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Abstract
High-frequency and reliable data on cyanobacteria blooming over a long time period is crucial to identify the
outbreak mechanism of blooms and to forecast future trends. However, in cloudy and rainy areas, it is difficult to
retrieve useful satellite images, especially in the rainy season. To address this problem, we used data from the HJ-1/
CCD (Chinese environment and disaster monitoring and forecasting satellite/charge coupled device), GF-1/WFV
(Chinese high-resolution satellite/wide field of view), and Landsat-8/OLI (Operational Land Imager) satellites to
generate a time series of the bloom area from 2009 to 2016 in Dianchi Lake, China. We then correlated the
responses of bloom dynamics to meteorological factors. Several findings can be drawn: (1) a higher bloom frequen-
cy and a larger bloom area occurred in 2011, 2013, and 2016, compared to the other years; (2) the frequency of
blooms peaked in April, August, and November each year and expanded from north to south starting in July; (3) air
temperature in spring and sunshine hours in summer greatly correlated to the yearly bloom area; (4) wind speed and
sunshine hours strongly affected the short-term expansion of blooms and thereafter influenced the monthly bloom
scale; and (5) rainfall had a strong short-term influence on the occurrence of blooms. Cyanobacteria blooms often
occurred when wind speeds were less than 2.35 ± 0.78 m/s in the dry season and 2.01 ± 0.75 m/s in the rainy season,
when there were 48 to 72 h of sunshine in the dry season and 35 to 57 h of sunshine in the rainy season, and when
there was more than 10 mm of daily precipitation.

Keywords Dianchi Lake . Cyanobacteria bloom .Multi-source remote sensing image .Meteorological factors .Multi-timescales

Introduction

The excessive release of nutrients accelerates eutrophication
in lakes and reservoirs; as a result, blooms are a growing
threat in freshwater systems (Carmichael 2001; Heisler et al.
2008; Ho et al. 2017). Generally speaking, the phenomenon
in which phytoplankton forms floating scums on the water
surface is referred to as a bloom. After the blooms have
been reported in the scientific literature for about 140 years
in Alexandrina Lake (Francis 1878), the incidence and in-
tensity of blooms have increased consistently around the
world (Brand and Compton 2007; Zhou and Zhu 2006).
Eutrophic lakes suffering from severe blooms can be found
in different locations, with different meteorological back-
grounds and land use conditions, such as Taihu Lake (Hu
et al. 2010; Huang et al. 2015; Qin et al. 2007), Dianchi
Lake (Huang et al. 2014; Sheng et al. 2012), and Chaohu Lake
(Shi et al. 2013) in China; Lake Erie (Allinger and Reavie
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2013; Ho et al. 2017; Stumpf et al. 2012) in North America;
Lake Trummen in Sweden (Cronberg et al. 1981); and Lake
Ontario in Canada (Higgins et al. 2012). The conditions in
these lakes influence the start/end time, frequency, and sever-
ity of blooms. However, to reveal the causes of blooms, it is
necessary to observe the occurrence of blooms over a long
time period. Thus, a long-period reliable bloom record with
a high frequency of samples is essential to identify the out-
break mechanism and forecast future trends.

Satellite remote-sensing technology is an effective means
for long-period observation as it provides spatial and temporal
data series, such as the changes in the concentration of total
suspended matter, phycocyanin, chlorophyll-a (Shi et al.
2015a; Shi et al. 2015b; Zheng et al. 2015). Due to the charac-
teristics of satellite remote-sensing images, the dynamic change
of blooms can be depicted quickly and efficiently. Some studies
have successfully derived long-term bloom records. For exam-
ple, Ho et al. (2017) extended the historical bloom record of
Lake Erie using Landsat images. Hu et al. (2010) described
bloom patterns in Taihu Lake between 2000 and 2008.
Huang et al. (2014) observed cyanobacteria blooms of
Dianchi Lake via Landsat images from 1974 to 2009. Among
the previous studies, several indices have been used to extract
the area of blooms for inland lakes, including the normalized
difference vegetation index (NDVI) (Kutser 2009), the en-
hanced vegetation index (EVI) (Lu et al. 2017), the floating
algae index (FAI) (Hu et al. 2010; Kutser 2009; Shi et al.
2017; Zhang et al. 2016), virtual-baseline floating macroalgae
height (VB-FAH) (Xing andHu 2016), the cyanobacteria index
(CI) (Ho et al. 2017; Stumpf et al. 2016; Stumpf et al. 2012),
and fluorescence line height (FLH) (Huang et al. 2014).

Dianchi Lake is the largest lake on the Yungui Plateau in
China, with a water coverage area of 294.21 km2. The lake has
suffered from severe eutrophication since the 1980s and has
been affected by cyanobacteria blooms since 1989 (Huang
et al. 2014). The weather of Dianchi Lake can be divided into
dry (November to April) and rainy (May to October) seasons.
In the rainy season, the sky is often covered by thick clouds,
which makes it difficult to get enough clear satellite images to
observe the cyanobacteria bloom. However, the uncertainty of
bloom evaluation increases if there is a lack of long-term his-
torical data (Bertani et al. 2016; Stumpf et al. 2016).
Therefore, the present study tries to combine several different
satellite images to increase the amount of data. Due to the area
limitation of Dianchi Lake and the highly dynamic changes of
the bloom, high spatial resolution image data are preferred
(Davis et al. 2007; Li et al. 2015). In this study, images from
the Landsat-8/OLI (Operational Land Imager), HJ-1/CCD
(Chinese environment and disaster monitoring and forecasting
satellite/charge coupled device), and GF-1/WFV (Chinese
high-resolution satellite/wide field of view) satellites were
used to analyze the cyanobacteria blooms from 2009 to
2016 in Dianchi Lake. The objectives of the present study

were (1) to generate a long-term, reliable and frequent record
of blooms in Dianchi Lake based on multi-source satellite
images and (2) to determine the response of blooms to mete-
orological factors at various time scales.

