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Abstract
Trihalomethanes (THMs) and adsorbable organic halides (AOX) were generated in chlorinated water. The purpose of the study
was to provide a comprehensive picture of concentration distribution, the seasonal and different water source variability of THMs
and AOX. Data for THMs, AOX, and other physico-chemical parameters were from 538 samples of 16 drinking water work
through a 3-year sampling program which was conducted in Shandong province with typical temperate and monsoonal climate.
Selected samples were considered with the influence of factors such as season, water source, and disinfectant. The THMs and
AOX concentration of the samples disinfected with chlorine ranged from 2.1–105 μg/L and 11–238 μg/L, respectively. The
THMs and AOX concentration of the samples disinfected chlorine dioxide ranged from N.D.–47.6 μg/L and N.D.–102 μg/L,
respectively. The median concentration of THMs and AOX of samples disinfected with chlorine were 35 μg/L and 61 μg/L,
much higher than chlorine dioxide, respectively. Ninety-two percent of the samples disinfected with chlorine and all samples
disinfected with chlorine dioxide met Chinese drinking water standard for THMs. The ratio of tribromethane (TBM) to THMs of
samples disinfected with chlorine was 19%, lower than chlorine dioxide 42%. Bromine substitution factor (BSF) of THMs and
initial concentration of bromide showed weak correlation, and the Spearman correlation coefficient was 0.38. THMs and AOX
concentrations showed noticeable seasonal variations with the highest median concentrations in spring. The levels of THMs and
AOX in drinking water varied with different water sources and followed the order local reservoir > Yellow River reservoir >
ground water. The survey results complement the database of THMs and AOX occurrence in drinking water in China, and offer a
significant reference data for setting disinfections by-products occurrence in countries or regions with similar climate around the
world.
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Abbreviations
AOX Adsorbable organic halides
BDCM Bromodichloromethane
BSF Bromine substitution factor
DBCM Dibromochloromethane
DBPs Disinfections by-products
DCA Dichloroacetic acid
TCA Trichloroacetic acid
DOC Dissolved organic matter
TBM Tribromomethane

TCM Trichloromethane
THMs Trihalomethanes
TOC Total organic matter

Introduction

Chlorine or chlorinated compounds are the most common
disinfectants in drinking water treatment throughout the world
for protecting the water against microbial contamination and
preventing microorganism regrowth in the water distribution
system (Sérodes et al. 2003). However, when chlorine reacts
with natural organic matter—such as humic and fulvic acids,
which is widely found in water bodies, a wide range of disin-
fections by-products (DBPs) were produced (Johnson et al.
1982; Peters et al. 1980). Special attention has been paid to
the occurrence of DBPs due to their toxic and potential
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carcinogenic effect (Richardson et al. 2007). Trihalomethanes
(THMs), the most commonly observed classes of DBPs in
drinking water, were the first DBPs identified and occurred
at higher concentrations than other DBPs (Bellar et al. 1974;
Chang et al. 2010; Goslan et al. 2014; Loyola-Sepulveda et al.
2013; Ristoiu et al. 2009; Sérodes et al. 2003; Toroz and Uyak
2005; Wei et al. 2010). Most of the studies found that BDCM,
DBCM, and TBM were generally not genotoxic in the stan-
dard test systems (Cancer 1999). Nonetheless, brominated
THMs are activated to be mutagenic by glutathione S-
transferase-theta in a transgenic strain of Salmonella
(Pegram et al. 1997). Some published results link THMs to
cancer, kidney, and liver damage, fetal growth retardation, and
birth defects (Wright et al. 2004). When administered by ga-
vage, TCM and DBCM induced live tumors in the mouse.
BDCM produced renal and liver tumors in the mouse, and
renal tumor in the rat. TBM induced intestinal tumors in the
mouse and rat (Jorgenson et al. 1985; Program 1985, 2006). In
order to minimize the risk of human health effect, regulations
or guidelines have been promulgated to control THMs in
many countries or international organizations (Richardson
2003).

