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Abstract
Wastewater discharge evidently increased bacterial diversity in the receiving waterbodies. The objective of this study was to
evaluate the effectiveness of a constructed wetland in reducing fecal indicator bacteria (FIB) and antibiotic resistant genes
(ARGs). We determined the prevalence and attenuation of fecal indicator bacteria including Escherichia coli and enterococci,
along with ARGs, and human-associated Bacteroidales (HF183) markers by quantitative polymerase chain reaction (qPCR)
method. Three types of water samples (inlet, intermediate, and outlet) from a constructed wetland were collected once a month
from May to December in 2013. The overall reduction of E. coli was 50.0% based on culture method. According to the qPCR
result, the overall removal rate ofE. coliwas only 6.7%. Enterococci were found in 62.5% of the wetland samples. HF183 genetic
marker was detected in all final effluent samples with concentration ranging from 1.8 to 4.22 log10 gene copies (GC)/100 ml. Of
the ARGs tested, erythromycin resistance genes (ermF) were detected in 79.2% of the wetland samples. The class 1 integrase
(intI1) was detected in all water samples with concentration ranging from 0.83 to 5.54 log10 GC/100ml. The overall removal rates
of enterococci, HF183, intI1, and ermF were 84.0%, 66.6%, 67.2%, and 13.1%, respectively.
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Introduction

Wastewater is increasingly recognized as another option that
can be treated and then used as a resource (Greenway 2005).
One major issue with the use of this wastewater for potable
reuse is the presence of both chemical and microbial pollut-
ants that would adversely affect human health (Tran et al.
2015, 2016). The removal of pathogenic bacteria and

antibiotic resistance genes (ARGs) from municipal wastewa-
ter treatment processes such as membrane bioreactor systems
and conventional activated sludge systems, as well as more
advanced Bardenpho treatment, has been well documented
(Chen et al. 2010, 2016; Le et al. 2018; Xue et al. 2019).
However, there are a few disadvantages of these technologies,
such as expensive, not entirely feasible for application in rural
areas, and unwanted chemical by-products (Guo et al. 2008;

Responsible editor: Diane Purchase

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s11356-019-04468-9) contains supplementary
material, which is available to authorized users.

* Samendra Sherchan
sshercha@tulane.edu

3 School of Animal and Comparative Biomedical Sciences, The
University of Arizona, 1007 E. Lowell St., Tucson, AZ 85721, USA

4 Department of Soil, Water and Environmental Science, The
University of Arizona, 1117 E. Lowell St., Tucson, AZ 85721, USA

5 Water and Energy Sustainable Technology (WEST) Center, The
University of Arizona, 2959 West Calle Agua Nueva,
Tucson, AZ 85745, USA

6 Genetics and Sustainable Agriculture Unit, USDA-ARS, Mississippi
State, MS 39762, USA

Environmental Science and Pollution Research (2019) 26:10188–10197
https://doi.org/10.1007/s11356-019-04468-9

1 Department of Global Environmental Health Sciences, School of
Public Health and Tropical Medicine, Tulane University, New
Orleans, LA 70112, USA

2 Division of Environmental Engineering, Faculty of Engineering,
Hokkaido University, North13 West8, Kita-ku,
Sapporo, Hokkaido 060-8628, Japan

http://crossmark.crossref.org/dialog/?doi=10.1007/s11356-019-04468-9&domain=pdf
https://doi.org/10.1007/s11356-019-04468-9
mailto:sshercha@tulane.edu


Wu et al. 2015; Waller and Bruland 2016; Lu et al. 2016).
Compared with wastewater treatment technology, constructed
wetlands, on the other hand, have been recognized as
environmental-friendly and eco-technology due to their low-
cost and easy operation (Faulwetter et al. 2009; Tu et al. 2014;
Rachmadi et al. 2016; Chen et al. 2016), although it has dis-
advantages such as requires large area and the removal effi-
ciency may be affected by environmental factors (Ramirez
et al. 2005).

