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Abstract
Due to serious nitrogen pollution in theHuai River, EasternChina, nitrogenous concentrations and dual stable isotopes (δ15N and δ18O)
were measured to ascertain the sources and transformation of nitrogen in the Shaying River, the largest and most polluted tributary of
the Huai River during the summer and winter seasons. Total nitrogen (TN), NO3

−, and NH4
+ were significantly higher in winter, with

values of 7.84 ± 3.44 mg L−1, 2.31 ± 0.81 mg L−1, and 3.00 ± 2.24 mg L−1, respectively, while the highest nitrogen compounds
occurred in the Jialu River, one of the tributaries of the Shaying River, in both summer and winter. Isotope characteristics of nitrate
reveal that manure and sewage were the principal nitrate sources in both summer (62.44 ± 19.66%) and winter (67.33 ± 15.45%),
followed by soil organic nitrogen, with 24.94 ± 15.52% in summer and 26.33 ± 9.45% in winter. Values of δ15N-suspended particulate
nitrogen (SPN) ranged from 0.78 to 13.51%, revealing that point source from industrial and domestic sewage accounted for the largest
input to SPN at most sites, whereas soil organic nitrogen and agricultural fertilizers were found in the Jialu River in both sampling
periods. Point sources from septic/manure and household waste were the main contributors to ammonium in most river water samples
in both summer and winter; most wastewater discharged into the river was untreated, which was one of the main reasons for the high
level of ammonium inwinter. Nitrogen pollution and the dams had an effect onN transformation in the river. Significant assimilation of
NH4

+ and aerobic denitrification competed for NH4
+, resulting in the weakness of nitrification in the summer. Denitrification was also

an important process of nitrate removal during the summer, whereas nitrification was a key N transformation process in the river in the
winter time. To reduce nitrogen pollution and improve water quality, greater effort should be focused on the management of sources
from urban input as well as on the improvement in sewage treatment.
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Introduction

Rapid urbanization has caused a wide range of environmental
problems, including increase in riverine nitrogen (N) pollution
(Pernet-Oudrier et al. 2012; Zhang et al. 2015a). To develop
effective strategies for the mitigation of nitrogen pollution and
to achieve the sustainability of water resources, it is vitally im-
portant to determine the nitrogen sources and their transformation
processes in the rivers. In the past several decades, strong efforts
have been made to identify nitrogen pollution sources entering
into rivers (Mayer et al. 2001; Anisfeld et al. 2007; Kaushal et al.
2011). Indeed, there are many methods for identifying nitrogen
sources from a watershed to the receiving waters. In general,
point source pollution, including domestic sewage, industry dis-
charge, and livestock manure, can be determined through de-
tailed statistics, whereas the nonpoint source, including
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agricultural fertilizer, soil erosion, and atmospheric precipitation,
can be estimated through the use of watershed models (Strokal
et al. 2015; Álvarez-Cabria et al. 2016). Despite great attempts to
identify nitrogen sources, N source identification remains chal-
lenging due to its complexity in many river basins worldwide
(Lai et al. 2006; Zhang et al. 2010).

Isotope composition of nitrogen compounds is to be a prom-
ising important tool for identifying nitrogen sources and the ni-
trogen transformation process in aquatic systems(Ding et al.
2014; Yue et al. 2014; Xing and Liu 2016; Yuan et al. 2017;
Du et al. 2017; Yi et al. 2017; Bu et al. 2017a). In general,
riverine nitrogen can be classified into dissolved and particulate
species (Yan 2006). Dissolved inorganic nitrogen (DIN) includes
NO3

−, NH4
+, andNO2

−. The contents of NO2
− are oftenminimal

in the surface water, and NO3
− is reported to be the dominant

form of DIN in many aquatic environments (Bu et al. 2011).
NH4

+ is another important DIN, in fact, it is the dominant form
of DIN in some surface waters, such as the Huai River (Zhang
et al. 2017). Particulate N is also an important form of N in rivers
and can provide significant information about the N cycle
(Middelburg and Nieuwenhuize 1998). Dual isotopes in nitrate
provide unique information about NO3

− sources and their trans-
formation from atmospheric precipitation, soils, chemical fertil-
izers, as well as from sewage and manure in aquatic systems
(Panno et al. 2001; Amundson et al. 2003; Widory et al. 2005;
Sebilo et al. 2006; Oelmann et al. 2007; Xue et al. 2012). Similar
to nitrates, δ15N-NH4

+ and suspended particulate matter also
varies in isotopic signatures depending on its different sources
(Du et al. 2017; Nikolenko et al. 2018; Cifuentes et al. 1988;
Goering et al. 1990; Kreitler and Browning 1983; Wassenaar
1995). Several studies have been conducted to assess the riverine
N source in NH4

+ and the particulate matter in rivers by focusing
on δ15N inNH4

+ and SPN (Norrman et al. 2015; Nikolenko et al.
2018; Kendall et al. 2001; Gao et al. 2014). Of course, there are
still many uncertainties when using isotope to partition the
sources. For instance, the isotope signature is not clear for every
sources, or the isotope signature is overlapped for some of
sources. Besides, isotope fractionation for some N cycling pro-
cesses is not clear yet.

The Huai River, the third longest river in China, is one of the
most polluted rivers in China, especially in terms of nitrogen
pollution (Yang et al. 2016; Zhang et al. 2017). Since the
1990s, the Chinese government has invested greatly in effort to
reverse the quality of deteriorated water in the basin. However,
despite the enormous financial investment, the water pollution
remains a serious problem.Besides being one of theworld’smost
polluted watersheds (Bai and Shi 2006), a large number of dams
have been built on the Huai River, causing a low flow rate in
many parts of the river (Shi et al. 2016). The long residence time
and high nutrient concentrations could facilitate bacterial uptake
in the river system (Balls et al. 1996; Brion et al. 2000), which
might cause changes in the N transformation process in the river
systems. Previous studies on the Huai River focus mainly on

nutrient concentrations, the effect of dams on water quality, and
metal contamination and anthropogenic contributions to N loads
in the river watershed (Zhai et al. 2014, 2017; Zuo et al. 2015;
Shi et al. 2016; Xia et al. 2018; Ni et al. 2011; Zhang et al. 2015b,
2017; Yang et al. 2016, 2018). However, there is little study
about source identification of N and the effects of dams and
pollution on N transformation in the Huai River. Therefore, it is
of critical importance to identify N sources andN transformation,
and then provide theoretical study in order to develop effective N
pollution control strategies.