In addition to THMs, other DBPs have been reported in
the many research, inc luding haloace t ic ac ids ,
chlorophenols, chloral hydrate, haloacetonitriles,
haloketones, haloacetonitriles, and haloacetamides, more
than 600 DBPs (Ristoiu et al. 2009; Wang et al. 2015). It
is almost impossible to investigate all the DBPs in a cer-
tain region, so adsorbable organic halides (AOX) were
chosen as investigation index to reflect the overall level
of DBPs. In addition, few literatures about the occurrence
of AOX are available.

In summary, the most prevalent DBPs THMs and AOX,
which reflect the total level of DBPs, were selected as the
focus of the survey. The current survey aims at documenting
the occurrence, speciation and temporal, and different water
sources variability of THMs and AOX in 16 urban drinking
water work using chlorine dioxide or chlorine as disinfec-
tant. It was conducted in Shandong Province which is locat-
ed on the eastern coast of China, on the lower Yellow River,
with a population of 98.47 million and an area of about
157,900 km2 (from the 2015 census), and has a typical tem-
perate and monsoonal climate with four clearly distinct sea-
sons. It is also an important water-receiving region in
Eastern-Line South-to-North Water Transfer Project.
Accordingly, the results of the investigation are aimed at
enriching database about the occurrence of DBPs in drink-
ing water in China as a technical literature for future water
quality management purpose and setting future DBPs regu-
lations. Meanwhile, the current investigation provides a vi-
tal reference data for other countries or regions with temper-
ate and monsoonal climate around the world to set relevant
to DBPs occurrence in the drinking water systems.

The chemistry of chlorinated disinfectants
and the toxicology of THM and AOX in water

Chemical behavior of chlorinated disinfectants

Upon dissolution in water, chlorine gas hydrolyses rapidly to
yield hypochlorous acid (HClO), hypohalate anion, and ClO−,
and the composition of the resulting solutions is pH dependent
(Lopez et al. 2001).

When a substitute for chlorine, sodium hypochlorite (NaOCl),
is used as disinfectant, HClO is also formed. Hypobromous acid
(HBrO) was generated from the action of HClO on bromide ion
and dissolved in most natural waters (Gunten and Oliveras
1998). HClO (pKa = 7.42) and HBrO (pKa = 8.70) primarily
existed in acidic and neutral solution, both of them are strong
electroaffinity, which participate in addition and substitution re-
actions with various organic matter (Boyce and Hornig 1983).
HClO and ClO− can react with organic compounds by addition,
substitution, and oxidation, and chlorine substitution can lead to
the formation of halogenated compounds, such as TCM
(Emmanuel et al. 2004). Similarly, the corresponding Br-
substituted products, BDCM, DBCM, and TBM, are generally
thought to result from the reaction of HBrO and BrO− with
organic compounds (Heeb et al. 2014).