Constructed wetlands are artificial designed and construct-
ed to simulate natural processes to treat domestic wastewaters.
As wastewater passing through natural wetlands, it is filtered
through sediments and finally replenishes the aquifer, provid-
ing clean water to the city and other municipal sources (Gelt
1997). Previous study suggested that constructed wetlands
were able to remove organics, total carbon, and nutrients ef-
fectively (Tu et al. 2014). It was also reported that fecal indi-
cator bacteria removal in constructed wetland was ranged
from 97 to 99%, such as coliforms and Escherichia coli
(Quiñónez-Dìaz et al. 2001; Wu et al. 2010). In addition to
removal of bacteria, previous researches demonstrated that
mesocosm-scale constructed wetlands are capable of remov-
ing 18 ARGs varied between 50 and 85.8% (Chen et al. 2010,
2016). However, these experiments were conducted by using
mesocosm-scale constructed wetlands. In 2017, Yi et al.
(2017) found several ARGs (intl1, sul1, sul2, and qnrA) from
landfill leachate could be effectively removed by one hybrid
constructed wetlands system. So far, there is limited data on
removal of ARGs in treated wastewater by full-scale con-
structed wetlands system. More importantly, unlike other wa-
ter treatment facilities, physicochemical and biological factors
may affect fecal indicator bacteria removal in constructed wet-
lands, such as seasonal fluctuations, vegetation, sedimenta-
tion, and water composition (Kadlec and Wallace 2008; Wu
et al. 2016). Increased water temperature, pH, and retention
time are known to increase treatment efficiency, while in-
creased turbidity is associated with decreased pathogen re-
moval (Maiga 2017).

In the present study, quantitative polymerase chain
reaction (qPCR) results can be used to determine the
effectiveness of the wetlands in removing pollution from
water. The concent ra t ion of human-assoc ia ted
Bacteroidales marker (HF183) (Bernhard and Field
2000; McLellan and Eren 2014) and genetic markers
targeting fecal indicator bacteria (FIB) were determined
in inlet, intermediate, and outlet water samples. QPCR
were applied to understand the sources of fecal contam-
ination by targeting host-associated molecular markers
(Xue et al. 2017, 2018a, b, c; Tandukar et al. 2018).
When compared to other culture-based methods, PCR-
based methods are able to provide source information
for a water sample that has been recently contaminated
as they are obligate anaerobes that only are able to

survive for short periods of time and have proven to be
more successful at accurately detecting DNA and provid-
ed more specific and accurate readings (Aly et al. 2012;
Kapoor et al. 2015; Xue et al. 2017, 2018c). Antibiotics
are used in medicine and livestock animals for prophy-
lactic, therapeutic, and growth-promoting purposes
(Davies and Davies 2010; Hijosa-Valsero et al. 2011).
Antibiotic residues can be discharged into environments
though feces or urine, posing risks to not only human
health but also the environment (Costanzo et al. 2005;
Kotzerke et al. 2008; Liu et al. 2009; Underwood et al.
2011). The increase in antibiotic usage in humans and
livestock leads to spread of occurrence of antibiotic-
resistant bacteria (ARB) and ARGs in the environment
(Pruden et al. 2006; Tao et al. 2010; Su et al. 2012),
which may lead to source of resistant bacteria in humans.
We are particularly interested in ARGs of intI1 and ermF
that are responsible for resistance to class I integrase and
erythromycin antibiotics, respectively. Class 1 integrons
have been considered to be the key of worldwide antibi-
otic resistance problem, and intI1 gene has been known
to be a proxy for horizontal gene transfer of ARGs
(Gillings et al. 2008; Le et al. 2016). The erythromycin
treatment failure has been noted in the past few years
and the erythromycin resistance might because of the
presence of the ermF genes in the bacterial genome
(Chung et al. 2002; Xing et al. 2015).

In the present study, we evaluated the removal efficiency of
FIB, HF183 genetic marker, as well as intI1 and erm(F) in
surface flow of the constructed wetlands and explore the rela-
tionship between FIB and HF183 genetic marker concentra-
tions. We compared various physicochemical water quality
parameters such as temperature, pH, and turbidity to investi-
gate whether those factors have any effect or correlation on the
prevalence of the bacteria and ARGs. In addition, we analyzed
the inlet, intermediate, and outlet samples to compare the ef-
ficiency rates among each step of the treatment processes.

