
RESEARCH ARTICLE

Systematic study on the reduction efficiency of ascorbic acid
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Abstract
Selenate (Se(VI)) and selenite (Se(IV)) are common soluble wastewater pollutants in natural and anthropogenic systems. We
evaluated the reduction efficiency and removal of low (0.02 and 2 mg/L) and high (20 and 200 mg/L) Se(IV)(aq) and Se(VI)(aq)
concentrations to elemental (Se0) via the use of ascorbic acid (AA), thiourea (TH), and a 50–50% mixture. The reduction
efficiency of AA with Se(IV)(aq) to nano- and micro-crystalline Se0 was ≥ 95%, but ≤ 5% of Se(VI)(aq) was reduced to
Se(IV)(aq) with no Se0. Thiourea was able to reduce ≤ 75% of Se(IV)(aq) to bulk Se0 at lower concentrations but was more
effective (≥ 90%) at higher concentrations. Reduction of Se(VI)(aq)→Se (IV)(aq) with TH was ≤ 75% at trace concentrations
which steadily declined as the concentrations increased, and the products formed were elemental sulfur (S0) and SnSe8−n phases.
The reduction efficiency of Se(IV)(aq) to bulk Se

0 upon the addition of AA+TH was ≤ 81% at low concentrations and ≥ 90% at
higher concentrations. An inverse relation to what was observed with Se(IV)(aq) was found upon the addition of AA+TH with
Se(VI)(aq). At low Se(VI)(aq) concentrations, AA+TH was able to reduce more effectively (≤ 61%) Se(VI)(aq)→Se(IV)(aq)→Se0,
while at higher concentrations, it was ineffective (≤ 11%) and Se0, S0, and SnSe8−n formed. This work helps to guide the removal,
reduction effectiveness, and products formed from AA, TH, and a 50–50% mixture on Se(IV)(aq) and Se(VI)(aq) to Se0 under
acidic conditions and environmentally relevant concentrations possibly found in acidic natural waters, hydrometallurgical chlo-
ride processing operations, and acid mine drainage/acid rock drainage tailings.

Keywords Ascorbic acid . Thiourea . Selenium . Chloride . Reduction . Acidic ambient conditions

Introduction

Selenium is an essential trace element of life, whether it is
for animals or plants. Adequate amounts of selenium

participate in the antioxidant function of the body regulate
the metabolism of thyroid hormones as well as the immune
system, and promote the growth of plants (Goldhaber
2003; Lyubenova et al. 2015; Natasha et al. 2018; Ullal
et al. 2018). However, excessive amounts of selenium
can cause selenium poisoning and ultimately lead to death
(Greald et al. 1998; Rayman 2000; Taylor et al. 2009). In
nature and in the environment, selenium occurs in natural
geologic ore sources such as phosphate rocks, coal, and
black shales. Anthropogenic sources of selenium include
coal mining, phosphate mining, smelting of sulfide ores,
bitumen mining, coal-fired power plants, agriculture, glass
manufacturing, and light batteries (Yadak et al. 2005;
Wang et al. 2018; USEPA 2002; Qin et al. 2017a;
Favorito et al. 2017; Muscatello et al. 2008; Chappell
et al. 2014; Fernádez-Martínez and Charlet 2009;
Hamilton 2004; Tuzen and Sari 2010; Santos et al. 2015;
Wu 2004; Chapman et al. 2010). In natural and mining
waste water, typical emission concentrations of selenium

Responsible editor: Ioannis A. Katsoyiannis

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s11356-019-04383-z) contains supplementary
material, which is available to authorized users.

* Mario Alberto Gomez
mario.gomez@syuct.edu.cn

* Yongfeng Jia
yongfeng.jia@iae.ac.cn

1 Institute of Environment Protection, Shenyang University of
Chemical Technology, Shenyang 110142, China

2 Key Laboratory of Pollution Ecology and Environmental
Engineering, Institute of Applied Ecology, Chinese Academy of
Sciences, Shenyang 110016, China

Environmental Science and Pollution Research (2019) 26:10159–10173
https://doi.org/10.1007/s11356-019-04383-z

http://crossmark.crossref.org/dialog/?doi=10.1007/s11356-019-04383-z&domain=pdf
http://orcid.org/0000-0001-9247-2723
https://doi.org/10.1007/s11356-019-04383-z
mailto:mario.gomez@syuct.edu.cn
mailto:yongfeng.jia@iae.ac.cn


can range from 3 μg/L to 200 mg/L (Wasewar et al. 2009;
Lemly 2004; Khamkhash et al. 2017; USEPA 2002;
Twidwell et al. 2000; Kapoor et al. 1995; Sandy and
DiSante 2010; Geoffroy et al. 2008; Geoffroy 2011;
Benguerel et al. 2010; Monteith et al. 2000; Santos et al.
2015). In drinking water, the WHO and EPA have a set a
guideline of selenium content at 40 μg/L (WHO 2011) and
50 μg/L (USEPA 2009), while the European Union’s limit
is much lower at 10 μg/L (European Commission 1998).
The speciation of selenium in water systems is ruled by
redox conditions, pH, availability of sorbing surfaces,
and biological processes (Dinh et al. 2017; Santos et al.
2015; Estevez et al. 2014). In wastewater treatment, sele-
nite (Se(IV)) and selenate (Se(VI)) are the most common
soluble wastewater pollutants, while in natural water sys-
tems, selenate is dominant (McCloskey et al. 2008).