Material and methods

Study area

Dianchi Lake is a plateau lake located between 24° 01′ N–24°
01′ N and 102° 36′ E–102° 47′ E (Fig. 1) near Kunming City,
China. It is characterized by a semi-closed, wind-driven, low-
latitude, and monsoon climate. The lake is 40.4 km long from
south to north and 7 km wide from east to west, with a mean
water depth of 4.4 m. Dianchi Lake was separated into two
parts by Haigeng Dam in 1996. The north region is named
Caohai, with an area of 7.43 km2, while the south part is called
Waihai, with an area of 286.78 km2, occupying more than
97% of Dianchi Lake. Because Caohai has become a dead
space with low water flow and high pollution (Pan et al.
2006), our study area specifically refers to Waihai (hereafter,
Dianchi Lake specifically refers to Waihai). More than 20
tributaries run through Kunming City and empty into the lake,
bringing a lot of urban wastewater. Especially in the rainy

Fig. 1 Location of Dianchi Lake, the largest lake in Yunnan Province.
The gray area is Caohai, the blue area is Waihai, and the blue lines are the
rivers that flow into Dianchi Lake
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season, a large amount of municipal and agricultural sewage is
discharged into the lake. With the accumulation of pollutants
year by year, the eutrophication of Dianchi Lake has become
increasingly serious (Gao et al. 2005; Huang et al. 2018; Wu
et al. 2018). Cyanobacteria blooms, which are the direct con-
sequence of eutrophication, have occurred almost every year
since 1989 (Huang et al. 2014).

Meteorological data

Air temperature (AT: °C), wind speed (WS: m/s), atmospheric
pressure (PRS: hPa), precipitation (Pre: mm), and sunshine
hours (SHs: h) at daily, monthly, and yearly timescales were
obtained from meteorological station #56778 of the China
Meteorological Administration (http://data.cma.cn) (Fig. 1).

Image data preprocessing

Landsat-8/OLI, GF-1/WFV, and HJ-1/CCD images from
2009 to 2016 were collected in this study. Landsat-8 was
launched in 2013 and is the eighth satellite in the Landsat
program. The OLI sensor on Landsat-8 has a spatial resolution
of 30 m and a temporal resolution of 16 days. HJ-1 was
launched in 2008 by China and consists of two satellites:
HJ-1A and HJ-1B. Their combination can offer a 2-day revisit
frequency. GF-1 was launched in 2013 by China, and it is
equipped with four WFV sensors. It has a temporal resolution
of 4 days when the four sensors are combined. The primary
parameters of the three sensors are listed in Table 1.

GF-1/WFVand HJ-1/CCD images were downloaded from
the China Centre for Resources Satellite Data and Application
(CRESDA) website (http://www.cresda.com/ site1/), while
the Landsat-8/OLI images were downloaded from the USGS

Earth Explorer website (http://earthexplorer.usgs.gov/). The
online thumbnail images were first visually examined, and
then those with minimal cloud cover were chosen and
downloaded. Table 2 shows the total number of images, with
the number of blooms inside parentheses. There were 30 OLI
images, 49 WFV images, and 408 CCD images from 2009 to
2016, including some images from different sensors on the
same day. Thus, a total of 487 images were available, and
152 images were found to show cyanobacteria blooms.

The images were processed in two steps: radiometric cali-
bration and quick atmospheric correction (Ho et al. 2017) in
ENVI 5.3 software. In addition, the CCD and WFV images
were geometrically corrected by referring to a fixed Landsat-
8/OLI image using the nearest-neighbor approach, with
RMSE within half of a pixel. The GF-1/WFV images were
also resampled to 30 m spatial resolution.

Cyanobacteria bloom area retrieval

VB-FAH and thresholds of bloom area retrieval

The cyanobacteria bloom is defined as a collection of algae
floating on the water surface that can be detected by remote
sensing images in this study. A variety of indices have been
successfully applied to the extraction of bloom information
(Ho et al. 2017; Huang et al. 2014; Shi et al. 2017; Stumpf
et al. 2016; Stumpf et al. 2012; Xing and Hu 2016; Zhang
et al. 2016). Among them, the VB-FAH index uses the green
and red bands as the baseline tomeasure the height of the near-
infrared (NIR) reflectance. This is suitable for the spectral
bands of Landsat-8/OLI, HJ-1/CCD, and GF-1/WFV. Xing
and Hu (2016) also indicate that this index is not sensitive to
interference from reflections and aerosols. Thus, considering
the thick aerosols and thin clouds in the rainy seasons of
Dianchi Basin, the VB-FAH index was used in this study to
extract the bloom area. VB-FAH was calculated as follows:

VB−FAH ¼ ρNIR−ρGreenð Þ
þ ρGreen−ρRedð Þ* λNIR−λGreenð Þ= 2λNIR−λRed−λGreenð Þ

ð1Þ

where ρ is the reflectance and λ is the wavelength, with the
subscript representing the band of satellite sensors.