Materials and methods

Description of the constructed wetlands studied

This study was conducted in the Sweetwater Wetlands
located in the city of Tucson, Arizona. The Sweetwater
Wetlands has been operated for about 20 years and is
one of the most important functional, environmental,
and educational components of Tucson’s reclaimed water
system. It provides additional treatment of the treated
wastewater from the Roger Road Water Reclamation
Facility as well as backwash water from mixed media
filters at the City of Tucson Water Reclamation Plant.
This wetland is approximately 0.03 km2 in size with a
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retention time of 7 days (Vidales-Contreras et al. 2006;
Rachmadi et al. 2016). Major vegetations include
cattails, bulrushes, large cottonwood, and willow trees.
The recovered wastewater is distributed for reuse in
Tucson’s golf courses, parks, schools, and other large
turf irrigation areas (Fig. 1) (https://www.tucsonaz.gov/
water/about-sweetwater-wetlands-and-access).

Sample collection

In total, 24 surface water samples were collected from the
Sweetwater Wetlands by using sterile 1-l plastic containers
over a period of 8 months. The water samples were then kept
on ice and delivered to Dr. Gerba’s laboratory at the
University of Arizona within 6 h. The parameters of water
temperature, dissolved oxygen, salinity, specific electrical
conductivity, and turbidity were measured in situ by using
the PCSTEst35 (Eutech Instruments, Singapore) through in-
let, intermediate, and outlet samples.

DNA extraction from water samples

On the day of sample arrival, 500 ml from each sample was
filtered through a 0.45 μm-pore-size membrane filter and 47-
mm-diameter nitrocellulose membrane (Thermo Fisher
Scientific, Waltham, MA) under vacuum. After filtration, ster-
ile forceps were used to aseptically fold each of the membrane
filters and placed in separate 50-ml conical tubes and stored at
− 20 °C until the DNA extraction. Genomic DNAwas extract-
ed from membrane filters using the PowerSoil DNA Isolation
Kit (Mo Bio Laboratories, Inc., Carlsbad, CA) according to
the manufacturer’s instructions. Membrane filters were cut
into small pieces with sterile scissors to maximize DNA ex-
traction efficiency, and the extracted DNAwas quantified with

a NanoDrop ND-2000 UV spectrophotometer (Thermo Fisher
Scientific, Walkham, MA). The DNA samples were stored at
− 20 °C prior to use.

Quantitative real-time PCR

Quantitative PCR assays targeting E. coli, enterococci,
human-associated Bacteroidales (HF183), and ARGs of
erm(F) and intI1 were conducted (Table 1). For E. coli,
enterococci, the PCR reaction mixture (20 μl) contained
1× PerfeCTa qPCR ToughMix (Quanta Biosciences,
Beverly, MA), 0.5 μM of each primer, 0.5 μM of probe,
and 2.5 μl of the template DNA. For HF183, erm(F), and
intI1 , the reaction mixture (15 μl) contained 1×
SsoAdvanced Universal SYBR Green Supermix (Bio-
Rad, Hercules, CA), 0.2 μM of each primer, and 2.5 μl
of the template DNA. All PCR reactions were performed
in duplicate using the Applied Biosystems StepOne™
Real-Time PCR system (Thermo Fisher Scientific). The
amplification conditions consisted of a hold at 95 °C for
10 min, followed by 40 cycles of 95 °C 15 s, 60 °C 30s,
and 72 °C 30s. A calibration curve with concentrations
spanning the range from 10 to 106 gene copies per reac-
tion with two replicates was generated. Duplicate no-
template controls were included in each run. The calibra-
tion standard curves covering the range from 10 to 106

gene copies per reaction were prepared using serial dilu-
tions of plasmid DNA or commercial genomic DNA pur-
chased from ATCC (700926DQ for Escherichia coli and
ATCC 29212Q-FZ for enterococci; Manassas, VA, USA).
For SYBR Green-based qPCR assays (HF183), plasmid
DNA obtained from Dr. Feng’s lab at Auburn University,
Alabama. For ARGs SYBR Green-based qPCR assays,
intI1 environmental E. coli isolate and erm(F)
erythromycin-resistant environmental Staphylococcus
spp. isolates were obtained from Dr. John Brook’s lab
from USDA-ARS at Mississippi State. Sequencing re-
sults were confirmed by consulting the NCBI website
using the nucleotide Basic Local Alignment Search
Tool (BLAST). Plasmid DNA concentration was mea-
sured with a NanoDrop ND-2000 UV spectrophotometer
(Thermo Fisher Scientific), and the gene copy numbers
were calculated.