The Shaying River is the largest and the most polluted tribu-
tary of the Huai River Basin, and the amounts of its COD and
NH3

+ discharges are more than one-third of the amounts in the
main stream of Huai River (Duo et al. 2015). More than 60 dams
over the Shaying River, together with rapid urbanization and
economic growth, have caused the river basin to become highly
disturbed (Duo et al. 2015; Zhang et al. 2017). By combining
analysis of water quality and N isotopic composition, the main
objectives of this study are to (1) identify the sources of NO3

−,
NH4

+, and SPN, and (2) to reveal the N transformation processes
under the influence of dams and nitrogen pollution during differ-
ent seasons in the Shaying River watershed.

Materials and methods

Study area

The Shaying River, originated in Xinmi County, Henan
Province, flows through Zhengzhou city, Zhoukou city, and
Fuyang city, then down into the Huai River mainstream near
Mohekou in Anhui Province (Fig. 1). The main river is com-
posed of the JialuRiver, theYingRiver, and the ShaRiver, which
converge at Zhoukou city. The length of the river is 620 km and
its basin area is 40,000 km2. The upperstream is from the source
to the Zhoukou hydrological station (M-a), while the midstream
is from M-a to Fuyang hydrological station (M-c). The river
basin is mostly agricultural land, which accounts for 76.24% of
its land coverage (Zuo et al. 2016). It is located in the typical East
Asian monsoonal climate with four distinct seasons. Annual
mean temperature is from 14 to 16 °C and the average annual
rainfall is 770 mm in the basin (Zhang et al. 2013). Under the
significant influence of monsoon, its precipitation is usually con-
centrated in the summer from June to August. Figure 2a demon-
strates monthly variations of temperature, and precipitation at M-
a in the Shaying River during 1960–2015.

The Shaying River has experienced rapid urbanization and
industrialization in the last decades, resulting in a massive dis-
charge of wastewater and declining surface water quality. The
concentration of NH4

+ was greater than 2.0 mg L−1 in most
months of the winter in Fig. 2b, failing to meet the Chinese
Surface Water Quality Standards (GB3838-2002), and some-
times even three times greater than the standard value.
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Field sampling

Water samples at a depth of 20–30 cmwere collected from the
main stream of the Shaying River and its major tributaries (the
Yinghe, the Shahe, and the Jialuhe rivers), as shown in Fig. 1.
JLH-b and YH were at the front of dams, and all the dams
located before and after the sampling sites are marked in Fig.
1. Samplings were conducted once a month in the summer and
the winter. Table 1 presents the research contents and sam-
pling time at each of the sampling sites.

The water samples were filtered with 0.45-μm membrane
filters (MF-Millipore, USA) in the field. Part of the filtered
water was kept refrigerated and frozen for δ15N-NO3

− and
δ18O-NO3

− analysis at the laboratory, while the remainder of
the filtered water was treated with hydrochloric acid to pH 5–6
and then kept refrigerated and frozen for δ15N-NH4

+ analysis.
Large water samples (5 L) were filtered through pre-
combusted and tared GF/F filters for δ15N of suspended par-
ticulate nitrogen (δ15N-SPN). Filters were frozen in the field,
and then freeze-dried in the laboratory.

One-liter water samples were placed in polyethylene plastic
bottles and acidified to pH < 2 by sulfate in situ and then
stored below 4 °C for laboratory analysis of NH4

+, NO3
−,

NO2
−, and total nitrogen (TN). Water samples for dissolved

N2 and Ar analysis were given a small volume of saturated
HgCl2 solution (the final concentration was approximately
3%, v/v) to stop biological activity, sealed in 60 ml glass di-
gests, then stored to avoid light.

Water samples at the depth of 20–30 cm and surface sedi-
ment samples of 1 cm thickness were collected at sites JLH-a,
JLH-b, SH, YH, M-a, and M-b in June and November 2015
for the analysis of microbial flora involved in metabolism of
inorganic nitrogen compounds. The samples were refrigerated
until analysis. Water samples for Chl-a analysis were filtered
with 0.45-μm pore cellulose filters and then stored frozen in
the dark until analysis.

Sample analysis

The pH values were measured in situ using a portable meter
(pHB-4). Dissolved oxygen (DO) was determined according
to the iodometric method (GB/T 7489-87) in the field. In the
laboratory, NH4

+ was measured by Nessler’s reagent spectro-
photometry method (HJ535-2009); NO3

− was quantified ac-
cording to UV spectrophotometry standard (HJ/346-2007);
and NO2

− was measured according to naphthyl
ethylenediamine spectrophotometry standard (GB17378.4-
1988). Detection limits were 0.025 mg L−1, 0.02 mg L−1,

Fig. 1 The Shaying River Basin and locations of sampling sites, YH and JLH-b were located at the front of dams
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and 0.003 mg L−1 for NH4
+, NO3

−, and NO2
−, in respectively.

The concentrations of Cl− in water samples were determined
with ionic chromatography method using a Dionex ICS-2100
(USA). Microbial flora involved in metabolism of inorganic
nitrogen compounds in waters and sediment were estimated
by most probable number (MPN) procedures (Rowe et al.
1977; Papen and Berg 1998; Jiao et al. 2009) after arrival at
the laboratory.

To determine the N and O isotopic compositions of
NO3

− in water samples, a denitrifier method was used
(Casciotti et al. 2002). First, nitrate was quantitatively con-
verted to N2O by pseudomonas aureofaciens, which lacks
the active N2O-reductase enzyme. Then, N2O gas was pu-
rified and analyzed by isotope ratio mass spectrometry
(IRMS, Isoprime 100, Isoprime, Cheadle, UK), with pre-
cision of 0.25%. For δ15N-NH4

+ pre-treatment, the NH4
+

diffusion method described by Holmes et al. (1998) was
used. An acid trap (KHSO4) was used to absorb the NH3 in
a closed system for 1 week, after which the trap was freeze-
dried and EA-MS (an Elemental Analyzer coupled to a
Mass Spectrometer; Fry et al. 1996) was used to determine
the isotopic compositions with a precision of 0.25% for
δ15N values.

The δ15N in SPN was determined by a Finnigan MAT 252
gas isotope mass spectrometer coupled to an elemental ana-
lyzer. Pure tank N2 calibrated against the reference standards
for the International Atomic Energy Agency (IAEA)-N-1 and
IAEA-N-2 was used as a working standard. δ15N-SPN has a
precision of 0.25%. δ18O-H2O was analyzed in a LGR isoto-
pic Water Analyzer (IWA-45EP, Los Gatos Research, Inc.,
CA, USA). δ18O-H2O has a precision of 0.25%.

The isotopic compositions are expressed as:

∂ %ð Þ ¼ Rsample

Rstandard

� �
−1

� �
� 100 ð1Þ

Water R = 15N/14N or 18O/16O. The ratios of 15N/14N and
18O/16O are expressed relative to air for N and to Vienna
standard mean ocean water (V-SMOW) for O.