It is difficult to determine a threshold to separate the bloom
pixels and non-bloom pixels due to the mixed pixels and ob-
servation geometry, and any choice of a fixed threshold will be
a compromise, which will cause the bloom area data deviation
(Xing and Hu 2016). In order to extract the bloom area accu-
rately, this study determined the threshold of bloom identifi-
cation by observing the bimodal histogram of VB-FAH in
each image. Figure 2 shows an example of the VB-FAH fre-
quency distributions of HJ-1/CCD, GF-1/WFV, and Landsat-
8/OLI on 10 October 2013, 5 December 2016, and 2 August

Table 1 Characterizations of Landsat-8/OLI, GF-1/WFV, and HJ-1/
CCD

Characterization Landsat-8/OLI GF-1/WFV HJ-1/CCD

Operational period 2013 to present 2013 to present 2008 to present

Revisit period 16 days 4 days 2 days

Spatial resolution 30 m 16 m 30 m

Swath (km) 185 200 (1 WFV) 360 (1 CCD)

800 (4 WFV) 700 (2 CCD)

Quantization 12 bits 10 bits 8 bits

Spectral bands (μm) B1, 0.43–0.45

B2, 0.45–0.52 B1, 0.45–0.52 B1, 0.45–0.52

B3, 0.52–0.60 B2, 0.52–0.59 B2, 0.52–0.60

B4, 0.63–0.68 B3, 0.63–0.69 B3, 0.63–0.69

B5, 0.84–0.89 B4, 0.77–0.89 B4, 0.76–0.90

B6, 1.56–1.66

B7, 2.10–2.30

B9, 1.36–1.39
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2016. The curves of various sensors in Fig. 2 exhibited irreg-
ular doublet; the left part was a non-bloom area and the right
part was a blooming area. Thus, for bloom pixels, the VB-
FAH value was > 0.00 in HJ-1/CCD, > − 0.01 in GF-1/WFV,
and > − 0.005 in the Landsat-8/OLI image.

Accuracy verification

Ideally, the extraction of the bloom area was evaluated by the
concurrent ground truth data, but it is difficult in obtaining the
concurrent ground truth data for mixed pixels and observation
geometry (Hu et al. 2010; Kutser 2004). Thus, the accuracy of
bloom area extraction was evaluated by comparing the ex-
tracted results with visual interpretation and using VB-FAH
methods at the boundary of the bloom and non-bloom areas.
As an example, Fig. 3 shows a region in Dianchi Lake with
false-color composite images from Landsat-8/OLI, GF-1/
WFV, and HJ-1/CCD; bloom extraction results by visual in-
terpretation; and bloom extraction results by VB-FAH.
Assuming the visual interpretation is accurate, the overall ac-
curacy (defined as the ratio of the number of category pixels
correctly classified to the total number of categories) of VB-
FAH is 96.99% for Landsat-8/OLI, 90.69% for HJ-1/CCD,
and 91.54% for GF-1/WFV. This indicates that VB-FAH is
suitable for cyanobacteria bloom extraction in Dianchi Lake.

Consistency of bloom area retrieval by different sensors

Table 1 shows the instrument features of LC-8/OLI, HJ-1/
CCD, and GF-1/WFV, which have several differences. The
difference must be taken into consideration when they were
used jointly. The first major difference lies in the discrepancy
of the spectral response function between the three sensors

(Fig. 4), along with typical Rrs of case II water and blooming
water as references. WFV and CCD have a wider spectral
response in the NIR band compared with the corresponding
band of OLI, which will affect the spectral sensitivity of the
signals. However, bloom pixels have a stronger signal than
bloom-free water pixels, especially in the NIR band (the Rrs
curve of the bloom has a significant rise in the NIR band), so
the two sensors can still receive enough signals (Li et al.
2015). The second major difference lies on the quantization
level which is 12 bits of OLI, 10 bits of WFV, and 8 bits of
CCD. Although CCD was the lowest, it has been successfully
adopted to detect blooms (Cui et al. 2012). So the ability of the
sensors to identify bloom pixels is unquestionable. Thus, we
only need to consider the consistency of the bloom area prod-
ucts. Two pairs of concurrent images over Dianchi Lake were
used to study the consistency in their retrieval of the bloom
area. HJ-1/CCD and GF-1/WFV images were acquired on 8
November 2013, 43 min apart, and HJ-1/CCD and Landsat-8/
OLI images were acquired on 28 July 2014, 44 min apart.

Comparison between HJ-1/CCD and GF-1/WFV The bloom
area derived from HJ-1/CCD was 12.1833 km2, while it was
12.6927 km2 from GF-1/WFV; thus, there was a slight dis-
crepancy between the two sensors.

Figure 5 shows the bloom area extracted by the two sensors
in the northern part of the lake. 2.1717 km2 of bloom area was
detected by the HJ-1/CCD but not by the GF-1/WFV image,
while 1.6434 km2 of area was detected by the GF-1/WFV but
not by the HJ-1/CCD image.

The discrepancy in the bloom area between the two sensors
was mainly caused by weather conditions. Although the mean
wind speed was 2.4 m/s, the maximum was 5 m/s on 8
November 2013. That may have led to the horizontal and

Fig. 2 Frequency distributions of VB-FAH from different satellite sensors over a small region of Dianchi Lake, including both blooming area and non-
bloom area. a HJ-1/CCD on 10 October 2013, b GF-1/WFVon 5 December 2016, c Landsat-8/OLI on 2 August 2016

Table 2 Number of Landsat-8/OLI, GF-1/WFV, and HJ-1/CCD images, with the number of images containing blooms in parentheses

Year 2009 2010 2011 2012 2013 2014 2015 2016 Total

OLI *** *** *** *** 7 (3) 8 (1) 9 (2) 6 (6) 30 (12)
WFV *** *** *** *** 8 (4) 18 (4) 13 (4) 10 (5) 49 (17)
CCD 63 (35) 56 (17) 63 (19) 83 (10) 51 (22) 48 (8) 25 (6) 19 (6) 408 (123)
Total 63 (35) 56 (17) 63 (19) 83 (10) 66 (29) 74 (13) 47 (12) 35 (17) 487 (152)

*** indicates there were no satellite images
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vertical movement of the bloom (Cao et al. 2006; Hu et al.
2010; Ma et al. 2015). In addition, the wind blew from the
southwest on 8 November 2013, which may have caused the

bloom patches to move to the northeast. The purple pixels in
Fig. 5c indicate that the bloom did indeed move to the north-
east in the GF-1/WFV image.