Data analyses

Statistical analyses were performed using SAS® 9.3
software. A Spearman’s test was used to identify rela-
tionships between the environmental parameters and the
presence of E. coli, enterococci, HF183, and ARGs, if
any. The coefficient correlation (r) value for each re-
gression model was used to provide an indication of

Fig. 1 Sampling sites in Sweetwater Wetlands in the City of Tucson,
Arizona, USA
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goodness of fit. An ANOVA test was used to identify
any seasonal differences between site-specific data.

Results

Physicochemical and biological water quality
parameters

Twenty-four water samples were collected from the
Sweetwater Wetlands from the months of May to December
in 2013. In our study, the correlation between physicochemi-
cal parameter and FIB as well as ARGs was studied. Turbidity
of the water samples (Table S1) was highest in the inlet water,
at a value of 30.2 NTU. E. coli was found in 100% of water
samples from inlet, intermediate, and outlet locations. The
inlet water samples had consistently high E. coli concentra-
tions, with the highest concentration was found in November
of 3.74 log10 of MPN/100 ml over the sampling period (Fig.
S1). The geometric mean of E. coli concentration over the
study period in outlet water samples was decreased by
50.0% compared with inlet water samples (Fig. 2).

Occurrence and reduction of E. coli, enterococci,
and HF183 determined by qPCR

E. coli was found in 100% of the water samples during the
study period with concentrations ranging from 0.68 Log10
GC/100 ml (intermediate sample of September) to 1.89
Log10 GC/100 ml (outlet sample of December) (Table 2).
Except for December samples, the reduction of E. coli con-
centrations from inlet to intermediate samples ranged from
31.3% in May to 70.2% in October. Compared with interme-
diate water samples, the geometric mean of E. coli concentra-
tions in outlet water samples increased by 65.8% (Fig. 2).
E. coli concentrations in outlet water samples collected in
September and December increased by 96.3% and 293.9%,
respectively. The geometric mean of E. coli concentration
over the study period in outlet water samples decreased by
6.7% compared with inlet water samples.

The enterococci markers were found in 62.5% (15/24) of
water samples (Table 2), with concentrations ranging from
0.81 Log10 GC/100 ml (Intermediate sample of July) to 3.88
Log10 GC/100 ml GC/100 ml (inlet sample of May). From
inlet to intermediate water samples in all months except for
December, the removal rates of enterococci ranged from
70.0% in June to 99.0% in July. The overall concentration of
enterococci in outlet water samples decreased by 84.0% com-
pared with inlet water samples.

Human-associated Bacteroidales (HF183) was detect-
ed in 95.8% (23/24) of water samples, with concentra-
tions ranging from 1.80 Log10 GC/100 ml (outlet water
sample in Oct.) to 4.22 Log10 GC/100 ml (outlet sampleTa
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of December). Except for June and September, the reduc-
tion rates of HF183 from inlet to intermediate water sam-
ples ranged from 63.0% (in August) to 91% (in July).
The HF183 concentrations increased from inlet to inter-
mediate in June and September, with increasing rate of
90% and 3%, respectively. Compared with intermediate
water samples, the geometric mean of HF183 concentra-
tions in outlet water samples increased by 37.2%. Except
for a decrease of 64.7% from the inlet to intermediate
sample in December, the geometric mean of HF183 in
the outlet samples decreased by 66.6% when compared
to inlet samples (Fig. 2).