Dissolved N2 in river water was determined by the use of a
Membrane Inlet Mass Spectrometry (MIMS) system (Bay
Instruments, Easton, MD, USA). For details on the analysis
and calculation of dissolved Ar and N2 concentrations, see the
description of the open-channel method in McCutchan et al.
(2003) and Baulch et al. (2010). The net production of N2

(△N2) was then calculated as: △N2 = [N2]water-[N2]equilibrium.

Fig. 2 The mean monthly
variations of temperature, and
precipitation at Zhoukou
hydrological station (M-a) during
1960–2015 (a); Monthly varia-
tions of NH4

+ concentrations at
M-a during 2010–2015 (b)
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Data for NH4
+ content during 2010–2015 at site M-a in

Fig. 2 were obtained from the Zhoukou hydrological station,
whereas data for discharges of pollution and ammonium from
the upperstream watershed to the Shaying River were ac-
quired from the Huai River Water Resources Commission.
Data for temperature, and precipitation at M-a were obtained
from http://www.cma.gov.cn/2011qxfw/2011qsjcx/.

Estimation of nitrate source contributions

The contributions of NO3
− sources to a mixture were quanti-

fied through the Stable Isotope Analysis in R (SIAR) model
(Parnell et al. 2010) as follows:

Xij ¼ ∑
k

k¼1
pk Sjk þ cjk
� þεij ð2Þ

Sjk∼N μjk; ω2
jk

� �
ð3Þ

Cjk∼N λjk ; τ
2
jk

� �
ð4Þ

εij∼N 0;σ2
j

� �
ð5Þ

where Xij is the isotope value j of the mixture i; Sjk is the
source value k on isotope j and is normally distributed with
mean μjk and standard deviation (SD) ωjk; pk is the propor-
tion of source k; Cjk is the fractionation factor for isotope j on
source k, normally distributed with mean λjk and SD τjk; and
εij is the residual error, representing additional unquantified
variation between individual mixtures and is normally distrib-
uted with mean 0 and SD σj (Parnell et al. 2010).

Nitrate source endmember values for δ15N and δ18O were
obtained from the literature, except for atmospheric precipita-
tion and wastewater. The actual values of δ15N and δ18O in
atmospheric precipitation and wastewater were analyzed from
typical samples collected within the study area (Table 2).

Data analysis

Correlations between variables were analyzed using Pearson
correlations, and statistical analyses were carried out to deter-
mine the differences in water quality parameters at a signifi-
cance level of P ≤ 0.05 in the Origin8 software package.

Results

Spatial-temporal variations of the nitrogen species
and water chemistry

Concentrations of TN, NO3
−, NO2

−, and NH4
+ in the Shaying

River ranged from 0.43 to 13.19 mg L−1, 0.04 to 4.72 mg L−1,
0.01 to 0.32 mg L−1, and 0.01 to 7.59 mg L−1, respectively.
Nitrogen pollution in the Jialu River (JLH-a, JLH-b) was most
serious in both summer and winter (Table 3). The nitrogen
pollution in the Sha River was the lightest, where the NH4

+

Table 1 Experimental manipulations of the study in 2015 and 2016

Sampling location Sampling time Analyzed itemsa

JLH-a (113° 46′48″E, 34° 20′20^ N) Summer: July 23 and 24, August 25
and 26 in 2015; August 29 and 30 in 2016;

NO3
−, NO2

−, NH4
+, TN, Cl−, [N2],

Chl.a, pH, microbial flora involved
in metabolism of inorganic nitrogen
compounds, δ15N-NO3

−, δ18O-NO3
−,

δ15N-NH4
+, δ18O-H2O, δ

15N-SPN

JLH-b (114° 38′24″E, 33° 37′48^ N)

SH (114° 01′12″E, 33° 34′48^ N) Winter: November 26 and 27,
December 29 and 30 in 2015,
December 28 and 29 in 2016

YH (114° 36′36″E, 33° 37′45^ N)

M-a (114° 39′36″E, 33° 37′33^ N)

M-b (115° 5′24″E, 33° 23′9^ N)

M-c (116° 16′48″E, 32° 39′00^ N) Summer: August 24, 2015 NO3
−, NH4

+, TN, [N2], Chl.a,
δ15N-NO3

−, δ18O-NO3
−, δ15N-NH4

+, δ18O-H2OWinter: December 28 in 2015

HR’ (117° 23′24″E, 32° 57′36^ N) Summer: August 24, 2015

Winter: December 28, 2015

a. [N2], dissolved N2 concentration (mg/L); NO2
− , δ15 N-SPN and δ15 N-NH4

+ were only analyzed in 2016; The analysis of microbial flora involved in
metabolism of inorganic nitrogen compounds was only carried out in June and November in 2015

Table 2 Specific δ15N and δ18O values of potential NO3
− sources

Source n δ15N(%) δ18O(%)

Mean SD Mean SD

Precipitation 4 − 2.71 2.11 61.68 13.69

Fertilizer N – − 0.20a 2.28 − 2.00a 8.00

Soil N – 7.50b 5.23 − 2.00b 8.00

Manure and Sewage 4 15.71 4.72 3.5 2.89

a. Data obtained from (Li et al. 2007; Black and Waring 1977; Kim et al.
2015; Widory et al. 2004; Curt et al. 2004; Choi et al. 2002, 2003, 2007).
In China, urea and ammonium salt were the majority of synthetic fertil-
izer, so we use the values for NH4

+ fertilizers (Li et al. 2007)

b. Data obtained from (Divers et al. 2014; Black and Waring 1977;
Widory et al. 2004; Curt et al. 2004; Choi et al. 2007; Kendall et al.
2007; Sturm et al. 2011; Spoelstra et al. 2007; Kellman 2005; Kaushal
et al. 2011; Bedard-Haughn et al. 2003)
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and NO3
− level was less than 2 mg L−1 (Chinese Surface

Water Quality Standard GB3838-2002). NO2
− ranged from

0.01 to 0.15 mg L−1 in summer, and from 0.01 mg L−1 to
0.32 mg L−1 in winter. The concentrations of TN, NO3

−, and
NH4

+ in the Shaying River were 5.26 ± 3.09 mg L−1, 1.05 ±
1.11 mg L−1, and 1.22 ± 0.92 mg L−1 in summer, respectively,
whereas they were 7.84 ± 3.44 mg L−1, 2.31 ± 0.81 mg L−1,
and 3.00 ± 2.24 mg L−1, respectively, in winter. Nitrogen con-
centrations (TN, NO3

−, NH4
+) in most samples were signifi-

cantly higher in winter than those of in summer, which might
be due to the low precipitation and microbial activity. The
Jialu River, with the highest level of ammonium in winter,
should be the main ammonium contributor to the mainstream
of the Shaying River due to the low level of ammonium in
other tributaries (the Sha River, the Ying River). Finally, un-
like in the other rivers, NH4

+ in the Shaying River was always
the leading proportion (range, 9.22 to 95.17%; mean, 49.66%)
of DIN.