Toxicology of THMs and AOX

All four of the regulated THMs are carcinogenic in rodents.
When administered by drinkingwater, TCM increased the yield
of renal tubular adenomas and adenocarcinomas in male rats
(Jorgenson et al. 1985), and BDCM was carcinogenic in the
male F344/N rat based on an increased hepatocellular neoplasia
(George et al. 2002). When administered by gavage, DBCM is
toxic to the liver and kidneys and produces hepatocellular tu-
mors in mice (Dunnick et al. 1985). When administered by
injection, TBM induces a pulmonary adenoma response in
mice (Theiss et al. 1977). Based on population-based case-con-
trol study, excess risks of rectal and bladder cancers for women,
the overall association of bladder cancer risk with duration of
THMs, and colon cancer risk for males associated with cumu-
lative exposure to THMs were found (Cantor et al. 1998; King
et al. 2000; Koivusalo et al. 1997). Research on the pharmaco-
kinetics of bromodichloromethane in humans indicated that
water uses involving dermal contact can result in much greater
systemic BDCM doses than water ingestion (Leavens et al.
2007), emphasizing the significant of exposure route in risk
assessment of the brominated THMs (Christian et al. 2007;
Ross and Pegram 2003). Wang et al. also found that the cancer
risks resulting from intakes of THMs are variable not only by
the type of THM, but also by the route of exposure (Wang et al.
2007). Jin Lee et al. evaluated the lifetime cancer risks related
with different exposure pathways by THMs in swimming pools
and found that swimmers can be at the greater risk from
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inhalation exposure (Jin et al. 2009). THMs exposure risk to
human health during non-potable reuse was estimated, and the
lifetime cancer risks estimation presented that inhalation expo-
sure to chloroform in the using peak THMFP values showed
the highest cancer risks of 1.28 × 10−6 and 1.12 × 10−6 to
residential adult and child receptors, respectively (Aina and
Ahmad 2013). However, DBCM, BDCM, and TBM have not
shown genotoxic in vivo and are most impossible to have any
significant genotoxicity in mammals (Stocker et al. 1997). In
addition, AOX, which generated fromNaClO reacted with hos-
pital wastewater, its concentrations were strongly associated
with EC50 (TU) on daphnia. But there is very few information
available about toxicity of AOX resulted from disinfection
treatment in drinking water. To regulate or make policy deci-
sion, it is necessary for collecting more information about tox-
icity, and pharmacokinetics of THMs and AOX. It is more
meaningful to study the toxicity of total amount of DBPs (rep-
resented as AOX) than to study individual DBPs, since THMs
or haloacetic acid or nitrogen-containing DBPs are never sin-
gular in drinking water, they are usually mixed together.

Materials and methods

Reagent

The THMs standards containing the four trihalomethane
(trichloromethane [TCM], bromodichloromethane
[BDCM], d ibromochloromethane [DBCM], and
tribromomethane [TBM]) obtained from Supelco (USA).
Methanol was purchased from Fisher Chemicals (New
Jersey, USA) with HPLC grade. Distilled water was pre-
pared by a Milli-Q Synthesis water purifier (Millipore,
Bedford, MA, USA).

Sample collection

The sampling sites are presented in Fig. 1, and the treatment
process of each plant is described in Table 1. Sample collec-
tion lasted for 3 years, and a total of 538 samples (raw water
and treated water) were collected for this study. In this study,
water samples from 16 water works were distributed in 13

0 40
Km

Fig. 1 Map of sampling locations
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cities of Shandong province. These water works are also sci-
entifically interesting because they use different types of
sources as raw water (Yellow River reservoir, local reservoir
and ground water).

Sample vials contained a preservative and quenching agent
in keeping with US Environmental Protection Agency (EPA)
Methods 551.1 and standard method 5320 B. Samples were
collected in amber glass vials packed in a cooling box (4 °C)
and delivered to the laboratory within 48 h. Samples were
preserved in the dark at 4 °C until used as soon as they arrived
in the lab. All samples were analyzed within 7 days of
collection.

Analytical methods

THMs were extracted using a modified form of USEPA
Method 551.1. The analytes were detected by gas chromatog-
raphy (GC) (Agilent 6890) with electron capture detection
(ECD). The method detection limits (MDLs) of TCM,
BDCM, DBCM, and TBM were 4, 1.3, 2, and 1.4 μg/L,
respectively. AOX was determined using AOX analyzer
(Multi X 2500 Halogen analyzer, Analytik Jena AG). The

procedure was based on standard methods 5320 B (APHA
et al. 1998). The method detection limits (MDLs) of AOX
were 10 μg organic Cl–/L. A TOC-VCPH analyzer was used
for DOC detection (Shimadzu, Japan). The UV254 was mea-
sured by a UV-1800 UV/Visible spectrophotometer
(Shimadzu, Japan).