It is well known that selenite is easier to reduce than selenate
via abiotic or biotic means due to the fact the latter has a lower
reduction potential (Koyama et al. 2000; McCloskey et al.
2008). The use of many reducing agents such as such as zero-
valent iron (ZVI) (Yoon et al. 2016; Qin et al. 2017b; Koyama
et al. 2000), green rust (Pefait et al. 2000), FeS2 (Bruggeman
et al. 2005), Fe(OH)2 (Sandy and DiSante 2010), Fe(II)(aq)
(Sandy and DiSante 2010), humic acid (Peng and Xu 1987),
bacteria (Staicu et al. 2015; Kora and Rastogi 2016; Steinberg
and Oremland 1990; Oremland et al. 2004), Ni and Cu metal
(Sandy and DiSante 2010; Hall et al. 1980), Zn powder
(Marchant et al. 1978), CuCl (Misra and Tandon 1967), glucose
(Jain et al. 2016; De Coninck 1905), TiCl3 (Tomicek 1927),
SnCl2 (Geoffroy 2011), Na2S (Geoffroy et al. 2008; Geoffroy
2011), Na2S2O4 (Geoffroy et al. 2008; Geoffroy 2011),
carbohydrazide (Sandy and DiSante 2010), ascorbic acid
(Welna et al. 2014, 2017; Matos-Reyes et al. 2010; Pettine
2013; Shaker 1996; Hassan 1991), and thiourea (Welna et al.
2017; Zhang et al. 2011; Alía et al. 1999; Uggerud and Lund
1995; Qiu et al. 2006; Hollander and Yurii 1956) have been
documented to treat aqueous selenate and selenite synthetic and
industrial wastewater. Unfortunately, some of these reducing
agents have setbacks such as high operational or maintenance
cost, requirement of higher temperatures, poor efficiencies, and
solid-handling problems (e.g., CuCl, TiCl3, thiourea (TH),
ascorbic acid (AA), glucose, TiO2, SnCl2, Zn or Cu metal,
ZVI, green rust, bacteria, SnCl2), while in other cases, high
toxicity of the by-products or reductants themselves (e.g.,
Fe(OH)2, TiO2, carbohydrazide) has limited their applicability
(Sandy and DiSante 2010). Furthermore, some of the reducing
agents that have been demonstrated to work in laboratory or
industrial case studies such as bacteria (pH 6.5–9), Fe(OH)2
(pH 8–9), TiO2 (pH 3.5), carbohydrazide (pH 2–4), ZVI
(pH 4–9), Na2S (pH 2–7), Na2S2O4 (pH 2–3), and ascorbic acid
(pH 2–3.5) have optimal reduction pH ranges above 2, thus
limiting their use in highly acidic waste streams (Sandy and
DiSante 2010; Geoffroy et al. 2008).

The work of Shaker (1996) on the use of ascorbic acid to
reduce selenite to elemental selenium used concentrations that
were too high to be applicable to wastewater treatment, and
furthermore, the pH used was in the range of 2–3. Similarly,
other published works (Oremland et al. 2004; Pettine 2013) on
the use of ascorbic acid to reduce selenite to elemental seleni-
um have employed selenite concentrations that were too high
(e.g., 167 mM) or too low (e.g., 1 μM) to be applicable to
wastewater pollution. Currently, there exists no explicit pub-
lished literature on the effect of ascorbic acid to reduce sele-
nate to selenite to elemental selenium at ambient temperatures.
In the case of thiourea, limited work exists in the literature
(Qiu et al. 2006; Hollander and Yurii 1956) on its use as a
reductants for aqueous selenate or selenite reduction to ele-
mental selenium but often heating above ambient tempera-
tures is required and no insights into the formed phases has
ever been given. To the best of the authors’ knowledge, there
have been no systematic studies on the reduction efficiency of
aqueous selenate and selenite in chloride media to elemental
selenium (fairly insoluble and environmentally stable) nor de-
tailed characterization of the products formed using ascorbic
acid and thiourea under ambient highly acidic conditions (pH
< 1) and relevant wastewater concentrations.

Therefore, in our work, we systematically investigated
the reduction efficiency and kinetics of different percent-
ages of ascorbic acid, thiourea, as well as a 50–50% com-
bination of both with low (0.02 and 2 mg/L) to high (20
and 200 mg/L) concentrations of aqueous selenite and sel-
enate under highly acidic chloride media at different reac-
tions times. We further characterize solids generated from
high selenite and selenate aqueous concentrations via the
use of powder X-ray diffraction, ATR-FTIR, and Micro-
Raman to verify if the reduction reactions with ascorbic
acid, thiourea, and both had gone to completion (i.e.,
formed elemental selenium) or if some other undesired
compounds were produced (e.g., organo-selenite or sele-
nate, elemental sulfur (S0), and SnSe8−n).

Materials and methods

Chemicals

Stock solutions of 1 g/L Se(IV) and 1 g/L Se(VI) were pre-
pared by dissolving sodium selenite (Na2SeO3) and sodium
selenate (Na2SeO4) (98% purity, Shandong West Asia
Chemical Industry Co., Ltd.) in distilled water. Thiourea,
ascorbic acid (Tianjin Damao Chemical Reagent), and hydro-
chloric acid (Tianjin Fengchuan Chemical Reagent
Technology Co., Ltd.) used in this work were of analytical
grade. All glassware was soaked in 5% HNO3 for at least
one night before use and then washed with distilled water
three times.
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Analytical methods

Reactions of different reducing agents on aqueous Se(IV)
and Se(VI)

Batch experiments were used to study the reduction efficiency
of 0.02 mg/L, 2 mg/L, 20 mg/L, and 200 mg/L Se(IV)(aq), or
Se(VI) (aq) with 0.5%, 1%, 2%, and 5% of ascorbic acid,
thiourea, as well as a 50–50%mixture of both reducing agents
at 2, 6, 10, and 24 h. Our intent in combining both ascorbic
acid and thiourea in a 50–50% mixture was to increase the
reduction efficiency percentage; removal to the maximum
should both behave symbiotically. In our work, a strong acidic
environment was employed by using 1.2 M hydrochloric acid
solution at room temperature. The reason for using a chloride
media environment was that it is often found in coal-fired
power plant flue gas desulphurization influent and wastewa-
ter, secondary hydrocyclone overflow wastewater from bitu-
minous coal, iron, and steel wastewater, and other selenium
containing wastewater environments (Sandy and DiSante
2010; USEPA 2002). These selenium concentrations were
chosen because they cover a wide range of waste water con-
centrations (Khamkhash et al. 2017; USEPA 2002; Twidwell
et al. 2000; Sandy and DiSante 2010; Geoffroy 2011; Santos
et al. 2015). We chose these percentages of reducing agents
because we wanted to use as little as possible to keep their use
economical in comparison to others (e.g., SnCl2·2H2O, ZVI,
CuCl, NH2NH2 Na2S2O4). Sampling and analysis of the liq-
uid samples during were taken after 2, 6, 10, and 24 h. Finally,
in order to verify the nature of the reduced solids produced,
only the reduction reaction using 5% reducing agents and
200 mg/L selenite or selenate for 24 h was used as other
conditions produced insufficient amount of solids (< 1 mg)
for characterization. The reduction solids were obtained by
centrifugation, dried naturally in air, and then grinded for
characterization.