The DO concentrations ranged from 0.64 to 12.40 mg L−1

in summer, and from 3.36 to 14.24 mg L−1 in winter.
Compared to other rivers, Chl-a concentrations in the
Shaying River were high (20.17 ± 11.12 μg L−1), even though
the precipitation was great during the summer, which could be
attributed to the low flow rate caused by dams (Balls et al.
1996; Brion et al. 2000). The Chl-a dropped to 9.21 ±
6.13 μg L−1 in the winter because of low water temperature,
as seen in Table 3. Cl− ranged from 23.79 to 112.18 mg L−1 in
summer, and from 79.52 to 129.58 mg L−1 in winter, and no
obvious seasonal variations were observed.

Isotope compositions of nitrogenous species

δ15N-NO3
− in the Shaying River ranged from 5.25 to 18.02%

in summer, and 8.82 to 20.96% in winter, respectively, while
δ18O-NO3

− ranged from − 2.43 to 14.76% in summer and
from − 1.64 to 7.22% in winter. δ18O-NO3

− in the three trib-
utaries (Jialu, Ying, and Sha) experienced an obvious decrease
in winter, whereas no obvious δ18O-NO3

− seasonal variations
were observed in the main stream of the Shaying River (M-a,
M-b, M-c) and the Huai River (HR). The higher values of
δ18O-NO3

− in tributaries during the summer may be attributed
to intensive denitrification or assimilation. There were no sea-
sonal variations for most values of δ15N-NO3

−, whereas δ15N-
NO3

− at SH in the Sha River experienced an obvious increase
in winter (Table 3). If the increase of δ15N was attributed to
intensive denitrification or uptake of nitrate during winter in
the Sha River, both values of δ15N and δ18O should have
increased at the same time (Kendall et al. 2001).
Nevertheless, our data show that the values of δ18O decreased
in the Sha River (SH) during winter. Therefore, this phenom-
enon may be explained as a result of mixing of different pol-
lution sources.

δ15N-NH4
+ ranged from 4.38 to 20.92% in summer, and

from − 7.01 to 15.63% in winter. Values of 15N-NH4
+ at JLH-

a, JLH-b, SH, and M-a during the summer were significantly
higher than those of in winter. No significant seasonal varia-
tions were found in δ15N-NH4

+ at YH, M-b, and M-c. δ18O-
H2O ranged from − 8.64 to − 3.32% in summer, significantly
higher than those of in winter (− 8.77% to − 5.09%), which
may be due to the intensive evaporation during summer. δ15N-
SPN ranged from 1.56 to 13.51% in summer, and 0.78 to
13.41% in winter. The values of δ15N-SPN in the Sha River
demonstrate an apparent seasonal variation, whereas no ap-
parent seasonal variations were observed in the other values of
δ15N-SPN (Table 3).

Relationships between nitrogen isotopic composition
and chemical variables in different seasons

During summer, DOwas negatively correlated with NH4
+ and

positively correlated with NO3
− (both p < 0.05), as seen in

Table 4. TheNH4
+ was more easily oxidized, with the increase

of DO; because of nitrification, the NO3
− could increase and

NH4
+ might decrease, even though no significant negative

correlation was found between NO3
− and NH4

+. A negative
correlation between NH4

+ and δ15N-SPN was observed, indi-
cating the occurrence of NH4

+ uptake during summer
(Bardhan et al. 2017), which could be partly responsible for
the low level of NH4

+ in summer. NO3
− was positively corre-

lated with TN (p < 0.01), suggesting that they share a same/
similar source. δ18O-NO3

− was negatively correlated with
NO3

−, which could be attributed to the denitrification in the
river during summer (Kellman and Hillaire-Marcel 2003;
Kendall et al. 2001). The values of Chl-a concentrations show
a positive correlation with δ15N-SPN, which could suggest
that the assimilation process was intensive in summer.
During winter, NO2

− was negatively correlated with δ15N-
NO3

− (p < 0.05), and NO3
− was positively correlated with

NH4
+ (p < 0.01). The process of nitrification first turned

NH4
+ into NO2

−, then turned NO2
− into NO3

−, causing the
increase of NO3

− concentration and the decrease of δ15N-
NO3

−. Therefore, it could be that the nitrification process that
caused the negative correlation between NO2

− and δ15N-
NO3

−. The positive correlation between NO3
− and NH4

+ in
winter suggests that they share a same/similar source.

Denitrification variations and the distribution
of microbial flora involved in metabolism of inorganic
nitrogen compounds in the Shaying River

During summer, N2 in water samples was oversaturated, with
ΔN2 ranging from 2.15 to 4.92mg L−1, with the mean of 3.50
± 0.69 mg L−1; the highest ΔN2 was at JLH-a, and lowest at
SH (Table 3), whereas N2 inmost water samples during winter
was unsaturated, with ΔN2 ranging from − 4.28 to
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1.29 mg L−1. The mean of ΔN2 was − 2.40 ± 1.05 mg L−1,
with the highest value at M-b and the lowest at M-a.

The distribution of microbial flora involved in metabolism
of inorganic nitrogen compounds in water and sediment in the

Table 4 Pearson’s correlation coefficients among nitrogen, dual isotopes (δ15N, δ18O), and chemical indicators during the sampling periods in the
Shaying River, Eastern China

NH4
+ NO2

− NO3
− TN DO Cl− Chl-a δ15N-

SPN
δ15N-
NH4

+
δ18O-
H2O

δ15N-
NO3

−
δ18O-
NO3

−

Summer

NH4
+ 1

NO2
− 0.0011 1

NO3
− − 0.1175 0.5994 1

TN − 0.0591 0.5991 0.5188** 1

DO − 0.6569** 0.1805 0.2810* − 0.3665 1

Cl− − 0.1106 0.0132 0.4735 − 0.6913* − 0.1309 1

Chl-a − 0.3131 0.4887 0.0676 − 0.0972 0.6489* − 0.0654 1

δ15N-SPN − 0.9045* 0.0939 − 0.1412 − 0.9439* 0.9398** 0.0123 0.7676* 1

δ15N-NH4
+ 0.0507 0.6666 − 0.1086 − 0.2436 0.3596 − 0.1669 0.1962 0.4769 1

δ18O-H2O − 0.1415 − 0.2885 − 0.0452 − 0.0325 0.4674 − 0.6153* 0.0111 0.8959* 0.2775 1