Results and discussions

Occurrence of DBPs

Figure 2 presents the concentration profiles of total THMs and
AOX in all the samples collected from 16 drinking water
works in Shandong. Nine water works are disinfected with
chlorine, and others are chlorine dioxide. The THMs concen-
tration of the samples disinfected with chlorine ranged from
2.1–105 μg/L and N.D.–47.6 μg/L with chlorine dioxide. The
THMs concentration of 93% of the samples disinfected with
chlorine and all of the samples disinfected with was below 80
μg/L. That is the permissible levels of THMs in the USA
(USEPA 1998). Nevertheless, according to Chinese water
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Fig. 2 Concentration of DBPs in Shandong drinking water
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quality standards, the maximum contaminant level (MCL) of
total THMs was not regulated, but the sum of the ratio of each
THMs concentration to its respective MCL must be less than
or equal to one (GB5749-2006 2006).

CCHCl3

60
þ CCHCl2Br

60
þ CCHClBr2

100
þ CCHBr3

100
≤1:0

The calculated ratios were summed and 92% of the sam-
ples disinfected with chlorine and all of the samples
disinfected with chlorine dioxide were below 1.0, indicating
that the vast majority of the samples met Chinese total THMs
regulations. Seventy-five percent of the THMs concentrations

of the samples disinfected with chlorine were below 51.5
μg/L, and the median concentration of total THMs was 35
μg/L. That was similar to previous investigations on a national
scale in the USA with THMs concentration 39 μg/L (Wang
et al. 2015), and slightly lower than some European cities
(Barcelona 85 μg/L, Scotland 74 μg/L) (Goslan et al. 2009;
Goslan et al. 2014) and Canadian city (Quebec ,62 μg/L)
(Sérodes et al. 2003), while was much higher than that report-
ed from observations in other cities in China, Shenzhen (19.9
μg/L), Guangzhou (17.7 μg/L), Beijing (14.1 μg/L), and
Taiwan (4.0–24.4 μg/L) (Chang et al. 2010; Gan et al. 2013;
Huang et al. 2017; Wei et al. 2010).

The AOX concentrations of the samples disinfected with
chlorine ranged from 11–238 μg/L that was similar to the
USA (21–237 μg/L) (Weinberg et al. 2002), and the median
concentration was 61 μg/L that was much higher than
European countries (22 μg/L) (Palacios et al. 2000) The
AOX concentrations of the samples disinfected with chlorine
dioxide ranged from N.D.–102 μg/L, and the median concen-
tration was 36 μg/L.

The median concentration of total THMs and AOX of
the samples disinfected with chlorine dioxide was much
lower than chlorine. Volk et al. found that the substitu-
tion of chlorine by chlorine dioxide corresponded to an
81% reduction in THMs concentrations (Volk et al.
2002). The results of several studies indicate that under
the same reaction conditions, the AOX generated with
chlorine dioxide is 1–25% of the AOX generated with
chlorine (Aieta and Berg 1986). It has been well
established that the samples treated with chlorine-free
chlor ine dioxide do not form THMs (Hua and
Reckhow 2012; Richardson et al. 2000). However, when
chlorine was used as the secondary disinfectant after the
application of chlorine dioxide, THMs were found
(Richardson et al. 2000). Appreciable amounts of
THMs (5–25 μg/L over 50%) which were found in wa-
ter works used chlorine dioxide as disinfectant, which
indicates that chlorine dioxide used in these water works
is not pure, and by-products chlorine may be produced
during on-site preparation of chlorine dioxide. It is ad-
vised that the purity of chlorine dioxide must be in-
creased until no chlorine is formed during the prepara-
tion of chlorine dioxide, if they want to further reduce
the production of THMs.
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Fig. 3 Seasonal variation in DBPs concentrations in Shandong drinking
water

Table 2 Average values of water
quality and operational
parameters at the treatment plant
in the different seasons

Free residual
chlorine (mg/L)

DOC (mg/L) Temperature Free residual chlorine
dioxide (mg/L)