Liquid analysis methods and characterization of solids

Liquid analysis was conducted on a HG-AFS model SK-
2003A two-channel, non-dispersive atomic fluorescence spec-
trometer (Beijing, Jinsuokun Technology Developing Co.,
LTD) equipped with a Se hollow cathode lamp (Beijing
Shuguangming Electronic Lighting Instrument Co., LTD).
The operating parameters used was a high-voltage PMT oper-
ating at 260 V, a lamp current of 60 mA, and an Ar carrier and
shield flow rate of 600 mL/min and 800 mL/min, respectively.
The atomizer temperature used was 400 °C with an atomizer
height of 8 mm. The concentrations of KBH4 and KOH used
were 1.5% (w/v) and 0.5% (w/v), and our carrier liquid was
1.2 M HCl. The instrumental and our method of detection limit
were 0.01 μg/L and < 0.1 ng/g (Welna et al. 2017). In our case,
the amount of aqueous Se(VI) in solution was determined by

reducing it to Se(IV)(aq) in a water bath and heating it with 6 M
HCl at 95 °C for 30 min. The fluorescence intensity was < 300
counts in comparison to the blank solution when the Se(IV)(aq)
was zero (Tables S1–S3 and Figs. S1–S3). All solution data
presented (Figs. 1, 2, and 3 and Tables S1–S3) are averages
of ≥ 2 reproducible tests with a standard deviation ≤ 10%.

The powder XRD analysis was performed with a Bruker
D8 advanced diffractometer, a copper target (Cu-Kα λ =
1.5406 Å), a monochromator composed of a graphite crystal,
and a scintillator detector. The diffractometer used 40 kVand
40 mA. The scans were recorded between 5 and 90° 2θwith a
0.02° step size and an acquisition time of 0.2 s/step.

ATR-FTIR measurements were collected with a Nicolet
6700 Fourier Transform Infrared Spectrometer (FTIR
Spectrometer) from Thermo Fisher using a MIRacle single
bounce diamond ATR cell from PIKE Technologies. IR spec-
tra was collected over the 4000–400 cm−1 range via the co-
addition of 64 scans and with a resolution of 4 cm−1.

Raman Microscopy was conducted on a Thermo Fisher
DXR model using the 50× short distance objective and a po-
larized argon laser operating at 780 nm and 10% of the laser
power at the microscope exit. An average of 10 scans was
obtained from 3300 to 60 cm−1 to improve the resolution
and the statistics of the collection.

Transmission electron microscopy (TEM) imaging and
energy dispersive X-ray analysis (EDX) were conducted
on selected particles using a Philips CM-200 microscope
operating at 200 kV. The samples were prepared by
dropping dilute solutions of the particles in ethanol onto
300-mesh carbon-coated copper grids and evaporating the
solvent to dryness before inserting them into the sample
holder and vacuum chamber.

Results and discussion

In our work, HG-AFS was employed to detect the different
amounts of Se(IV)(aq) and Se(VI)(aq) as a function of different
concentrations of the reducing agents and time (Figs. S1–S3
and Tables S1–S3). Se(IV)(aq) was able to be detected without
the addition of any reducing agents at all times, and the mea-
sured concentrations were close to the theoretical values.
However, in the case of Se(VI) (aq), without the addition of
reducing agents, the fluorescence intensity and measured con-
centrations were close to the blank as expected.

The influence of ascorbic acid on the reduction
of Se(IV) and Se(VI)

In the case of aqueous Se(IV) at a trace level of 0.02 mg/L
(Fig. 1), it can be observed that a rapid decline in fluores-
cence intensity near that of the blank solution (Table S1
and Fig. S1) was observed at all reaction times investigated
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and all percentages of ascorbic acid added. The amount of
reduction from Se(IV)(aq) to Se0 was initially observed to
be ~ 98% after 2 h of reaction time which then decreased to
~ 96% as time increased from 6 to 24 h at all percentages of
ascorbic acid added (Fig. 1 and Table S1). At 2 mg/L
Se(IV)(aq) (Fig. 1 and Table S1), the decline in fluorescence
intensity was gradual with an increase in reaction time
from 2 to 24 h (Fig. S1) and the reduction efficiency ob-
served followed (Fig. 1 and Table S1) at all percentages of
ascorbic acid added. That is to say, lower reaction times (2,
6 h) gave reduction efficiencies of ~ 98% while those at
longer times (10, 24 h) increased to ~ 99% for all percent-
ages of ascorbic acid added. Increasing the Se(IV)(aq) con-
centration to 20 mg/L (Fig. 1 and Table S1) showed an
even slower gradual decrease in fluorescence intensity
(Fig. S1) with an increasing reaction time at all percentages
of ascorbic acid added, but in this case, the reduction effi-
ciency (Fig. 1 and Table S1) did not follow it in a similar
manner as that observed for the 2 mg/L tests. In this case,
after 2 h of reaction time, we observed a reduction efficien-
cy of ~ 97% which only slightly increased to ~ 98% after
6 h and then on forward for all percentages of ascorbic acid
added. Finally, at the highest concentration used of
200 mg/L Se(IV)(aq), the fluorescence intensity showed a
gradual decrease with reaction time (Fig. S1) for all

percentages of ascorbic acid added which was similar to
that observed at 2 mg/L. The reduction efficiency (Fig. 1
and Table S1) in this case did not follow the fluorescence
intensity behavior. In general, we observed that after 2–6 h,
~ 99% of the Se(IV)(aq) had been reduced which then
slightly decreased to ~ 98% after 10 h and finally increased
to 100% after 24 h for all percentages of ascorbic acid
added. In this case (similar to that at 2, 20 mg/L), the full
reduction took a bit more time in comparison to that at
0.02 mg/L due to the fact that, at higher concentrations,
more Se(IV)(aq) ions were found in solution which needed
more time to be effectively reduced from Se(IV)(aq) to Se0.
Furthermore, at these high Se(IV)(aq) concentrations, a
clear solution and large amounts of brick red precipitates
(Levine 1934) (Fig. S4) were observed at all reaction times
and percentages of ascorbic acid added; the nature of
which will be discussed in BSolid analysis of reduction
precipitates from 200 mg/L aqueous se(IV) and se(VI),
24 h, and 5% reducing agents.^