δ15N-NO3
− − 0.2719 − 0.2214 − 0.0293 − 0.0055 − 0.4157 0.4047 − 0.3951 0.1323 − 0.1259 − 0.0492 1

δ18O-NO3
− 0.1817 − 0.7833 − 0.6300** − 0.2285 − 0.3617 0.1073 − 0.1358 − 0.3531 − 0.2203 − 0.3954 0.0746 1

Winter

NH4
+ 1

NO2
− 0.6275 1

NO3
− 0.7262* 0.8447 1

TN 0.4605 0.8166 0.4564 1

DO 0.5593 0.0011 0.4130 0.4526 1

Cl− − 0.3213 0.0032 0.4356 0.5843 0.0333 1

Chl-a 0.3162 0.7091 0.1170 0.1117 0.9567* 0.2286 1

δ15N-SPN − 0.0637 0.0599 0.4851 0.0973 0.0077 0.0032 − 0.0749 1

δ15N-NH4
+ − 0.0794 0.5941 0.8041 0.3522 0.0011 0.0001 0.6273 0.6566 1

δ18O-H2O 0.0026 − 0.9884** 0.2015 − 0.3518 0.3444 − 0.3981 − 0.1618 − 0.0748 − 0.5250 1

δ15N-NO3
− − 0.5420 − 0.9547* − 0.3700 − 0.3011 0.3979 0.8306 − 0.0899 − 0.2526 − 0.6370 0.6702* 1

δ18O-NO3
− 0.1951 − 0.7562 − 0.2510 − 0.4450 − 0.4054 0.3489 − 0.0237 − 0.6397 − 0.7283 0.1091 − 0.2364 1

Table 5 Distribution of microbial flora involved in metabolism of inorganic nitrogen compounds in water and in sediment in June and November

Sampling sites Aerobic denitrifying
bacteria (MPN L−1)

Anaerobic denitrifying
bacteria (MPN L−1)

Heterotrophic nitrifying
bacterial (MPN L−1)

Autotrophic nitrifying
bacteria (MPN L−1)

June November June November June November June November

JLH-a Water 1.25 × 104 70 2.0 × 102 60 60 0 0 30

JLH-b 2.25 × 104 70 4.5 × 104 2.5 × 104 70 0 2.0 × 102 200

SH 2.25 × 103 70 4.5 × 103 60 1.5 × 102 0 90 30

YH 2.25 × 103 110 2.5 × 102 900 0 0 70 0

M-a 4.75 × 103 150 1.5 × 102 60 2.0 × 102 0 7.5 × 102 30

JLH-a Sediment 7.00 × 107 2.0 × 105 7.5 × 104 6.0 × 103 2.5 × 102 0 7.5 × 103 9.5 × 104

JLH-b 2.25 × 106 2.0 × 105 1.5 × 105 6.0 × 103 4.5 × 103 0 1.5 × 104 2.5 × 104

SH 4.75 × 106 4.5 × 104 2.5 × 104 9.5 × 104 2.5 × 102 0 4.5 × 103 250

YH 1.50 × 106 2.0 × 104 9.5 × 104 6.0 × 103 1.1 × 102 0 7.5 × 103 4.5 × 103

M-a 1.50 × 105 3.0 × 103 9.5 × 104 3.0 × 103 2.0 × 102 0 7.5 × 103 2.5 × 105
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Shaying River system was also studied (Table 5). During
June, aerobic denitrifying bacteria were the dominant micro-
organism in both water and sediment samples. The MPN of
aerobic denitrifying bacteria ranged from 2.25 × 103MPN L−1

to 2.25 × 104 MPN L−1 in the water samples, and from 1.50 ×
105MPN L−1 to 7.00 × 107MPN L−1 in the sediments, where-
as the anaerobic denitrifying bacteria was second only to the
aerobic denitrifying bacteria. MPN of both the heterotrophic
and autotrophic nitrifying bacteria were low in the water
samples.

During November, the amount of bacteria dropped dramat-
ically. The MPN of aerobic denitrifying bacteria was on aver-
age 150 MPN L−1 in water and 2.0 × 105 MPN L−1 in the
sediment. The MPN of anaerobic denitrifying bacteria in wa-
ter was significantly higher than that of aerobic denitrifying
bacteria, whereas the MPN of aerobic denitrifying bacteria in
sediment was still bigger than the MPN of anaerobic
denitrifying bacteria. The MPN of autotrophic nitrifying bac-
teria in the sediment was at the same level as the aerobic
denitrifying bacteria, whereas the MPN of autotrophic

nitrifying bacteria in water was small, from 0 to 200 MPN
L−1. The MPN of heterotrophic nitrifying bacteria in both
water and sediment was negligible.

Discussion

Quantitative identification of NO3
− pollution sources

NO3
− in the aquatic system has several major sources, includ-

ing atmospheric precipitation, leaching from chemical fertil-
izers, nitrification in soils, and manure and sewage (Kendall
et al. 2001). NO3

− derived from atmospheric precipitation has
low values of δ15N in the range of − 13.0 to + 13.0% and
relatively high values of δ18O (> + 20%, Kendall et al. 2001;
Widory et al. 2005). Nitrogenous fertilizers generally have
δ15N-NO3

− values within a few permil around zero in China
(Yue et al. 2013). δ15N-NO3

− in the Shaying River ranged
from 5.25 to 20.96%, and δ18O-NO3

− from − 2.43 to
14.76%. The low values of δ18O and high level of δ15N indi-
cate that precipitation and nitrogenous fertilizers were not the
major sources of riverine NO3

− during our sampling periods.
Figure 3 shows that most data are distributed in the manure
and sewage source window, suggesting that manure and sew-
age were the main source of NO3

− in the research area during
both sampling periods. Nevertheless, values at HR in summer
and M-a in winter indicate that nitrate was originated from the
mixing of soil-induced N with manure and sewage.

Cl− is biologically and chemically inert, thus a good indi-
cator for the impact of sewage on aquatic systems (Liu et al.
2006). High Cl− concentrations have been detected in sewage
and livestock effluent (Yao et al. 2007), but no significant
correlation has been found between Cl− and NO3

− in summer
and winter, separately (Table 4). However, if we combine all
data, a significant positive correlation between Cl− and NO3

−

(R2 = 0.7972, n = 28) can be seen, which indicates that Cl− is
strongly influenced by anthropogenic input. Furthermore,
plots of δ15N values versus the NO3

−/Cl− molar ratio can
reveal whether denitrification or mixing of NO3

− from var-
ious sources is responsible for the increasing of δ15N-NO3

−

values in the water body (Koba et al. 1997; Liu et al. 2006;
Widory et al. 2005). Most samples in the Shaying River
show high 15N-NO3

− values (> 9.00%) and Cl− concentra-
tions (> 34 mg L−1), as well as low in NO3

−/Cl− molar
ratios (< 0.11), which suggests that NO3

− in the Shaying
River derived mainly from manure and sewage influenced
by denitrification (Yue et al. 2013, 2014; Vystavna et al.
2017).