Spring 0.40 2.8 16.5 0.14

Summer 0.30 2.5 25.5 0.12

Autumn 0.30 3.2 14.3 0.15

Winter 0.39 2.9 5.3 0.15
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Seasonal DBPs variations

There are apparent temporal variations in the concentration
levels of THMs and AOX, and the distribution of concentra-
tion of DBPs in four seasons is summed up in Fig. 3. THMs
and AOX levels were high in spring and low in summer. This
may be partly related to the fact that the spring water temper-
ature is higher, thus accelerating the production reaction of
THMs and AOX (Guilherme and Rodriguez 2014; Huang
et al. 2017; Mercier Shanks et al. 2013; Wei et al. 2010).
Even though the highest average temperature appears in sum-
mer, rainfall is greatly heavy in summer in Shandong, which
causes a decrease in DOC level in drinking water. Besides, the

average doses of disinfectant used (chlorine and chlorine di-
oxide) were lower in summer than in spring (Table 2).
However, although the average temperatures observed in au-
tumn and winter were much lower than in summer (Table 2),
the concentrations of DBPs in autumn and winter were gen-
erally higher than in summer. This is likely explained by com-
prehensive factors, relating to the fact that the average usage
doses of disinfectant (chlorine and chlorine dioxide) and the
average DOC concentrations were higher in autumn and win-
ter than in summer (Table 3).

Distribution of DBPs concentration in different water
sources

As presented in Fig. 4, the change of DBPs concentration of
different water sources was in the order local reservoir >
Yellow River reservoir > ground water. There are three main
sources of drinking water in Shandong: local reservoir water,
Yellow River reservoir water, and ground water. The average
concentration for THMs was 31.9 μg/L in local reservoir water,
21.1 μg/L in Yellow River reservoir water, and 2.5 μg/L in
ground water and for AOX in local reservoir water, Yellow
River reservoir water, and ground water were 70 μg/L, 53
μg/L, and 25 μg/L, respectively. The reason why the DBPs level
of ground water was the lowest may be that the DOC
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Fig. 4 The DBPs of different water sources in Shandong drinking water

Table 3 Average values of water quality and operational parameters at the treatment plant of the different water sources

Free residual
chlorine (mg/L)

DOC (mg/L) Temperature Residual chlorine
dioxide (mg/L)

Local reservoir water 0.41 2.7 15 0.18

Yellow River reservoir water 0.41 2.8 18 0.12

Ground water 0.15 1.4 15 0.15

Fig. 5 The ratio of individual speciation to total THMs with different
disinfectants
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concentration of ground water sources was lower than the two
other water sources. Moreover, most of the water works that use
ground water as water source are disinfected with chlorine diox-
ide. The operational parameters at the treatment plants and the
DOC level of water quality of local reservoir water were similar
to YellowRiver reservoir water, but DBPs level of local reservoir
water was slightly higher than Yellow River reservoir water
(Table 3). This was possibly related to that fraction distributions
of DBPs precursors were different between local reservoir water
and Yellow River reservoir water, while DBPs formation highly
rests with the nature of dissolved organic matter (Niu et al. 2015;
Wei et al. 2008; Zheng et al. 2016). It should be noted that the
fraction distributions of DBPs precursors of the two types of
water sources need to be studied.

Speciation of the THMs

The distribution of individual species of THMs is summarized in
Fig. 5. The mean concentrations of TCM, BDCM, DBCM, and
TBM of samples disinfected with chlorine were 5.8, 9.0, 10.1,
and 5.8 μg/L, respectively, higher than chlorine dioxide (impu-
rity, mixed with chlorine) 0.6, 2.9, 2.5, and 4.4 μg/L. TCM,
BDCM, DBCM, and TBM of samples disinfected with chlorine
account for 19%, 29%, 33%, and 19% of total THMs, and 6%,
28%, 24%, and 42% for chlorine dioxide, respectively.
Apparently, as chlorine replaced by chlorine dioxide as disinfec-
tant, the ratio of TCM, DBCM to total THMs decreased, but
TBM increased significantly. It is significantly noted that the
amount of THMs formation was suppressed when water was
treated with ClO2 and C12, but the percentage of TBM may
prominently improve. Jun Wen Li et al. had drawn a similar
conclusion that the four species THMs formation potential de-
creased as various usage amount of ClO2 and C12, and the ratio
of TCM, DBCM to total THMs decreased by 9% and 2% re-
spectively, TBM increased by 13% when ClO2/C12 was from 0
to 0.2 (Li et al. 1996).