Occurrence and reduction of ARGs determined
by qPCR

In addition to FIB and HF183, the occurrence of ARGs, such
as intI1 and erm(F), was also determined using qPCR method
in the present study. All Sweetwater samples tested positive
for intI1 marker. The concentrations of intI1 marker ranged
from 0.83 Log10 GC/100 ml to 5.54 Log10 GC/100 ml. The
removal rate of intI1 in intermediate samples ranged from
3.4% to 99.6% compared with inlet samples. The geometric
mean of intI1 for outlet samples increased by 159.1% com-
pared with intermediate samples. The overall removal rate of

Fig. 2 Removal rate of FIB,
HF183, and ARGs from inlet to
intermediate and to outlet in
Sweetwater constructed wetland.
Positive value indicates the
concentration of tested indicators
reduced during the treatment.
Negative value indicates the
concentration of tested indicators
increased during the treatment

Table 2 qPCR results for FIB, HF183, and ARG genetic markers during sampling month

Sampling month E. coli (Log10 of GC/
100 ml)

Enterococci (Log10 of GC/
100 ml)

HF183 (Log10 of GC/
100 ml)

intI1 (Log10 of GC/
100 ml)

erm(F) (Log10 of GC/
100 ml)

Inlet Int. Outlet Inlet Int. Outlet Inlet Int. Outlet Inlet Int. Outlet Inlet Int. Outlet

May 1.63 1.46 1.49 3.88 1.89 ND 3.44 ND 2.27 5.54 3.66 2.12 ND ND 2.33

June 1.43 1.12 1.13 2.17 1.65 2.02 2.61 2.89 1.80 4.41 4.40 4.53 2.46 2.44 2.86

July 1.52 1.28 1.38 2.81 0.81 ND 3.14 2.09 2.19 4.94 4.15 3.25 3.37 2.61 2.40

August 1.43 1.25 1.43 ND ND 1.94 2.27 1.84 1.81 3.31 3.27 4.85 2.35 2.31 2.75

September 1.13 0.68 1.42 ND ND 0.45 2.06 2.08 2.04 1.82 0.83 2.88 2.27 ND 2.36

October 1.53 1.01 1.00 2.79 ND 0.39 3.15 2.20 1.78 4.64 2.20 1.83 2.70 2.28 ND!

November 1.35 1.16 1.35 1.86 ND 0.05 2.94 1.91 2.26 3.48 2.64 3.07 ND 2.35 2.37

December 1.29 1.37 1.89 ND 2.22 3.49 2.56 2.11 4.22 3.28 3.08 5.02 2.35 2.32 2.61

Int. intermediate water samples of the wetland, ND not detected
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intI1 from inlet to outlet was 66.6%. The erm(F) marker was
detected in 79.2% (19/24) of Sweetwater samples, with con-
centration ranged from 3.37 Log10 GC/100 ml (inlet water
sample in July) to 2.28 Log10 GC/100 ml (inlet sample of
Sept). From inlet to intermediate water samples, the reduction
rate ranged from 5.7% in June to 83% in July. From inlet to
outlet samples, the overall removal rate was 13.1%.

Discussion

It should be noticed that data on the water physicochemical
and biological (E. coli IDEXX) parameters was recently pub-
lished (Rachmadi et al. 2016). However, data included in the
present study was to gain insight of removal efficiency and co-
occurrence patterns between these parameters and ARGs.
During the 8 months sampling period, E. coli was found in
all water samples (24 samples) based on both IDEXX (culture
method) and molecular qPCR (molecular method) results
(Fig. S1; Table 2). Sweetwater Wetland water temperature
ranged from 11.5 to 30.9 °C (Table S1), and a significant
negative correlation (r = 0.64, p value < 0.01) was observed
between E. coli (IDEXX) concentration and water tempera-
ture (Fig. S2). E. coli is likely to survive and regrow in aquatic
environment (water and sediment) and can be affected by a
number of environmental factors, such as water temperature,
bacterial growth, sedimentation rate, and pollution sources
(Solo-Gabriele et al. 2000; Karimi et al. 2014; Morató et al.
2014; Howitt et al. 2014; Nguyen et al. 2015). There are
several reasons for this phenomenon: First, since we pooled
E. coli results from all sampling sites together, it is possible
that the reduction ofE. coli bywetland treatment was higher in
summer compared to winter due to different field condition in
different seasons (more plants in summer). Previous study
suggested that constructed wetlands with vegetation are more
effective in removal of bacteria than without the vegetation
(Maiga 2017); second, the E. coli concentration in Sweetwater
Wetland can be affected by its water source, since the receiv-
ing water is treated wastewater. Previous studies have demon-
strated that temperature is one of the most important factors
driving the microbial community composition in wastewater
treatment which will affect the bacterial removal rates
(Ebrahimi et al. 2010; Wang et al. 2014; Lu et al. 2015;
Meerbergen et al. 2016). In that case, higher temperature dur-
ing summer increased the E. coli removal rates which is also
observed in Fig. S1. In addition, pH has been studied exten-
sively and was suggested affect the growth of bacteria in wa-
ter, for example, microbes survive best at pH between 5.5 and
7.5 (McFeters and Stuart 1972; Blaustein et al. 2013).
Previous study suggested that increased pH is linked to higher
bacterial pathogen removal in constructed wetlands and that
most bacteria are sensitive to high pH levels (Maiga 2017).
The small change in pH among inlet, intermediate, and outlet