For aqueous Se(VI), the fluorescence intensities (Fig. S1
and Table S1) for all tested aqueous Se(VI) concentrations at
all times with all percentages of added ascorbic acid were
close to that of the blank solution except for the 200 mg/L
tests. Consequently, it indicates that only a small portion of the
aqueous Se(VI) had been reduced to Se(IV)(aq). At trace levels

Fig. 1 Reduction efficiency percentage as a function of reaction time and% ascorbic acid added on various concentrations of aqueous Se(IV) and Se(VI)
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of aqueous Se(VI) (Fig. 1 and Table S1), namely, 0.02 mg/L,
≤ 0.5%was reduced to Se(IV)(aq) after 2 h of reaction time and
only a maximum of 2.7–4.6% was converted to Se(IV)(aq)
after 6–24 h at all percentages of ascorbic acid added. When
2 mg/L of Se(VI)(aq) was added to the solution (Fig. 1 and
Table S1), ≤ 0.5% of it was converted to Se(IV)(aq) at all per-
centages of ascorbic acid added and all reaction times. In this
case, a small correlation between percentage of ascorbic acid
added and the amount of reduced Se(IV)(aq) was observed at
2–6 h. We observed that as we increased the percentage of
ascorbic acid added to the Se(VI)(aq), the lower the reduction
efficiency in solution and the less the amount of Se(IV)(aq) that
was detected. At 20 mg/L of aqueous Se(VI), the reduction
efficiency was observed to be ≤ 0.2% at all percentages of
ascorbic acid added and all reaction times. This was similar
to what was observed at 2 mg/L thus indicating that the reduc-
tion of Se(VI)(aq)→Se(IV)(aq) was very small in comparison to
what was observed at 0.02 mg/L. However, in this case, the
reduction efficiencies remained fairly constant as the percent-
age of ascorbic acid increased for all reaction times tested. At
the highest concentrations used (200 mg/L of Se(VI)(aq)), the
reduction efficiency to Se(IV)(aq) decreased from 2% after 2 h
to 0% after 24 h at all percentages of ascorbic acid added.
Accordingly, it indicates that longer reaction times were not
favorable for the reduction of Se(VI)(aq)→Se(IV)(aq). In this
case, the reacting solutions remained largely clear/transparent

for all percentages of ascorbic acid added at all reaction times
(Fig. S4) and no solids were precipitated. This is unlike that of
the Se(IV)(aq) case in which a clear solution and red precipi-
tates were observed.

The influence of thiourea on the reduction of aqueous
Se(IV) and Se(VI)

The fluorescence intensity of aqueous Se(IV) at trace levels
(0.02 mg/L) was observed to decrease as the amount of thio-
urea added and reaction time was increased (Fig. S2 and
Table S2). This is in contrast to what was observed at the same
Se(IV)(aq) concentration with ascorbic acid (Fig. S1 and
Table S1) and is indicative that a greater portion of the aque-
ous Se(IV) remained in solution and was not reduced to Se0

with thiourea. In general, it can be observed (Fig. 2 and
Table S2) that as the amount of thiourea added and time in-
creased, the percentage of reduction efficiency from aqueous
Se(IV) to Se0 increased ranging from 46 to 77% after 2–24 h
and 0.5–5% thiourea added. For the 2 mg/L case, the fluores-
cence intensity increased to a lower degree (Fig. S2 and
Table S2) (in comparison to that of trace level Se(IV)(aq)) as
the amount of thiourea added increased, but again, it was in
contrast to what was observed at the same concentrations with
ascorbic acid. Thus again, it indicates that a larger portion of
the aqueous Se(IV) remained in solution and was not reduced
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to Se0 relative to the ascorbic acid experiments. Herein, the
majority of the percent reduced Se(IV)(aq) efficiency occurred
between 0.5–1.0% added thiourea ranging from 66 to 75% at
2–24 h after which it decreased to ~ 62% as the amount of
thiourea added increased for all reaction times. At 20 mg/L
aqueous Se(IV), the fluorescence intensity (Fig. S2 and
Table S2) resembled a parabolic type of behavior that de-
creased lower in intensity with longer reaction times. In this
case, no evident correlation with the amount of reduction per-
centage efficiency was observed at all reaction times as the
amount of percent thiourea added increased as was observed
at 0.02 and 2 mg/L. However, as the reaction time increased
from 2 to 24 h, the amount of percent reduced aqueous Se(IV)
to Se0 increased from ~ 89–93% for all percentages of thio-
urea added. Finally, at the highest concentration of 200 mg/L
aqueous Se(IV) tested, we could observe that the fluorescence
intensity (Fig. S2 and Table S2) resembled again a parabolic
type of behavior observed at 20 mg/L but was in contrast to
what was observed for the ascorbic acid case (Fig. S1). Here,
we measured an increase in reduction efficiency (Fig. 2 and
Table S2) of Se(IV)(aq)→Se0 from 96 to 98% as the amount of
thiourea increased from 0.5–2.0% and 2–24 h. After which, it
converged to ~ 97% at 5% thiourea added and all reaction
times. It is worth to note to the reader that, at this high

concentration of aqueous Se(IV), the reacting solutions turned
clear with a red precipitate forming (Fig. S5) whose identity
will be discussed in BSolid analysis of reduction precipitates
from 200 mg/L aqueous se(IV) and se(VI), 24 h, and 5%
reducing agents.^