Fig. 3 Comparing results of
blooms extracted by visual
interpretation and VB-FAH. a, d,
g False-color composite images;
the dark red pixels represent
blooms. b, e, h The results
extracted by visual interpretation.
c, f, i The results extracted byVB-
FAH. The white and black areas
represent bloom pixels and non-
bloom pixels, respectively
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Despite the slight discrepancy, the relative error was only
0.5094 km2 between the two bloom areas. It only accounted
for 5.69% of the bloom area (the green area in Fig. 5c) which
was commonly detected by the two sensors; thus, the bloom
areas derived from HJ-1/CCD and GF-1/WFV are consistent
and comparable and can be combined for the long-term mon-
itoring of blooms.

Comparison between Landsat-8/OLI and HJ-1/CCD The bloom
area derived from HJ-1/CCD on 28 July 2014 was
123.3378 km2, while it was 111.3147 km2 from Landsat-8/
OLI; thus, there was a slight discrepancy between the two
sensors.

Figure 6 shows the spatial distribution of the cloud and
bloom extracted by the two sensors. 24.2467 km2 of bloom
area was detected by HJ-1/CCD that disappeared in the
Landsat-8/OLI image, while 14.2236 km2 of bloom area
was detected by Landsat-8/OLI and not by HJ-1/CCD. The
purple pixels in Fig. 6c represent the bloom area only found in
the Landsat-8/OLI image, which was taken 44 min after the
HJ-1/CCD image. The yellow color indicates bloom pixels

that were only found in the HJ-1/CCD image. Comparing
the two, the moving trace appears to have moved from the
northeast to the southwest, which is consistent with the wind
direction on 28 July 2014. The thin cloud can also be seen in
the Landsat-8/OLI image (Fig. 6b, purple and yellow
rectangles), which may have caused the deviation in bloom
area extraction.

Thus, the bloom areas derived from HJ-1/CCD, GF-1/
WFV and Landsat-8/OLI are consistent and comparable and
can be combining to monitor dynamic changes in blooms.

Results and analysis

Yearly distribution of cyanobacteria blooms
in Dianchi Lake

Cyanobacteria bloom area was retrieved using the multi-
source satellite images from 2009 to 2016. The start/end date
and frequency of bloom, and the average and maximum
bloom area, are shown in Table 3. Usually, the bloom began

Fig. 4 The spectral response
function of Landsat-8/OLI (short
dashed lines), HJ-1/CCD (long
dashed lines), and GF-1/WFV
(solid lines), along with typical
Rrs of case II water and blooming
water as references

Fig. 5 Comparison of the bloom area derived from HJ-1/CCD and GF-1/
WFVon 8 November 2013. a False-color composite image by WFV. b
False-color composite image by CCD. c Comparison of the extracted
bloom area of the two sensors. Non-bloom, non-bloom water for both

sensors; CCD-WFV-bloom, bloom water for the two sensors; CCD-
bloom, bloom water by CCD but non-bloom by WFV; WFV-bloom,
bloom water by WFV but non-bloom by CCD

Environ Sci Pollut Res (2019) 26:11012–11028 11017



in March/April and ended in December, according to the
available images, except in 2016. In 2016, the bloom was
not observed until July 25th, due to the fact that the images
are blocked by clouds from March to June, making it impos-
sible to know the starting time. The area of the bloom in each
image is presented in Fig. 7. The greatest areas, which suggest
the most serious blooms, occurred in 2011, 2013, and 2016. In
those years, the maximum bloom area occupied more than
50% of the total area. The smallest bloom area was
45.8658 km2 and occurred in 2009, occupying 15.99% of
the total area. It is worth mentioning that, although there was
not a large bloom area and the area of most blooms was less
than 20 km2, the bloom frequency was very high in 2009. In
addition, although the extent of the bloom showed an alternat-
ing trend over the years, the maximum bloom area extended
from 2009 to 2016, whether in blooming years (2011, 2013,
and 2016) or in non-blooming years (2009, 2010, 2012, 2014
and 2015).

Monthly distribution of cyanobacteria blooms
in Dianchi Lake

The average and maximum area and the frequency of blooms
are presented in Fig. 8. The bloom frequency of Dianchi Lake
followed a Bthree peaks^ phenomenon, and no blooms were
observed in January and February during the period of inves-
tigation. Therefore, the blooms in Dianchi Lake can be clas-
sified into two periods. The first period is fromMarch to June,
with the first peak appearing in April; the frequency is low and

most bloom areas were less than 20 km2 in this period. The
second period is from July to November. During this period,
cyanobacteria blooms occurred heavily, with two peaks in
August and November, respectively. In addition, bloom fre-
quency and size both reached the highest of the year in this
period.

The finding of two peaks in spring and autumn in this study
extended the discovery of previous research on Dianchi Lake
(Sheng et al. 2012), in which only one peak was observed
between June and September. The phenomenon of a peak
appearing in autumn was similar to Lake Erie, where one peak
occurred in August and another in late September in 2016
(Stumpf et al. 2012).

Spatial distribution of cyanobacteria blooms

Spatially, the blooms were concentrated in the northern part of
the lake, but they had a slight tendency to extend to the south.
The same situation was observed by Huang et al. (2014),
whose study showed that blooms in Dianchi Lake spatially
occurred from north to south from the late 1980s to the early
1990s. The area suffering from blooms extended almost one
fourth of the length from north to south in 2009, but it
stretched to more than one half of the length of the lake in
2016. As an extreme example, on July 25, 2016, the bloom
covered the entire lake.