samples has an insignificant effect on the occurrence of
E. coli.

An interesting finding in the present study was that the
concentration of E. coli, enterococci, and HF183 genetic
markers decreased from inlet to intermediate and then in-
creased back from intermediate to outlet (Fig. 2). The reason
to explain this phenomenon was probably due to the fluctua-
tion of turbidity during the treatment process. Water turbidity
was found decreasing from inlet to intermediate, and then
increased from intermediate to outlet (Table S1). Significant
positive correlations between turbidity level and qPCR results
for E. coli and HF183 were observed (Fig. 3). Aweak positive
correlation between turbidity and enterococci was also ob-
served, even though it is not significant. The adsorption of
DNA molecules on sediments have been studied extensively
(Crecchio et al. 2005; Cai et al. 2006a, b; Yu et al. 2013; Xue
and Feng 2018). It is reasonable to assume that the increase of
water turbidity is a source of fecal indicator found in the water
column. Increasing evidence suggests that sediments serve as
a reservoir for pathogenic microorganisms of fecal origin
(Wheeler Alm et al. 2003; Badgley et al. 2010). However,
no significant correlation between turbidity and E. coli
(IDEXX) was found, as qPCR is capable of detecting DNA
from culturable cells, nonviable intact cells, viable but non-
culturable (VBNC) cells, and extracellular free DNA (Levy-
Booth et al. 2007; Rogers et al. 2011; Staley et al. 2012; Xue
et al. 2017). Given the fact that qPCR-based MST methods
target genetic materials rather than viable organisms, it is more
likely that sorption characteristics of DNA molecules may be
different compared with intact bacterial cells (Kim et al. 2011;
Staley et al. 2012; Shelton et al. 2014).

Previous study evaluated the effectiveness of constructed
wetland treatment on pathogen removal (Greenway 2005).
This wetland showed a 95% removal rate of pathogens and
fecal indicator organisms but also still contained fecal-
coliform concentrations in the final effluent. Other constructed
wetlands find that all pathogens are expected to be removed
but are highly variable on the physicochemical factors (Chen
et al. 2016; Le et al. 2016; Yi et al. 2017). The Sweetwater
Wetland also had similar findings, where the overall fecal
bacteria decreased, but was still prevalent in the final water
sample. These studies of constructed wetlands all suggest a
similar trend and efficacy of the wetland removal system:
while the outlet samples still contain some pathogen bacteria,
they are effective in reducing their concentrations. This could
be due to extraneous influences, such as temperature, vegeta-
tion, sunlight or precipitation, or alternatively, an impact from
high retention time to receive samples (Rachmadi et al. 2016).
The correlation between environmental factors and bacteria
removal efficiency have been studied. For instance, Karimi
et al.’s research observed a negative correlation between the
content of dissolved oxygen and microorganisms (Karimi
et al. 2014). However, our study did not observe any
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correlation between physicochemical parameters and the re-
moval effectiveness of the wetlands. It could possibly be due
to the limited sample size in the present study. Future research
is needed to look into the insight of the connection between
these parameters and the performance of SweetwaterWetland.