In order to further estimate the proportional contributions
of different potential NO3

− sources quantitively, a SIAR
mixing model was employed. Figure 4 shows that manure
and sewage contributed to the maximal NO3

−, at 62.44 ±
19.66% in summer and 67.33 ± 15.45% in winter,

Fig. 3 Dual δ15N-NO3
− and δ18O-NO3

− source plots for water samples
collected during August and December 2015 and 2016 (a); Plots of δ15N-
NO3

− vs NO3
−/Cl− molar ratio in the Shaying River water during August

and December 2015 and 2016 (b)
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respectively, followed by soil organic N (24.94 ± 15.52% and
26.33 ± 9.45% for summer and winter, respectively), chemical
fertilizer nitrification (7.81 ± 6.77% and 3.96 ± 5.57% for
summer and winter, respectively) and atmospheric precipita-
tion (4.81 ± 5.65% and 2.38 ± 3.55% for summer and winter,
respectively). The contribution of chemical fertilizer nitrifica-
tion was significantly higher in summer than in winter
(P < 0.05). The Shaying River watershed is an agricultural
drainage stream network, and 76.24% of the research area is
cultivated land (Zuo et al. 2016). Intensive farming, as well as
high water precipitation during summer, has increased the
chemical fertilizer nitrification contribution to riverine nitrate.
Although manure and sewage was the foremost source for the
riverine nitrate in this river, soil organic nitrate was also im-
portant. The contributions of manure and sewage, soil organic
N, and atmospheric precipitation demonstrate no significant
seasonal variations inmost samples, whereas atmospheric pre-
cipitation contributed more than 10% of the nitrate at SH,
JLH-a, and HR in the summer, and it only contributed less
than 4% in winter.

Nitrogen source in NH4
+ and suspended matter

Ammonium, unlike in other river systems, was the dominant
form of DIN in the Shaying River system, especially in winter
(Table 3). Every year, there was a large amount of ammonium
discharged to the Shaying River (Fig. 5a). The ammonia
wastewater from the upperstream watershed discharged to
the Shaying River decreased dramatically during 2010–
2015, from 1.29 × 107 Kg N year−1 in 2010 to 0.89 ×
107 Kg N year−1 in 2015. Normally, as input of ammonia

decreases, the concentrations of riverine ammonia decrease
accordingly. Figure 5b shows a comparison of the level of
ammonium between 2010–2012 and 2013–2015, and the re-
sults indicate that the NH4

+ concentrations in summer signif-
icantly decreased from 1.40 ± 1.54 mg L−1 in 2010–2012 to
0.84 ± 0.56 mg L−1 in 2013–2015, whereas no such difference
in the concentrations of NH4

+ was found between the two
periods in winter (Fig. 5b). Even though ammonium
discharged decreased dramatically, the accelerated urban de-
velopment due to rapid population migration from rural to
urban lands may have led to high level of untreated sewage
entering directly into aquatic ecosystems.

It is known that both concentration and isotopic character-
istics of N species in treated and untreated wastewater are
different. The untreated sewage water has a high δ15N-NO3

−

and low δ15N-NH4 value, with a low level of NO3
− and a high

level of NH4
+. However, the treated sewage water, because of

nitrification, has a low level of NH4
+ and high level of NO3

−,
with a high δ15N-NH4 and low δ15N-NO3

−. Figure 5c sug-
gests that about 50% of the δ15N-NO3

− values were higher
than the values of δ15N-NH4

+ during summer, whereas the
contents of nitrate were similar to the level of ammonium in
water samples in summer (Table 3). Thus, we can infer that
about half of the wastewater was treated before entering the
river during summer. On the other hand, most δ15N values in
nitrate were higher than δ15N-NH4

+ during winter and the
contents of nitrate were lower than the level of ammonium
(Fig. 5c, Table 3), revealing that most of the wastewater
discharged into the Shaying River was untreated, which could
be one of the main reasons for the high concentrations of
NH4

+ in winter.

Fig. 4 Proportional contributions
of four potential NO3

− sources
estimated by the SIAR mixing
model in the Shaying River
watershed (box plot denotes 5th,
25th, 50th, 75th, and 95th
percentiles; white square
represents the mean values)
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Similar to nitrate, δ15N-NH4
+ varies according to its

source. Values of δ15N-NH4
+ in the Shaying River suggest

that ammonium at most sites was mainly from septic/ma-
nure, except at SH (4.38%) in summer (Hao et al. 2018; Du
et al. 2017; Nikolenko et al. 2018). In winter, values of
δ15N-NH4

+ at JLH-a, JLH-b, M-b, and M-c (5.18% to
7.67%) suggest that household waste was the main source
of ammonium, whereas values of δ15N-NH4

+ at YH and
M-a (11.20% to 15.63%) reveal that ammonium was main-
ly from septic/manure (Fig. 8c). Thus, point source pollu-
tion, i.e., septic/manure and domestic sewage, was an im-
portant source of ammonium in the Shaying River system.
Zeng (2015), by applying the SWAT model, estimated that
nonpoint source contributed just 5.1% of the total ammo-
nium loading, whereas point source was the main source of
ammonium in the upper stream of the Shaying River basin.

Nitrogen pollution was slight in the Sha River, where
the concentrations of ammonium were less than 2 mg L−1

(Chinese Surface Water Quality Standard (GB3838-
2002)) during the two sampling periods. The low values

of δ15N-NH4
+(4.38%) in the summer indicate that ammo-

nium in the river derived from buried organic matter min-
eralization, similar to that of the Red River delta of
Southeast Asia (Norrman et al. 2015). The low value of
δ15N-NH4

+ (− 7.01%) at SH in winter may suggest that
ammonium derived from rainwater and synthetic fertil-
izers. Agricultural and microbial activities were low in
winter; however, NH4

+ can be concentrated in the rain if
vaporization of NH3 occurs from the low flow surface of
soil particles that adsorb NH4

+ (Russell et al. 1998). This
could be the reason for the significant influence of rain-
water and synthetic fertilizers on δ15N-NH4

+ in the Sha
River.