The bloom frequency of each pixel with 30 m spatial res-
olution was calculated using the 487 images, and the spatial
variability is shown in Fig. 9. The frequency of each pixel

Fig. 6 Bloom area comparison derived from HJ-1/CCD and Landsat-8/
OLI on 28 July 2014. a False-color composite image by CCD. b False-
color composite image byOLI. cComparison of the extracted bloom area
of the two sensors. Non-bloom, non-bloom water for the two sensors;

CCD-OLI-bloom, bloom water for the two sensors; CCD-bloom, bloom
water by CCD but non-bloom by OLI; OLI-bloom, bloom water by OLI
but non-bloom by CCD
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ranged from zero to 55.56%. The higher values were in the
northern part, while the lower values were in the central and
southern areas of the lake. Generally, about 35,917 pixels
suggested blooms in a year. However, in the heavy bloom
years, such as 2011, 2013, and 2016, the number of bloom
pixels increased tomore than 50,000 pixels, and the frequency
increased over almost the entire lake.

To study the spatial distribution in different seasons, the
frequency of the occurrence of the bloom was counted in each
month (Fig. 10). Consistent with the above analysis, the north-
ern lake experienced more blooms in all months (excluding
January and February). Blooms first occurred in the northern
region in March, then the coverage extended to the southern
lake starting in July, and then to the entire lake. The high fre-
quency of blooms lasted from July toNovember, then gradually
decreased in December and completely disappeared in January.

Discussion

Advantages of combining satellite sensor data

Because of the cloudy and rainy weather in Dianchi Lake, it is
difficult to get satellite images with a clear sky. For example,
although HJ-1 is a high temporal resolution satellite with a
revisit period of two days, there are fewer cloud-free images,
especially in the rainy season. In 2016, only 19 images could
be used. The lack of data has been an obstacle to long-term
monitoring of blooms in Dianchi Lake.

The combination of the three satellite sensors greatly in-
creases the available image numbers for the long-term moni-
toring of blooms. From 2013 to 2016, there were 30 effective
images from Landsat-8/OLI, 49 from GF-1/WFV, and 408
from HJ-1/CCD. Consequently, the opportunity for bloom
detection increased due to the total of 455 images (Only one
image was reserved when several images were acquired in the
same day. Thus, 32 images were deleted, and the deletion
order is HJ-1/CCD, GF-1/WFV, and Landsat-8/OLI). Of

particular interest are the 56 images that were acquired in the
rainy season, which greatly decreases the revisit cycle and
increases the monitoring frequency of bloom events.

By combining the three sensors, some dynamic changes in
the bloom process were captured. One case is the development
of a cyanobacteria bloom from October 10 to October 13
(named Case Oct, Fig. 11), in which the bloom area reached
109.94 km2 on October 10, then reduced to 15.96 km2 on
October 13. In general, the dynamic process involves horizon-
tal and vertical movement, accompanied by the growth and
extinction of cyanobacteria. However, the rapid change in
bloom area is mainly influenced by weather conditions, such
as wind speed and pressure (Kahru et al. 1993; Shi et al. 2017;
Wu et al. 2015; Zhang et al. 2016). To reveal the influence of
weather conditions on blooms in Dianchi Lake, we analyzed
the relationship between meteorological factors and blooms.

Relationship between cyanobacteria blooms
and meteorological factors

There are two prerequisites for blooms: sufficient
cyanobacterial cells and suitable weather conditions for pro-
moting the cells to the water surface (Reynolds 2006).
Previous studies have suggested that the accumulation and
floatation of phytoplankton cells are highly correlated to
weather conditions (Walsby 1994). However, which meteoro-
logical parameters are the most important for blooms in
Dianchi Lake? Moreover, what is the influence of meteoro-
logical conditions on blooms? To answer these questions, we
analyzed the relationships between bloom area and wind
speed (WS), sunshine hours (SHs), pressure (PRS), air tem-
perature (AT), and precipitation (Pre) from the perspective of
the various timescales.

Relationship between cyanobacteria bloom and wind speed

Wind speed (WS) exhibits strong seasonal variability. The
average wind speed is significantly lower in the rainy season

Table 3 Statistics of blooms from
2009 to 2016 Year Starting date End date Average bloom Maximum bloom Bloom

yyyy-mm-
dd

yyyy-mm-
dd

Area (km2) Area (km2) Frequency

2009 2009-03-09 2009-12-13 12.91 45.8658 55.56%

2010 2010–03-21 2010–12-21 25.86 67.0977 30.36%

2011 2011–04-02 2011–12-20 52.78 149.0589 30.16%

2012 2012-03-20 2012-12-21 29.44 65.9997 12.05%

2013 2013-03-09 2013-12-20 41.69 156.9501 48.28%

2014 2014-04-20 2014-12-29 20.51 86.3055 20.34%

2015 2015-04-20 2015-11-24 25.62 74.1042 26.19%

2016 2016-07-25 2016-12-08 49.79 165.3093 48.39%

Note: the bloom frequency is the percentage of images with blooms in total images

Environ Sci Pollut Res (2019) 26:11012–11028 11019



(2.21 ± 0.40 m/s) than in the dry season (2.99 ± 0.55 m/s). The
daily average WS exhibits substantial variability, ranging
from 0.30 to 8.60 m/s. Previous studies have indicated that
strong wind affects the vertical movement of blooms and may
lead to the disappearance of water surface blooms (Kahru
et al. 1993; Shi et al. 2018;Wu et al. 2015). Hence, we analyze
the relationship between blooms and wind speed at yearly,
monthly, and daily scales.

Figure 12 shows that yearly average WS has a less signif-
icant negative correlation with yearly average bloom area (r =
− 0.125, p = 0.768). Thus, the interannual difference in WS
does not explain the variations in yearly bloom intensity with
the existing data set.

Figure 12b shows there was a significant negative correla-
tion (r = − 0.586, p < 0.01) between ln(monthly average
bloom area) and monthly average WS. This indicates that
the change in wind speed at the monthly scale has a significant
impact on the bloom area. A similar result was obtained by Lu
et al. (2017).