In the case of aqueous Se(VI), the fluorescence intensity
(Fig. S2 and Table S2) for all tested Se(VI) concentrations and
percentages of thiourea added were not near the blank solution
as observed in the ascorbic acid case. Instead, they increased
in intensity as the amount of added thiourea increased. Thus, it
indicates that in this case, a larger portion of the Se(VI)(aq) had
been reduced to Se(IV)(aq) in comparison to the ascorbic acid
experiments. At the lowest concentrations of Se(VI)(aq) tested
(0.02 mg/L), the fluorescence intensity (Fig. S2 and Table S2),
as well as the reduction efficiency (Fig. 2 and Table S2), in-
creased with the added amount of percent thiourea from 14 to
74% between 2 and 24 h. It is worth to note that in this case, a
longer reaction times caused a decrease in reduction efficiency
where the maximum reduction efficiency occurred after 2 h.
At 2 mg/L Se(VI)(aq), we observed the fluorescence intensity
(Fig. S2 and Table S2) as well as the reduction percentage
efficiency (Fig. 2 and Table S2) increase with the added
amount of percentage thiourea from 11 to 29% between 2
and 24 h. However, in this case, we observed that longer
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reaction times had a positive effect on the reduction efficiency
as the largest reduction occurred after 24 h. Once 20 mg/L of
Se(VI)(aq) was tested, again, a similar trend was observed as
that which was observed at 0.02 mg/L. The fluorescence in-
tensity (Fig. S2 and Table S2) as well as the reduction effi-
ciency percentage (Fig. 2 and Table S2) increased with per-
centage thiourea added from 5 to 12% after 2–24 h. Again,
here, we observed that longer reaction times larger than 2 h
had a negative effect on the reduction efficiency as the max-
imum efficiency occurred after 2 h of reaction time. Finally, at
the largest Se(VI)(aq) tested (i.e., 200 mg/L), we observed a
fluorescence intensity and reduction efficiency behavior sim-
ilar to what was observed at 2 mg/L. Namely, the fluorescence
intensity and reduction efficiency increased with the amount
of percent thiourea added from 2 to 4% between 2 and 24 h.
Again, longer reaction times had a positive effect on the re-
duction efficiency as the largest efficiencies occurred after
10 h of reaction time. In this case, unlike that of ascorbic acid
at the same Se(VI)(aq) concentrations, the solution turned from
clear to a yellow-orange like precipitate (Fig. S5) whose iden-
tity will be discussed in more detail in BSolid analysis of
reduction precipitates from 200 mg/L aqueous se(IV) and
se(VI), 24 h, and 5% reducing agents.^

The influence of both ascorbic acid and thiourea
on the reduction of aqueous Se(IV) and Se(VI)

Our intent in combining both ascorbic acid and thiourea in a
50–50% mixture was to increase the reduction efficiency per-
centage to the maximum amount possible should both reduc-
ing agents behave in concerto. However, our results showed
some peculiar solution behavior as discussed below.

For aqueous Se(IV) at 0.02 mg/L, the fluorescence inten-
sity (Fig. S3 and Table S3) behaved like that of thiourea alone
and not ascorbic acid nor a combination of both. The reduc-
tion efficiency percentage (Fig. 3 and Table S3) behavior was
only slightly similar to thiourea. Regardless, a similar portion
of the Se(IV)(aq) remained in solution as was observed in the
thiourea case. In general, we observed that as the amount of
AA+TH added increased at shorter reaction times (2 and 6 h),
the reduction efficiency ranged from 42 to 60%, while at lon-
ger reaction times (10 and 24 h), the reduction efficiencies
decreased from 72 to 41%. In this case, the combination of
AA+TH gave similar reduction efficiency percentages as was
observed for the isolated thiourea experiments. At 2 mg/L
Se(IV)(aq), the fluorescence intensity (Fig. S3 and Table S3)
and the reduction percentage behavior (Fig. 3) resembled the
thiourea tests. In this case, we detected that the more AA+TH
that was added, the reduction efficiency percentage decreased
from ~ 81–66% for all reaction times. In here, it was again
observed that longer reaction times generally had a positive
effect on the reduction efficiency by increasing it. This latter
fact is something that was not so clearly observed at the same

Se(IV)(aq) concentrations with the use of thiourea alone.
Interestingly, the combination of AA+TH did increase the
overall percentage of Se(IV)(aq) reduced in comparison to thio-
urea alone but was lower than that of ascorbic acid (Figs. 1, 2,
and 3 and Tables S1–S3). Using 20 mg/L Se(IV)(aq), we could
observe that the fluorescence intensity (Fig. S3) behaved like
it was observed for the thiourea case and the reduction effi-
ciency percentage behavior (Fig. 3) was unlike that of the
ascorbic acid nor thiourea. In general, we measured that as
the amount AA+TH increased from 0.5–5%, the lower the
reduction efficiency percentage of Se(IV)(aq) to Se0 ranging
from 96 to 90% at all reaction times. Furthermore, here, we
observed that the longer the reaction time, the higher the re-
ducing efficiency obtained at all percentages of AA+TH
added. The combination of AA+TH showed slightly higher
efficiencies than the thiourea case alone but was still lower
than ascorbic acid. At the highest concentration of Se(IV)(aq)
used (i.e., 200 mg/L), the fluorescence intensity (Fig. S3) be-
havior was unlike that of thiourea but resembled that of ascor-
bic acid with the exception that the kinetics were much slower
with time. Interestingly, the reduction efficiency behavior
(Fig. 3) was only slightly similar to that of thiourea and unlike
that of ascorbic acid. This latter fact shows an important be-
havior that should be considered; although, the fluorescence
intensity profile showed one type of behavior, the reduction
efficiency does not always follow the same trend. In this case,
as the amount of AA+TH added increased at shorter reaction
times (2 and 6 h), the higher the reduction efficiency that was
measured from Se(IV)(aq)→Se0, while at longer reaction
times, the efficiency remained constant. In general, a range
between 97 and 100% reduction of Se(IV)(aq) to Se0 was ob-
served for the tested conditions. The combination of AA+TH
at such high Se(IV)(aq) concentrations was similar to both
ascorbic acid and thiourea tests alone and did not show any
significant increase in reduction efficiency. In this case, upon
the reduction of 200 mg/L Se(IV)(aq), the solutions were trans-
parent with red precipitates at the bottom (Fig. S6) whose
identity will be discussed in BSolid analysis of reduction pre-
cipitates from 200 mg/L aqueous se(IV) and se(VI), 24 h, and
5% reducing agents.^ It is worth to note that we can hypoth-
esize that the reason why lower reduction efficiencies (≤ 81%)
were observed at Se(IV)(aq) concentrations (0.02 and 2 mg/L)
with AA+TH may be a result of the fact that, at these concen-
trations, the reduction efficiency percentage quantity behaved
like TH for which the amount of reduction efficiency percent-
age was always ≤ 81% (Fig. 2). This lower reduction percent-
age observed for TH maybe a result of the fact that it has been
documented that, upon its reaction with Se(IV)(aq), it may
form [NH2-C(NH)-S-Se-S-(NH)C-NH2] complexes which
may inhibit to some degree its full reduction to Se0. Higher
reduction efficiencies (≥ 90%) were observed at higher
Se(IV)(aq) concentrations (20 and 200mg/L) upon the addition
of AA+TH likely due to the fact that the system had
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contributions from both components (i.e., AA and TH) for
which their individual reduction efficiencies were always ≥
90% (Figs. 1 and 2).