SPN was an important form of nitrogen in river water
(Middelburg and Nieuwenhuize 1998). The assimilation of
sewage-derived NH4

+ could contribute to enriching the
SPN of 15N in the Shaying River during summer, consis-
tent with what has been observed in other systems (Owens
1985; Cifuentes et al. 1988; Cole et al. 2004). Microbial
activity was usually low in December. The effects of

Fig. 5 Discharge of pollution and ammonium to the Shaying River from
the upperstream of the Shaying River watershed (a); The comparison of
ammonium concentrations at M-a in the river water between periods of
2010 to 2012 and 2013 to 2015 (b; Data for pollution discharge and
ammonium discharge were obtained from the Huaihe River water

Resources Commission, while data for NH4
+-N content at M-a during

2010–2015 were obtained from the Zhoukou hydrological station); Plots
of δ15N-NH4

+ vs δ15N-NO3
− in the river water in August and December

2016 with reported ranges of δ15N-NH4
+ values for different NH4

+

sources on the right side (c)
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isotopic fractionation by microbial processes, therefore
negligible (Lehmann et al. 2004). However, the values of
δ15N-SPN were still high in the winter, ranging from 0.78
to 13.41%, which may be attributed to its source.
Generally, evaporation caused δ15N values enrichment,
whereas no such difference was observed between δ15N
values in the two seasons. Likewise, there were no signif-
icant correlations between δ15N-SPN and NO3

− in August
and December (Table 4), which suggests that terrestrial N
contributed to much of the change in δ15N-SPN during the
two sampling periods. The inputs of terrestrial sources of
particulate organic N via rain runoff may have contributed
to the increase in δ15N-SPN; nevertheless, values of δ15N-
SPN originated from industrial and domestic sewage were
high (Li and Zhang 2010), which may be one reason for the
high level of δ15N-SPN in both seasons. Most values of
δ15N-SPN (YH, M-a, and M-b in both sampling periods,
and SH in summer) distributed into the industrial and do-
mestic sewage ranges (Kreitler and Browning 1983;
Wassenaar 1995), which suggests that industrial and do-
mestic sewage was the main source for the riverine SPN.
Values of δ15N in the Jialu River (JLH-a, JLH-b) during
both seasons and δ15N in the Sha River (SH) in winter
demonstrate that the N in suspended matter came from
mixed sources, i.e., soil organic nitrogen and agricultural
fertilizers (Kreitler and Browning 1983; Wassenaar 1995).

Roles of denitrification, nitrification, and assimilation
in the river system

A negative linear relationship was found between δ18O-NO3

and ln[NO3
−] during summer (R2 = 0.7282, p < 0.01), seen in

Fig. 6a, revealing that denitrification occurred in river water
during the summer (Yue et al. 2014). However, no notable
negative relationship between ln[NO3

−] and δ15N-NO3 was
observed, perhaps because nitrate consumption processes
could be overprinted by stronger signals due to external N
loading. N2 was the main product of the denitrification pro-
cess, i.e., NO3

−→NO2
−→N2; thus, the linear positive cor-

relation between δ15N-NO3 and ΔN2 during summer further
verifies the important influence of denitrification on nitrate
isotopes in the river system during summer (Fig. 6b). Long
residence time caused by dam would enhance the denitrifica-
tion at YH and JLH-b, but no spatial differences were ob-
served in △N2. There were a lot of dams in our research area,
and the discharge was mostly controlled by dams, except that
at JLH-a (Fig. 1). The denitrification process was enhanced, as
indicated by high values of △N2 in summer (Table 3). Even
though there was no dam at or near the JLH-a, but the low
level of DO (< 5.00 mg/L) was benefit for denitrification, thus
△N2 at JLH-a was high in summer.

Table 5 demonstrates that the aerobic denitrifying bacteria,
not the anaerobic denitrifying bacteria, were the dominant pop-
ulation of microorganisms both in the water and the sediment in
summer (June). The aerobic denitrification process, i.e.,
coupled nitrification-denitrification, can removeNO3

− provided
by nitrification from NH4

+ (Joo et al. 2006). This would have
had little effect on nitrate isotopic composition, but could in-
crease the residual δ15N-NH4

+ (Wells et al. 2016), which might
be the reason for the high level of 15N-NH4

+ in most water
samples during summer. Therefore, we can infer that the aero-
bic denitrification process is important to the removal of NH4

+,
which could attribute for the low level of ammonium in sum-
mer. Although most DO concentrations in the surface water
were above 2 mg L−1, they were not suitable for the anaerobic
denitrification process (Baron et al. 2013), but instead suitable
for the aerobic denitrification process (Robertson and Kuenen
1984, Robertson et al., 1985). The notable correlation between
ln[NO3

−] and δ15N-NO3, as well as the significant correlation
between δ15N-NO3 andΔN2 during summer, should prove the
existence of anaerobic denitrification. Table 4 indicates that the
MPN of anaerobic denitrifying bacteria was also significant in
summer (June), just next to the MPN of aerobic denitrifying
bacteria in both water and sediment.

In winter, there was no significant relationship between
δ15N-NO3 and ΔN2, or between ln[NO3

−] and δ15N-NO3,
which could be attributed to the stop/weakness of denitrifica-
tion in the river system. Low water temperature (1.0 °C to
11.2 °C) suppressed the denitrification progress, despite high
nitrate concentrations in winter (Silvennoinen et al. 2008;

Fig. 6 ln[NO3
−] versus δ15N-NO3

− (a); and δ15N-NO3
− versus ΔN2 (b)

in water samples in the Shaying River
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Nowicki 1994). Furthermore, both aerobic and anaerobic
denitrifying bacteria decreased dramatically in November
(Table 5). The MPN of aerobic denitrifying bacteria in sedi-
ment decreased from 1.57 × 107 MPN L−1 (mean) in June to
9.36 × 104 MPN L−1 (mean) in November, whereas that of in
water decreased from 8.85 × 103MPN L−1 in June to 94 MPN
L−1 inNovember.Moreover, pH can directly affect the activity
of reductase of the denitrifying bacteria (Zhang et al. 2012).
Pan et al. (2012) found up to 20% of the nitrate-nitrogen
accumulated as N2O when the pH dropped to 6.0–6.5 (Pan
et al. 2012; Hanaki et al. 1992). The pH values in the Shaying
River ranged from 6.0 to 6.6 during winter, which could have
further reduced the production of N2. Finally, along with in-
crease of ln[NO3

−], there was a slight decrease in δ15N-NO3
−,

though not to a significant degree (Fig. 6a). This further indi-
cates that the denitrification in the Shaying River was weak,
but not stopped during this period.