Bromine incorporation

According to some toxicological studies, brominated DBPs may
present higher health risks than chlorinated DBPs, so the forma-
tion of bromine-containing DBPs is of particular interest
(Richardson 2003). The bromine substitution factor (BSF) was
introduced in some studies, which represent the ratio of themolar
concentration of bromine to the total halogen of some class of
DBPs and applied to measure the bromine substitution among
different DBPs classes (Hua et al. 2006). For THMs, the BSF can
be

BSF THMsð Þ ¼ 0� CHCl3½ � þ 1� CHBrCl2½ � þ 2� CHClBr2½ � þ 3� CHBr3½ �
3� CHCl3½ � þ CHBrCl2½ � þ CHClBr2½ � þ CHBr3½ �ð Þ

calculated by the expanded equation above. The BSF of THMs
ranged from 0.19 to 0.8, and the mean value was 0.50, much

higher than Shenzhen. The reason is possibly that much higher
level of bromide (109 μg/L on average) has been obtained in
reservoir water in Shandong than Shenzhen (28 μg/L on aver-
age). This phenomenon was consistent with the report that a
positive correlation was observed between BSF and initial con-
centration of bromide for THMs formation studied (Hua et al.
2006). Figure 6 shows the relationship between BSF of THMs
and initial concentration of bromide. Here we can see that all
chlorination data (Cl2) has a Spearmanρ (ρ) of 0.38, and was
lower than the result 0.59, that was found in Scotland (Goslan
et al. 2009). The difference was attributed to the ratio of bromine
consumption to chlorine consumption which has been recog-
nized as a significant role in bromine substitution during THMs
formation (Wu and Chadik 1998).

Conclusion

This study determined the occurrence of THMs and AOX in
16 drinking water works using chlorine or chlorine dioxide as
disinfectant. These water works distribute in Shandong prov-
ince of China. The resulting data depict portraits of THMs and
AOX in drinking water in the area, and there is currently very
little data available on the subject. The portrait shows that the
median concentration of total THMs and AOX of the samples
disinfected with chlorine was 35 μg/L and 61 μg/L, respec-
tively, much higher than chlorine dioxide. It is possibly in-
ferred that if water works desire to further inhibit the forma-
tion of THMs and AOX, chlorine dioxide may be an alterna-
tive disinfectant to substitute chlorine. The seasonal variation
for THMs and AOX followed the order spring > autumn-
winter > summer. The variation of THMs and AOX concen-
tration in different water sources was as follows: local reser-
voir > Yellow River reservoir > ground water. The ratio of
TBM to THMs of samples disinfected with chlorine dioxide

Fig. 6 Bromide concentration against trihalomethane (THMs) bromine
substitution factor in reservoir water
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was higher than chlorine. The BSF of THMs and initial con-
centration of bromide shows a weak positive correlation. This
survey succeeded in enriching the knowledge of the presence,
the temporal, and different water resource variabilities of the
concentrations of THMs and AOX in drinkingwater works. In
this work, no observations were made on the concentration of
THMs, AOX, DCA, TCA, DOC, and chlorine residues in the
water available at consumer faucets. In addition, the TOC has
not been studied on water from the following ZZ, JN, and LC
points where chlorine disinfection is the only treatment given
to these raw waters; in order to complete and validate these
results in the study areas, it seems necessary to carry out fur-
ther studies on THMs and AOX in drinking water.
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