In the case of aqueous Se(VI) at trace concentrations
(0.02 mg/L), the fluorescence intensity (Fig. S3) and the re-
duction percentage efficiency (Fig. 3) were like that of thio-
urea as we observed an increase in reduction efficiency per-
centage of Se(VI)(aq) to Se(IV)(aq) from 12 to 61% as the
amount of AA+TH increased. However, unlike that of thio-
urea alone (Fig. 2), upon the increase of time, the reduction
percent efficiency increased at all percentages of AA+TH
added (Fig. 3). Furthermore, the combination of AA+TH re-
sulted in a slight decrease in comparison to thiourea alone but
was still much higher in comparison to ascorbic acid
(Tables S1–S3 and Figs. S1–S3). A similar trend was ob-
served at 2 mg/L Se(VI)(aq) where the fluorescence intensity,
and the reduction efficiency percentage were like that of the
isolated thiourea case (Figs. 2 and 3 and Figs. S2–S3).
However, in this case, unlike the thiourea tests, we observed
the reduction efficiency percentage decrease from Se(VI)(aq)
to Se(IV)(aq) with time from 40 to 11% as the amount of AA+
TH added increased (Figs. 2 and 3 and Tables S2–S3). Here,
an increase in the reduction efficiency percentage of Se(VI)(aq)
to Se(IV)(aq) was observed upon the addition AA+TH in com-
parison to thiourea alone. Interestingly, upon the addition of
20 mg/L Se(VI)(aq), the fluorescence intensity and the reduc-
tion efficiency percentage resembled that of thiourea. In gen-
eral, after the addition of 20 mg/L of Se(VI)(aq), the reduction
efficiency percentage decreased from 11 to 4% with longer
reaction times at all percentages of AA+TH added. Little to
no correlation with an increase in percent of AA+TH added
and reduction efficiency was observed for all reaction times
tested. In this case, we observed a slight decrease in the reduc-
tion efficiency upon the combination of AA+TH in compari-
son to thiourea alone, but it was still much higher than the
ascorbic acid experiments (Figs. 1, 2, and 3 and Tables S1–
S3). Finally, at the highest Se(VI)(aq) concentration used (i.e.,
200 mg/L), a similar behavior was observed as previously
described at 20 mg/L Se(VI)(aq). The fluorescence intensity
and reduction efficiency (Fig. 3 and Fig. S3) profiles were
similar to that of thiourea with the exception that the highest
intensity, as well as the reduction efficiency (2.7%), was ob-
served for the shortest reaction time of 2 h which then de-
creased with time (1.7%) as the amount of AA+TH increased.
This behavior was the inverse of what was observed for thio-
urea alone, thus indicating that longer reaction times were
unfavorable in converting Se(VI)(aq)→Se(IV)(aq) as the
amount of AA+TH added increased. The addition of AA+
TH resulted in slightly lower reduction percentage efficiencies
in comparison to that of thiourea alone but were still higher
than those observed for ascorbic acid (Figs. 1, 2, and 3 and
Tables S1–S3). It is worth to note that upon the reduction of
200 mg/L Se(VI)(aq), the reacting solutions had a slightly

orange tint with reddish-orange solid precipitates forming
(Fig. S6); the characteristics of which will be discussed in
BSolid analysis of reduction precipitates from 200 mg/L aque-
ous se(IV) and se(VI), 24 h, and 5% reducing agents.^

Solid analysis of reduction precipitates from 200mg/L
aqueous Se(IV) and Se(VI), 24 h, and 5% reducing
agents

In order to confirm the nature of the solids precipitated in our
reactions, we decided to analyze them at the structural and
molecular level to observe if indeed the majority of the pre-
cipitated reduction products formed were that of elemental
selenium (Se0) as desired. However, as previously noted, only
solids at 200 mg/L Se(VI)(aq)/Se(IV)(aq) with 5% added reduc-
ing agent(s) and 24 h of reaction time produced enough mass
of the solids to conduct characterization analysis. The only
exception has been Se(VI)(aq) with ascorbic acid which pro-
duced no solid precipitates due to the low amount of reduc-
tion. The XRD, Micro-Raman, and ATR-IR of reference com-
pounds (Se0, S0, ascorbic acid, and thiourea), our reacted sam-
ples and their assignments are shown in Figs. 4, 5, and 6 and
Figs. S7–S9 and Tables S4–S6.