Theoretically, if denitrification, i.e., anaerobic denitrifica-
tion, was significant in summer, the δ18O and δ15N in nitrate
should have been elevated. However, these elevations were
not reflected in the changes of 15N-NO3

−, indicating that it
was mainly precipitation, not denitrification, in the summer
that lead to the low NO3

− concentrations. The effect of deni-
trification on nitrate isotopes was overprinted by anthropogen-
ic nitrate source, i.e., mainly manure and sewage, so no sig-
nificant correlation was observed between δ18O and δ15N in
nitrate (Fig. 3). An increase of δ15N-NO3

− and decrease of
δ18O-NO3

− in winter at SH may be mainly due to the previ-
ously mentioned multiple nitrate sources. More specifically,
the contribution of precipitation was up to 10% at SH in sum-
mer, according to the SIAR mixing model estimation, while it
dropped to 0.01% in winter. As can be seen (Table 2), rainwa-
ter was low in δ15N and high in δ18O. Therefore, the drop in
rainwater contribution to the NO3

−may be the main reason for
the seasonal variations of δ15N and δ18O in NO3

− at SH.

Ammonium andDOwere abundant in the Shaying River, so
the nitrification process was considered to be significant, but the
MPN data illustrate that MPN of the nitrifying bacteria was not
great; in fact, it was even absent in some water samples in both
summer andwinter (Table 5). In theory, about one third of the O
in the NO3

− produced by nitrification is derived from DO,
whereas the remaining two-thirds is derived from water O dur-
ing oxidation of NH4

+ to NO3
− (Böttcher et al. 1990). If the O

from these two sources is incorporated without isotopic frac-
tionation, the values of δ18O-NO3

− would be + 3.47% (mean)
during summer and 2.98% (mean) during winter, according to
calculations based on the δ18O-O2 of + 23.5%. The δ15N values
of the samples (mean, + 6.10%) during summer were signifi-
cantly higher than the theoretical values, while 18O-NO3

− in
samples (mean, 3.10%) was similar to the theoretical values
during winter (Fig. 7). Thus, nitrification during summer may
not have been important, whereas it was dominant in winter,
which is also supported by the significant negative correlation
between δ15N-NO3

− and NO2
− (Table 4). This was similar to

the upper Han River, where nitrification was dominant in
January (Yuan 2017). Finally, although nitrification during
summer was not significant, it should not be neglected, because
the content of heterotrophic nitrifiers and autotrophic nitrifiers
in the sediment was not small (Table 5).

The high level of Chl-a and the significant positive corre-
lation between Chl-a and δ15N-SPN during summer (Table 3)
verify that the assimilation process was important during sum-
mer. In freshwater systems, N uptake rates often follow pat-
terns expected from N assimilation energies (i.e., NH4

+ >
NO3

− > N2) (Présing et al. 2001). The significant negative
correlation between NH4

+ and δ15N-SPN (Table 3) indicates
that the uptake of NH4

+ in the Shaying River was dominant
during summer (Bardhan et al. 2017; Owens 1985; Cifuentes
et al. 1988; Cole et al. 2004). No significant correlation was
found either between NO3

− and δ15N-SPN or between NH4
+

and δ15N-SPN, suggesting that assimilation process was weak
during winter. However, Chl.a concentrations at most sites,
except SH, in winter were still high, suggesting assimilation
was an important N transformation process in winter. Because
of the dam, the flow speed in this river was low, which was of
beneficial for the occurrence of assimilation even in winter.
However, high anthropogenic NH4

+ loading along with the
mild assimilation process resulted in assimilation that had lit-
tle effect on NH4

+ isotopic composition in winter.
Assimilation of NH4

+, intensified by low flow speed, along
with aerobic denitrification competed for NH4

+, bringing
about the weakness of nitrification in the Shaying River sys-
tem in summer. Thus, N transformation in summer changed
from traditional pattern A into pattern B (Fig. 8). Instead of
turning into NO3

− through nitrification, NH4
+ turned into N2

through the aerobic denitrification process, or turned into or-
ganic N through assimilation. Nitrate in the river system, orig-
inated from sewage and manure or soil-N, turned into N2

Fig. 7 δ18O-H2O versus δ18O-NO3
− in water samples in the Shaying

River. Three lines represent the theory line in different conditions
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through denitrification. Consequently, heavy nitrogen pollu-
tion and the presence of dams caused a difference in the N
transformation in the Shaying River.

Besides denitrification, nitrification, and assimilation, an-
aerobic ammonium oxidation (anammox) and dissimilatory
nitrate reduction to ammonium (DNRA) are also two impor-
tant N transformation processes in rivers (Hou et al. 2013; Yin
et al. 2017). However, processes of anammox and DNRA
cannot be quantified by simply analyzing the isotopic compo-
sition of nitrate, ammonium, and SPN. Isotopic composition
of NO2

−, together with δ15N and δ18O in NO3
− were used to

identify the process of DNRA (Hu et al. 2016), which was
lacking in our study. Mostly, isotope-tracing method was ap-
plied to quantify the relevance of anammox and DNRA to
nitrogen retention in soils and rivers (Hoagland et al. 2019;
Bu et al. 2017b). Of course, the nitrogen isotopic characteris-
tics can be altered by anammox and DNRA, thus affecting the
identification of nitrogen sources. For instance, DNRA pro-
duce a strong enrichment in both δ15N and δ18O in the residual
NO3

− (Hu et al. 2016).

Uncertainty analysis

In this study, the sample sizes for each site were small, which
might result in insufficient data to support the conclusion.
Also, the nitrogen isotopic composition fraction caused by
bio-chemical processes was ignored in the SIARmixing mod-
el, which might lead to uncertainty of the quantification of
NO3

− sources.

Conclusions

Our results demonstrate that point source (household and
industrial sewage, and manure), not the non-point source,
was the dominant source for nitrate, ammonium, and SPN
in the Shaying River. Isotope characteristics of nitrate and
the SIAR mixing model reveal manure and sewage were

the dominant nitrate source in both summer (62.44 ±
19.66%) and winter (67.33 ± 15.45%), and soil organic ni-
trogen generated substantial amounts of nitrate in summer
(24.94 ± 15.52%) and winter (26.33 ± 9.45%). Data of
δ15N-NH4

+ (− 7.54% to 20.92%) suggest that septic/
manure and household waste was the main source to am-
monium in most sampling sites in both summer and winter.
Most wastewater discharged into the river was untreated,
which was one of the main reasons for the high level of
ammonium in winter. δ15N-SPN, ranging from 0.78 to
13.51%, suggest that SPN was mainly from industrial and
domestic sewage at most sites in both seasons. Nitrogen
pollution, along with the dams, caused the difference in the
N transformation in the river. Significant assimilation of
NH4

+ and aerobic denitrification competed for NH4
+,

resulting in the weakness of nitrification in summer.
Denitrification was an important anthropogenic nitrate re-
moval process in summer, while nitrification was a key N
transformation process in the river in the winter.
Accelerated urban development resulting from rapid pop-
ulation migration from rural to urban lands has led to high
level of untreated sewage directly entering the Shaying
River, which has caused the high level of nitrogen in the
Shaying River. We recommend that more efforts should be
directed toward the reduction of domestic and industrial
waste discharges and manure.
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