In order to study the relationship between blooms and
short-term wind-speed change, we compared the mean wind
speeds near the date the images were taken (Fig. 12c): the
average WS on the day when the bloom was observed by
satellite images (bloom day) (B0-1), the average WS on the

day when no bloom was observed by satellite images (non-
bloom day) (B0-0), the average WS on the day before the
bloom day (B1-1), the average WS on the day before the
non-bloom day (B1-0), the average WS on the day and the
day before the bloom day (B1M-1), the average WS on the
day and the day before the non-bloom day (B1M-0), the av-
erage WS on the day and the two days before the bloom day
(B2M-1), and the average WS on the day and the two days
before the non-bloom day (B2M-0).

The daily average WS on bloom days (B0-1) was signifi-
cantly lower than that on non-bloom days (B0-0). Similarly,
the meanWS on the day and two days before bloom days was
lower than that of non-bloom days. It can be concluded that
lowerWS is beneficial to the formation of blooms. In addition,
ln(daily bloom area) was strongly correlated with the daily
average WS (r = − 0.365, p < 0.01) (Fig. 12e). This indicates
the bloom area contracted with increasing WS in Dianchi
Lake, which is consistent with Xie et al. (2010) and Li et al.
(2011). Li et al. (2011) suggested that a favorable WS for
blooms in Dianchi Lake is less than 3 m/s. However, we
discovered that the critical thresholds varied by season due
to the strong division inWS between the dry and rainy seasons
(the daily averageWSs on bloom dayswere 2.35 ± 0.78m/s in
the dry season and 2.01 ± 0.75 m/s in the rainy season). The

Fig. 8 Monthly bloom
distribution of Dianchi Lake.
Light and dark histograms
represent the average and
maximum areas of blooms in each
month. The red triangles represent
bloom frequency

Fig. 7 Daily bloom coverage of
Dianchi Lake derived from the
combined images. The triangles
represent the monthly maxima in
bloom area and are connected by
lines, and the different years are
separated by the grey vertical
lines
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bloom event in Case Oct verified this result: the daily average
WSs were 1.7 m/s, 1.2 m/s, 1.5 m/s, and 1.8 m/s fromOctober
10 to October 13, which are favorable for blooms. In addition,
the WS increased from October 11 to October 13, resulting in
a decrease in bloom area.

In summary, monthly average WS and monthly average
bloom area, as well as average dailyWS and daily bloom area,
exhibited statistically significant negative correlations. This
indicates that relatively low WS facilitated the occurrence of
blooms.

Relationship between cyanobacteria blooms and sunshine
hours

Yearly sunshine hours (SHs) ranged from 2052.80 to
2636.40 h from 2009 to 2016 in Dianchi Lake, with an aver-
age of 2327.64 ± 223.55 h. The number of SHs is significantly
lower in the dry season (230.73 ± 28.91 h) than in the rainy
season (157.21 ± 40.66 h). The minimum monthly average
number of SHs is in September, while the maximum is in
March. Solar radiation is the energy source of algae growth
and reproduction, and it is a necessary condition for biomass
accumulation. Here, we analyze the relationship between
blooms and SHs at yearly, monthly, and daily scales.

The yearly average bloom area is weakly correlated with
yearly SHs (r = − 0.385, p = 0.346). However, the yearly av-
erage bloom area exhibits a statistically significant positive
correlation (r = 0.737, p < 0.05) with the sum of SHs in sum-
mer (Fig. 13a). Thus, blooming years (2011, 2013, 2016) may
be caused by longer SHs in the summer; the interannual dif-
ference in summer SHs may explain the variations in yearly
bloom intensity.

There was a significantly negative correlation (r = −
0.551, p < 0.01) between ln(monthly average bloom area)
and monthly SHs in Fig. 13b. This is consistent with Lu
et al. (2017), but is inconsistent with studies of other lakes
(Huisman and Sommeijer 2002; Zhang et al. 2012). In
order to compare the difference, we obtained the sunshine
patterns from Dongshan meteorological station #58358 at
Lake Taihu (Fig. 1) from the China Meteorological
Administration (http://data.cma.cn). The number of
monthly SHs was significantly lower in the dry season
(147.61 ± 42.23 h) than in the rainy season (189.83 ± 52.
85 h) in Lake Taihu, which was contrary to that in
Dianchi Lake from 2009 to 2016. This may be the
reason why Lake Taihu has one bloom peak while
Dianchi Lake has three. In addition, the ultraviolet
radiation in Dianchi Lake is much higher because of the

Fig. 9 Bloom frequency of pixels derived from 2009 to 2016 using 487 images
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high altitude (about 1888 km). From this, it can be
inferred that the high number of SHs results in
photoinhibition of algae (Gerla et al. 2011; Zhou et al.
2016). Hence, the accumulation of cyanobacteria may be
inhibited in areas that experience strong light for a short
period of time.

In order to study the relationship between blooms and
change in short-term sunshine hours, we compared daily
SHs near the date when the satellite images were taken
(Fig. 13c): daily sunshine hours on the day when the
bloom was observed by satellite images (bloom day)

(B0-1), daily sunshine hours on the day when no bloom
was observed by satellite images (non-bloom day) (B0-0),
cumulative sunshine hours from the four days before the
bloom day (B4S-1), cumulative sunshine hours from the
four days before the non-bloom day (B4S-0), cumulative
sunshine hours from the seven days before the bloom day
(B7S-1), and cumulative sunshine hours from the seven
days before the non-bloom day (B7S-0).