In addition, our results suggested that constructed wet-
lands are better at reducing enterococci concentrations than
the other two indicators. In comparison, enterococci con-
centrations decreased by 84.0%, whereas HF183 genetic
marker concentrations decreased by 66.6% and E. coli by
6.7%. The findings for HF183 are significant because this
marker is an indicator of fecal pollution which may pose
human health at risk due to the presence of enteric patho-
gens in fecal matter (Webster et al. 2013; Nayak et al. 2015).
Regulation for E. coli and enterococci in drinking water is
zero, so the prevalence of fecal indicator bacteria and
HF183 in the final outlet water sample is not safe to be
released to the public (EPA). As we mentioned previously,
the reduction of E. coli can be affected by a number of
environmental factors; we are not clear about why there
was such a minimal decrease in E. coli compared to the
other targets. Additionally, E. coli could have a slower de-
cay rate than HF183 and enterococci and therefore have a
higher prevalence than the other two indicators (Ahmed
et al. 2016).

The removal of ARGs by constructed wetlands has been
studied and results varied accordingly. The removal rates of
ARGs in Chen et al.’s study (2016) ranged from 50.0 to
85.8%. In comparison, the overall removal efficiencies of
ARGs in Yi et al.’s research varied significantly from −
145.6 to 98.9% depending on the type of gene (2017). It is
noteworthy that even after wastewater treatment process, sev-
eral ARGs were still found in final effluent at significant
higher concentration (103 copies/ml) (Vaz-Moreira et al.
2014; Le et al. 2018). The removal of ARGs in Sweetwater
Wetland is comparable to previous studies. Our results
showed that Sweetwater Wetlands are less efficient in remov-
ing ermF than intl1. For example, the ermF concentrations
were reduced by only 13.1% and intl1 markers had reached
a 67.2% decrease. Although previous study suggested that the
removal rates of ARGs in winter is higher than that in summer

(Fang et al. 2017), we did not observe such pattern in our
study due to the smaller sample size. However, we did observe
the highest concentrations of both ARGs in the months of
May and August, where water temperatures are higher
(Table 2).

The molecular methods are more accurate than culture-
based methods for detecting bacteria (Wade et al. 2010; Xue
et al. 2018b) and have been essential to our study at provid-
ing information about prevalence of ARGs. Interestingly,
we did not observe any correlation between qPCR and
IDEXX results for E. coli. The difference between IDEXX
and qPCR results reflects differences in natures of analyses
as well as differences in persistence of live E. coli compared
to DNA molecules in aquatic environment. As we men-
tioned before, qPCR is capable of detecting DNA from live
cells, VBNC cells, and extracellular free DNA. The poten-
tial of E. coli regrow in aquatic environment may also alter
the results. Previous studies have demonstrated that E. coli
are likely to survive and regrow in sediment (Desmarais
et al. 2002; Anderson et al. 2005). As the water level in
Sweetwater Wetland is shallow, we therefore assume turbu-
lences caused by water flow may resuspend sediments and
subsequently release E. coli from sediment. Another study
also suggests that when comparing E. coli concentrations
using IDEXX and qPCR methods, qPCR is the more suit-
able method to use due to the potential loss of E. coli cells
during sample processing while using the IDEXX method
(Noble et al. 2010).

Conclusions

In our study, we investigated the occurrence of fecal indicator
bacteria in the Sweetwater Wetlands, which allowed us to
compare the bacterial resistance in a constructed wetland after
wastewater treatment. Looking towards the qPCR results
when compared with the inlet samples, the outlet samples all
showed a decreased prevalence of bacteria. There is no corre-
lation between temperature and FIB. Turbidity affected our
qPCR results and had a positive correlation only to
Enterococcus, HF183, and E. coli. Overall reduction rates
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for intl1 and erm(F) were 67.2% and 13.1%, respectively.
E. coli rates decreased by 6.7% from inlet to outlet.
Enterococcus and HF183 decreased by 84.0% and 66.6%,
respectively. The prevalence of FIB even after treatment sug-
gests that there could be additional factors to resilience, such
as ARGs that should be further investigated to understand
completely. Future study is needed to explore the pattern of
removal efficiencies of ARGs and FIB throughout the entire
year. The findings of our study, however, are promising and
suggest that constructed wetlands are efficient in decreasing
ARGs and fecal indicator bacteria in the water.
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