In the case of Se(IV)(aq) with ascorbic acid, the Raman
spectra (Fig. 4) showed characteristics of Se–Se stretches
but shifted to higher energy (~ 247 cm−1) and with a
broader full width at half max (FWHM) in comparison to
the standard elemental Se0. The latter characteristic (broad
FWHM) can be reasoned as a result of the fact that the
generated Se0 took a nano-crystalline (Hemalatha et al.
2014) or a semi-crystalline type of form. The shift to
higher energy may be attributed to some interactions
(e.g., strain/distortion) occurring between the Se–Se bonds
and/or lattices domains or due to a nano-crystalline nature
or due to the fact that it may have formed the less common
Se6 structures as observed by Oremland et al. (2004) who
observed shifts to higher energies (~ 241 and 244 cm−1) for
the main scattering peak. Our Raman observations are in
agreement with the work of Ezhuthupurakkal et al. (2017)
who also observed a similar Raman band at ~ 250 cm−1

which they attributed to be from a nano-crystalline trigonal
Se0 phase. To further verify the nano-crystalline nature of
the Se0 nano-particles inferred to be observed from the
Raman data, additional TEM analysis was undertaken.
From the TEM images (Fig. 5 and Fig. S7), we confirmed
that indeed the Se0 particles formed were composed of
nano-crystalline agglomerates (50–100 nm) that formed
micron size spherical particles (1–2 μm) out of which
sharp shaped needles (1.5–1.6 μm) grew. Furthermore, in
addition to the well-ordered lattice fringes from the (010)
at 3.8 Å and (012) at 2.1 Å, we observed a small domain of
lattice fringes with spacing’s of 4.1 Å (unindexed based on
Se0 crystallographic data) as well as distorted lattice fringe
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domains which likely contributed the observed shifts to
higher energies observed in the Raman spectra (Fig. 4).
From the XRD data (Fig. 4), no distinct crystalline peaks
were observed from Se0 but rather two broad peaks at
29.5° and 51.8° and a crystalline peak at 34.6° were ob-
served. The XRD results are in agreement with the Raman
and TEM data indicating that the produced Se0 was com-
posed of a nano-crystalline nature as observed in the work
of Ezhuthupurakkal et al. (2017) but also some micro-
crystalline component. The ATR-IR spectra (Fig. 6) indi-
cated some ascorbic acid had re-precipitated but based on
the positions as well as the symmetry of the major bands/
functional groups (Table S6) of the pure ascorbic acid, and
the re-precipitated ascorbic acid, we can infer that no
chemical bonding interactions occurred between the
nano- nor micro-crystalline Se0 and the re-precipitated
ascorbic acid. Therefore, it indicates that the Se0 precipi-
tated as an independent phase.

As we hypothesized from the red color of the solid, in the
case of Se(IV)(aq) with thiourea alone, the Raman spectra (Fig.
4) showed only characteristic Se–Se stretches at 233 cm−1

typical of Se0 with no characteristic bands from SnSe8−n com-
pounds nor that of elemental sulfur (S0) (Alía et al. 1999;
Ward 1968; Laitnen and Steudel 1980). Similarly, the XRD
(Fig. 4) showed all major diffraction planes belonged to that of
pure hexagonal Se0 with no major traces of impurities.
Interestingly, the ATR-IR spectra (Fig. 6) again showed that
some residual amount of thiourea had re-precipitated from
solution but based on the major bands/functional group posi-
tions, the interaction between the Se0 and thiourea were purely
physical (i.e., they both co-precipitated as separate phases).
This latter fact has interesting implications in the fact that
the re-precipitated thiourea could be separated, recycled, and
reused for further Se(IV)(aq) reduction. However, in our work,
the latter implication was not tested as it was out of the scope
of the current work.

For tests conductedwith AA+TH and Se(IV)(aq), the Raman
spectra (Fig. 4) showed a clear Se–Se vibrational structure at
232 cm−1 typical of Se0 with no indications of SnSe8−n and
elemental sulfur (Alía et al. 1999; Ward 1968; Laitnen and
Steudel 1980). In agreement, the XRD data (Fig. 4) showed
only the presence of pure hexagonal Se0 with no major traces
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of impurities. The ATR-IR data showed that a mixture of AA+
TH re-precipitated (Fig. 6), but again, the formation of the
latter is independent of the formation of Se0.

The reduction of Se(VI)(aq) with ascorbic acid showed that
no solids formed due to the low reduction efficiency percent-
age observed from Se(VI)(aq) to Se(IV)(aq).We reasoned this to
be a result of the fact that perhaps, in this case, some insoluble

Se(VI)-AA complexes formed which were not favorable to
precipitate under the reacting conditions used or that the re-
duction reaction is extremely slow under acidic conditions.

In the case of Se(VI)(aq) with thiourea, the Raman spectra
(Fig. 4, Fig. S8) showed no distinct Se0 stretches between 233
and 245 cm−1 but rather the appearance of S–S stretches at
147, 212 and 469 cm−1 from elemental sulfur (Ward 1968) as

99.5nm 

Fig. 5 TEM images of Se0

produced with 200 mg/L
Se(IV)(aq), 24 h, and 5% AA. The
particles are observed to be
composed of nano-crystalline-
agglomerated particles that form
micron-sized sphere-shaped
particles out of which sharp
needles are formed
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well as that of Se–S vibrations from SnSe8−n compounds be-
tween 260 and 433 cm−1 (Alía et al. 1999;Ward 1968; Laitnen
and Steudel 1980). Our Raman analysis is in agreement with
the fact that we observed yellow-orange precipitates upon the
addition of thiourea. The XRD analysis (Fig. 4, Fig. S8) again
showed no presence of Se0 and was dominated by S0, in
agreement with our Raman analysis. In this case, no thiourea
was re-precipitated out of solution as observed from the ATR-
IR data (Fig. 6).