There is no difference between bloom days (B0-1) and
non-bloom days (B0-0). However, cumulative SHs from the
four/seven days before bloom days were lower than that of

Fig. 10 Bloom frequency of pixels in each month derived from 2009 to 2016 using 487 images
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non-bloom days. In particular, when the cumulative SHs from
the seven days before bloom days were between 48 and 72 h,
it was beneficial to the bloom formation in the dry season,
while suitable cumulative SHs were between 35 and 57 h in
rainy season. It is worth mentioning that the sum of SHs from
the seven days before October 10 to October 13 were 41.3 h,

48.7 h, 54.9 h, and 63.6 h, respectively (Case Oct). The grad-
ual increase in SHs may also be one of the reasons for the
disappearance of the bloom.

In summary, a higher number of SHs is beneficial for
bloom formation in summer, but in other seasons, a lower
number of SHs is favorable.

Fig. 12 Correlations between bloom area and wind speed at different
time scales. a Yearly time scale; b monthly time scale; c box plot of
short-term WS; d daily time scale. The black boxes represent the WSs
relevant to bloom days and the red boxes represent the WSs relevant to
non-bloom days. B0-1, the average WS on the day when the bloom was
observed by satellite images (bloom day); B0-0, the average WS on the
day when no bloom was observed by satellite images (non-bloom day);

B1-1, the averageWS on the day before the bloom day; B1-0, the average
WS on the day before the non-bloom day; B1M-1, the averageWS on the
day and the day before the bloom day; B1M-0, the averageWS on the day
and the day before the non-bloom day; B2M-1, the average WS on the
day and the first two days before the bloom day; B2M-0, the average WS
on the day and the first two days before the non-bloom day

Fig. 11 A continuous bloom event monitored by multiple satellites, which depicted the decline of a bloom event
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Relationship between cyanobacteria blooms and air
temperature

Yearly air temperature (AT) exhibits a gentle change from
15.48 to 16.65 °C. The monthly average AT was 12.71 ±
4.14 °C in the dry season and 19.65 ± 2.53 °C in the rainy
season. The daily average AT varied between − 3.3 and
25.6 °C, with an average of 16.19 ± 4.87 °C, and a daily av-
erage AT below 0 °C was very rare. AT is an important factor
affecting algae particle growth and biomass accumulation.
Here, we analyze the relationship between blooms and air
temperature at yearly, monthly, and daily scales.

The yearly average bloom area is highly negatively corre-
lated with yearly average AT (r = − 0.918, p < 0.01). This in-
dicates that temperature has a certain influence on the occur-
rence of blooms at the yearly scale. However, this does not
conform with other research, since most studies have sug-
gested that warm weather is suitable for the growth of blooms
(JÖHnk et al. 2008; Kanoshina et al. 2003; Paerl and Huisman
2008). To further verify the relationship between temperature
and blooms, we analyzed the correlations between the yearly
average bloom area and the temperature of different seasons.
The correlation coefficients for winter, spring, summer, and
autumnwere − 0.324 (p = 0.434), − 0.705 (p = 0.050), − 0.249
(p = 0.550), and − 0.524 (p = 0.183), respectively. A close
negative correlation between yearly bloom area and AT in
the spring was observed. This may be caused by the mecha-
nism of generalized vernalization (low temperature promotes
the reproduction of non-plant organisms) of Microcystis
aeruginosa in Dianchi Lake (Guo et al. 2016; Guo et al.
2015). The negative correlation indicates that the low AT in
spring has a great influence on blooms in Dianchi Lake.

However, the situation is different at a short timescale.
ln(monthly average bloom area) and monthly average AT ex-
hibited a less significant correlation (r = 0.222, p = 0.110).
Thus, AT is not the main influencing factor for bloom forma-
tion at the monthly scale.

In order to validate the relationship between blooms and
short-term air temperature change, we compared the average
ATs near the date images were taken (Fig. 14): the average AT
on the day when the bloom was observed by satellite images
(bloom day) (B0-1), the average AT on the day when no
bloom was observed by satellite images (non-bloom day)
(B0-0), cumulative AT from the four days before the bloom
day (B4S-1), cumulative AT from the four days before the
non-bloom day (B4S-0), cumulative AT from the seven days
before the bloom day (B7S-1), and cumulative AT from the
seven days before the non-bloom day (B7S-0).

Figure 14 shows that there is no obvious difference be-
tween ATs on bloom days and non-bloom days. However,
the medians of cumulative AT from the four/seven days before
bloom days were slightly higher than that of non-bloom days
in the dry season. Conversely, they were slightly lower than

that of non-bloom days in the rainy season. This may explain
the weak relationship between monthly blooms and AT.
Similarly, there was a weak positive correlation between daily
average AT and ln(daily bloom area) (r = 0.260, p < 0.01).

In summary, low AT in spring is beneficial for blooms, and
daily mean AT slightly promotes the occurrence of blooms.
Evidently, AT is not a key factor in bloom formation in
Dianchi Lake.

Relationship between cyanobacteria bloom and pressure

Previous studies have suggested that lower pressure (PRS)
promotes blooms (Cloern et al. 2005) by floating algae parti-
cles to the water surface (Carey et al. 2012; Zhang et al. 2016)
through gas vesicles. However, from the data used in this
study, PRS does not relate with yearly, monthly, or daily av-
erage PRS (the yearly scale: r = 0.208, p = 0.621; the monthly
scale: r = − 0.095, p = 0.500; the daily scale: r = − 0.022, p =
0.795). This may be caused by only slight variation in PRS
during the year, with a yearly average of 810 ± 0.62 hPa in
Dianchi Lake. Dianchi basin is in an extremely low pressure
state throughout the year, causing the algae particles to be
insensitive to PRS. In addition, PRS in Dianchi Lake was
much lower than in Lake Taihu (the yearly average PRS was
12,169.18 ± 6.42 hPa from 2009 to 2016 at meteorological
station #58358). This may explain the different influence of
PRS on blooms in Dianchi Lake compared to other lakes.

