between 1990 and 2015, particularly be-
tween 2005 and 2010, during which time there was a one-fold
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increase in the construction land area (most of which originat-
ed from farmland), an increase of 20.47 km2 in the area of
waters, an increase in the forestland area (mainly due to the
vigorous promotion of the citrus industry), and an increase in
the forestland area (due to a change in the agricultural business
model), whereas the grassland and unused land areas
remained relatively stable.

The WLC–CA–Markov model was found to be notably
superior to the logistic–CA–Markov model and was thus
employed to predict the land use conditions in Zhongxian in
2020, 2025, and 2030. There are some land use problems in
Zhongxian. It is thus necessary to increase the policy interven-
tions on farmland, strengthen land use regulation, improve the
market mechanism, and enhance the supervision of land use.

Three scenarios for Zhongxian were analyzed from the eco-
logical environment and economic development perspectives. In
the natural development scenario, Zhongxian considers both eco-
logical environmental protection and economic development.
However, in this scenario, the rate of increase in the construction
land area is too high, and the extent of decrease in the farmland
area is too large; by 2020, the total farmland area in Zhongxian
will be reduced to below the red line, whichwill be detrimental to
development. The ecological protection scenario focuses on eco-
logical protection and has no stimulating effect on economic
development. The sustainable development scenario considers
both ecological and economic development and is thus both
more suitable for land use development and favorable for future
development in Zhongxian.
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