Finally, reduction of Se(VI)(aq) with AA+TH gave
Raman spectra (Fig. 4, Fig. S9) that showed the presence
of Se–Se stretches (Se0) at 232 cm−1 as well as that of S–S
stretches (S0) at 462 cm−1 and Se–S vibrations from SnSe8
−n type of compounds between 249 and 350 cm−1 (Alía
et al. 1999; Ward 1968; Laitnen and Steudel 1980). The
vibrational analysis was again in agreement with the fact
that a reddish-orange type of solids formed upon the addi-
tion of AA+TH. The XRD data (Fig. 4, Fig. S9) showed
only the presence of Se0 with no clear indication of a major
percentage of S0 as was observed in the thiourea alone
experiment. Hence, it indicates that the amount of S0 was
not significant. The ATR-IR data (Fig. 6) showed that only
a small amount of thiourea had re-precipitated from solu-
tion with no clear signs of ascorbic acid.

Environmental implications

In natural water such as aquifers, crater lakes and hot springs
in active geothermal areas sources from magmatic gases can
contribute HCl, HF, and H2SO4 which will cause extreme
acidic conditions (pH ≤ 1) (Nordstrom et al. 2000) where nat-
ural contaminants in the form of aqueous selenium in various
oxidation states maybe present and may have detrimental ef-
fects to the surrounding environment and natural wild life.

Similarly, aqueous selenium in various oxidation states is a
common unwanted impurity that must be removed in numer-
ous mining industries (e.g., Zn, Ni, Pb, Cu refineries, U, Au,
and Ag acid leaching of ores as well as coal mining opera-
tions) for which a highly acidic chloride environment (pH ≤
1) may be present as a result of the hydrometallurgical chlo-
ride (Winand 1991; Adams 2016) technology used (e.g.,
CESL process (Mayhew et al. 2013), Hydrocopper™
(Hyvarinen et al. 2004), Kell Process (Lidell and Adams
2012), Intec/N-chlo process (Severs 1999; Moyes 1999),
Neomet gold process (Harris and White 2011a, b), ZINCEX
process (Winand 1991), ELKEN-Falconbridge process
(Winand 1991), ORTECH Inc. processes (Winand 1991)),
or from chloride-containing mineral sources present in the
original ore or concentrate.
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Furthermore, acid mine drainage (AMD) and acid rock
drainage (ARD) from mine waste rock dump tailings or coal
spoils (Egiebor and Oni 2007; Gray 1996; Sandy and DiSante
2010; Banks and Banks 2001; Johnson and Hallberg 2005)
may contain highly acidic (pH ≤ 1) chloride environments
where unwanted aqueous selenium in various oxidation states
leaching from the waste tailings may occur and cause harm to
the surrounding natural water and its organisms present.

As can be observed from the extensive literature reviews on
selenium treatment technologies (Sandy and DiSante 2010;
Khamkhash et al. 2017; Santos et al. 2015) for natural and
anthropogenic contaminated water systems as well as our
own comparison (Table 1), there exists a lack of application
method(s) to treat aqueous selenium in various oxidation states
in-situ without neutralization for highly acidic (pH ≤ 1) water
systems that may be dominated in chloride environments.
Therefore, our research presented in this work provides an
alternative practical inexpensive method to remediated
Se(IV)(aq) and Se(IV)(aq) in situ without the need for neutrali-
zation at ambient conditions under highly acidic (pH ≤ 1) chlo-
ride environments which may be observed in natural, hydro-
metallurgical processing operations and AMD/ARD tailings.

A limitation of this study is the fact that the presence of
H2SO4 which is quite common in natural, hydrometallurgical
processing as well as AMD/ARD environments was not in-
cluded as a result of the fact it was out of the scope of this
study. Therefore, future studies to investigate the effectiveness
of AA, TH, and AA+TH in reducing Se(IV)(aq) and Se(IV)(aq)
to Se0 in the presence of both HCl and H2SO4 will be under-
taken as limited (TH with Se(IV)(aq) (Hollander and Yurii
1956)) or no studies exist on this matter.

Conclusion

In this work, we investigated the reduction efficiency of ascor-
bic acid, thiourea, and a 50–50% mixture of low to high con-
centrations of Se(VI)(aq) and Se(IV)(aq) to form Se0 as a func-
tion of time, percent reductant added, and ambient highly
acidic chloride media. Based on our experimental data and
results, the following conclusions can be made:

& Ascorbic acid was able to reduce ≥ 95% of Se(IV)(aq) to
nano- and micro-crystalline Se0 under all reaction condi-
tions tested and thus maybe used to treat highly acidic
chloride-containing waste water under ambient conditions
in a wide range of Se(IV)(aq) concentrations quickly and
effectively. In contrast, ≤ 5% of Se(VI)(aq) was reduced to
Se(IV)(aq) with no evidence of Se0 solids which has been
produced under all reaction conditions tested.

& The effectiveness of thiourea to reduce Se(IV)(aq) to bulk
Se0 was ≤ 75% at low Se(IV)(aq) concentrations (0.02 and
2 mg/L) and ≥ 90% at higher concentrations (20 and

200 mg/L) at all percentages of thiourea added and all
reaction times tested. Thus, its use is only recommended
at higher Se(IV)(aq) concentrations. Thiourea reduced ≤
75% of Se(VI)(aq)→Se(IV)(aq) at 0.02 mg/L concentrations
which steadily dropped to ≤ 29%, 12%, 3% at 2 mg/L,
20 mg/L, and 200 mg/L at all reaction times and percent-
ages of thiourea added. In this case, mixtures of S0 and
SnSe8−n products were formed with no evidence of Se0.

& The combination of AA+TH was able to reduce ≤ 80% of
Se(IV)(aq) to bulk Se0 at low concentrations (0.02 and
2 mg/L) and ≥ 92% at higher concentrations (20 and
200 mg/L) for all reaction times tested and all percentages
of AA+TH added. Thus, it makes it suitable for treating
Se(IV)(aq) in highly acidic chloride waste streams under
ambient temperatures. In contrast, AA+TH reduced ≤
61% of Se(VI)(aq) to Se(IV)(aq) at low concentrations
(0.02 and 2.0 mg/L) and ≤ 10% at higher concentrations
(20 and 200 mg/L) under all reaction conditions tested.
Furthermore, the combinations of AA+TH-produced
solids were mixtures of Se0, SnSe8−n, and S0.
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