Relationship between cyanobacteria blooms
and precipitation

Yearly precipitation (Pre) ranged from 565.80 to 1190.4 mm
from 2009 to 2016 in Dianchi Lake, with an average of
889.99 ± 229.12 mm. There was an obvious division in Pre
between the dry season (117.14 ± 70.45 mm) and rainy season
(772.85 ± 186.85 mm). More than 85% of Pre occurred in the
rainy season, and the maximum daily Pre reached 112.9 mm.

Previous studies have indicated that heavy rain will lead to
a temporary increase of nutrients, which is beneficial for
blooms (Shaw et al. 2001; Yang et al. 2016). Moreover, some
studies have pointed out that a higher number of small rainfall
events favor the proliferation of cyanobacteria (Reichwaldt
and Ghadouani 2012). However, what is the influence of pre-
cipitation on blooms in Dianchi Lake? To answer this ques-
tion, we explore the precipitation character and its relationship
with bloom area at yearly, monthly, and daily scales.

The yearly average bloom area is very weakly correlated
with yearly Pre (r = 0.064, p = 0.880). However, monthly Pre
exhibited statistically significant positive correlation with
monthly average bloom area (r = 0.533, p < 0.01). This indi-
cates that Pre has a strong effect on blooms in the short term,
but the influence declines at the yearly scale.
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In order to study the relationship between blooms and
short-term Pre change, we compared the precipitation on days
near the date the images were taken (Fig. 15): daily precipita-
tion on the day when the bloom was observed by satellite
images (bloom day) (B0-1), daily precipitation on the day
when no bloom was observed by satellite images (non-
bloom day) (B0-0), cumulative precipitation from the four
days before the bloom day (B4S-1), cumulative precipitation
from the four days before the non-bloom day (B4S-0), cumu-
lative precipitation from the nine days before the bloom day

(B9S-1), and cumulative precipitation from the nine days be-
fore the non-bloom day (B9S-0).

There was no difference in Pre between bloom days (B0-1)
and non-bloom days (B0-0). Similarly, the cumulative Pre in
the previous four/nine days before bloom days also had no
difference with the before non-bloom days in the dry season.
However, in the rainy season, the difference was significant.
Moreover, our data show that the favorable accumulation of
Pre from the nine days before a bloom day was more than
10 mm. It is worth mentioning that the sum of Pre from the

Fig. 13 Correlations between bloom area and sunshine hours at different
time scales. a Season time scale at summer, b monthly time scale, c box
plot of SHs in the short term. The black boxes represent the SHs relevant
to bloom days, and the red boxes represent the SHs relevant to non-bloom
days. B0-1, daily sunshine hours on the day when the bloom was
observed by satellite images (bloom day); B0-0, daily sunshine hours

on the day when no bloom was observed by satellite images (non-
bloom day); B4S-1, cumulative sunshine hours from the four days
before the bloom day; B4S-0, cumulative sunshine hours from the four
days before the non-bloom day; B7S-1, cumulative sunshine hours from
the seven days before the bloom day; B7S-0, cumulative sunshine hours
from the seven days before the non-bloom day

Fig. 14 Box plot of AT in the short term. The black boxes represent the
ATs relevant to bloom days, and the red boxes represent the ATs relevant
to non-bloom days. B0-1, the average ATon the day when the bloom was
observed by satellite images (bloom day); B0-0, the average AT on the
day when no bloom was observed by satellite images (non-bloom day);

B4S-1, cumulative AT from the four days before the bloom day; B4S-0,
cumulative AT from the four days before the non-bloom day; B7S-1,
cumulative AT from the seven days before the bloom day; B7S-0,
cumulative AT from the seven days before the non-bloom day
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nine days before October 10 to October 13 was 36.2 mm,
36.2 mm, 26.9 mm, and 26.9 mm, respectively (Case Oct),
which was favorable for bloom formation.

In summary, monthly Pre and monthly average bloom area
exhibited a statistically significant positive correlation. The
suitable accumulation of Pre from the nine days before a
bloom day was always more than 10 mm.

Conclusion

To overcome the shortage of effective images in Dianchi
Lake, which is located in a rainy and cloudy area, HJ-1/
CCD, GF-1/WFV, and Landsat-8/OLI data were used to gen-
erate a bloom record from 2009 to 2016. The area of the
blooms extracted from different sensors using the VB-FAH
index was consistent; thus, the use of multiple sensor data
greatly improves the monitoring frequency of blooms.

The bloom area in Dianchi Lake varied considerably in
space and time. Temporally, serious algae blooms occurred
in 2011, 2013, and 2016, with higher frequency and size com-
pared to other years. During a year, the frequencies of blooms
had three peaks. The first appeared in April, followed by
August and November. Spatially, the bloom coveragewas first
located in the northern part, then moved to the southern lake
starting in July and then diffused to the entire lake.

The responses of bloom dynamics to meteorological fac-
tors were quantified based on the long-term bloom record. The
results show that different meteorological factors have differ-
ent effects on blooms at different timescales: AT in spring and
SHs in summer were highly correlated with yearly bloom area
(r = − 0.705, p = 0.05 and r = − 0.737, p = 0.05); the WS and
SHs at a monthly timescale strongly affected the expansion
and occurrence of blooms in the short term, and thereafter,
they were highly correlated with ln(monthly average bloom
area) (r = − 0.586, p = 0.01 and r = − 0.551, p = 0.01); precip-
itation had a great influence on the occurrence of blooms in
the short term. Cyanobacteria blooms often erupted under low

wind speed (2.35 ± 0.78 m/s in the dry season and 2.01 ±
0.75 m/s in the rainy season) and with suitable cumulative
sunshine hours (48 h to 72 h in the dry season and 35 h to
57 h in the rainy season) and a sufficient amount of
precipitation.
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