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Abstract
Typical biological processing is often challenging for removing ammonia nitrogen and phosphate from swine wastewater due to
inhibition of high ammonia on activity of microorganisms, exhaustion of time, and low efficiency. In this study, a physicochem-
ical process by combining ammonia stripping with struvite precipitation has been tested to simultaneously remove ammonia
nitrogen, phosphate, and chemical oxygen demand (COD) from digested swine wastewater (DSW) with high efficiency, low
cost, and environmental friendliness. The pH, temperature, and magnesium content of DSW are the key factors for ammonia
removal and phosphate recovery through combining stripping with struvite precipitation. MgO was used as the struvite precip-
itant for NH4

+ and PO4
3− and as the pH adjusted for air stripping of residual ammonia under the condition of 40 °C and

0.48 m3 h−1 L−1 aeration rate for 3 h. The results showed that the removal efficiency of ammonia, total phosphate, and COD
from DSW significantly increased with increase of MgO dosage due to synergistic action of ammonia stripping and struvite
precipitation. Considering the processing cost and national discharge standard for DSW, 0.75 g L−1 MgO dosage was recom-
mended using the combining technology for nutrient removal from DSW. In addition, 88.03%NH4

+-N and 96.07% TP could be
recovered from DSW by adsorption of phosphoric acid and precipitation of magnesium ammonium phosphate (MAP). The
combined technology could effectively remove and recover the nutrients from DSW to achieve environmental protection and
sustainable and renewable resource of DSW. An economic analysis showed that the combining technology for nutrient removal
from DSW was feasible.
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Introduction

With the increase in development of intensive livestock farm,
China has become the largest supplier of meat in the world.
Meanwhile, the yield of digested swine wastewater (DSW) also
drastically increases causing a serious imbalance within the
equilibrium of the ecosystem (Huang et al. 2017). Previous
studies have reported that DSW contained 5000–
20,000 mg L−1 chemical oxygen demand (COD), 60–
100 mg L−1 total phosphorus (TP), 500–1000 mg L−1 NH4

+-
N, and 500–1500 mg L−1 total organic carbon (TOC) (Dominic
et al. 2018; Zheng et al. 2018; Vanotti et al. 2017), which sur-
passes the national discharge standard of swine wastewater
(SW). Currently, many farms use anaerobic digestion to achieve
wastewater treatment goals and utilization of a traditionally
wasted resource. This method has the advantage of a green
energy generation in production of biogas (Nasir et al. 2012).
However, this technology could not achieve effective removal
of nutrients from SW, such as nitrogen (N) and phosphorus (P)
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sources (Lin et al. 2018; Kizito et al. 2015). These nutrient
sources in DSW should be effectively removed/recovered be-
fore discharging to prevent costly environmental damage
(Kumar and Pal 2015), such as eutrophication, exhaustion of
dissolved oxygen, and the red tide phenomena in lakes and
rivers caused by excessive N and P substance from DSW (Lin
et al. 2018). With the importance of environmental protection,
treatment of SWusing suitable method has become increasingly
urgent for livestock farming in China. Furthermore, the recovery
of nutrients (nitrogen, phosphorus, and organic substance) from
wastewaters for sustainable utilization has attracted intense at-
tention from researchers worldwide.

Currently, NH4
+-N in SW can be removed though biolog-

ical, physical, and chemical methods, such as nitrification and
denitrification (Wang et al. 2010), adsorption of biochar (Sun
et al. 2017), and membrane filtration (Li et al. 2018a).
Although these methods could show optimistic removal effi-
ciency, they inherently possess many challenges, including
time-consuming, high-input cost for treatment of subsequent
solid material adjusting pH with chemical material (NaOH
and CaO) and even causing secondary pollution (such as in-
creased Na+ and Ca2+ in wastewater) (Limoli et al. 2016;
Serna-Maza et al. 2015). In addition, these methods remove
only a single substance and do not achieve recycling. The
stripping technology could promote the transition of ammonia
from NH4

+ to NH3 by forcing air into the SW. NH4
+-N in SW

can be released from the aqueous phase by stripping and
absorbed by phosphorus acid to avoid emission into the air
causing the greenhouse effect (Shen et al. 2017). Then, the
ammonia absorbed by phosphorus acid can be precipitated
and recovered by forming struvite with the addition of Mg2+

(Li et al. 2017, 2019). However, the stripping method can only
be achieved for NH4

+-N removal, and it has no significant
effect on TP and COD removal from wastewater.

Phosphorus (P), a vital element to fulfill requirements of all
living organisms, is a limited and non-renewable resource
(Song et al. 2018; Huang et al. 2017). Studies have reported
that the phosphate rock would be depleted within the next
50 years due to its low efficiency and non-recycling utilization
in agriculture industry (Li et al. 2018b; Manyuchi et al. 2019.
Therefore, viewing from the sustainable development of phos-
phorus and nitrogen sources, recovery of N and P sources
from wastewater is very necessary to achieve livestock farm-
ing and resource recycling. Magnesium ammonium phos-
phate (MAP) (MgNH4PO4·6H2O), a white crystalline com-
pound, consists of Mg, NH4

+, and P in equal molar concen-
trations, according to Eq. (1) (Kwon et al. 2018), which can be
used as a slow-releasing and long-acting fertilizer to achieve
recycling utilization of N and P elements (Qiu et al. 2017).

Mg2þ þ NH4
þ þ HPO4

2− þ 6H2O→MgNH4PO4

� 6H2O↓þ Hþ ð1Þ

Struvite precipitation acts as one of the preferred technol-
ogies in NH4

+-N and phosphorus removal from SW due to its
high effectiveness, simplicity, environmental friendliness, and
recoverability as a fertilizer additive (Barbosa et al. 2016).
Many researchers reported that NH4

+-N could be efficiently
removed from SW by struvite precipitation using magnesium
phosphate (MP) (Song et al. 2018; Huang et al. 2016a).
However, excessive addition of MP will also increase the TP
concentration in SW. Thus, identifying a low-cost, high-effi-
cient, and environment-friendly treatment technology to re-
cover nutrients from SW is a mandatory requirement.
Struvite formation mainly depends on two factors, molar ratio
of Mg:NH4:P and pH value of SW. Many studies have report-
ed that the Mg content is very low in SW. Therefore, a proper
Mg source is required to form struvite crystals. Magnesium
oxide (MgO), an inexpensive, abundant, and environment-
friendly substance, is an important element for all living
growth. MgO also has a high alkalinity, which could adjust
pH of SWand serve as Mg source in deficient SW (Chimenos
et al. 2003). Furthermore, MgO showed high adsorption ca-
pacity for removal of organic and polymeric substance, such
as polysaccharide, polyphenols, and organic acid (Cai et al.
2017). However, the ratio of NH4

+ and P was 2–10:1 in SW,
which caused most of ammonia (over 50%) to not be removed
via struvite precipitation (Cao et al. 2018b; Huang et al. 2017).

Accordingly, this study aims to (1) investigate the effect of
MgO in respect of minimal environmental impact, cost on the
removal and recovery efficiency of NH4

+-N, TP, and TOC in
SW by combining stripping and struvite precipitation; (2) an-
alyze the quality of the recovered precipitates, including total
solids (TS), volatile solid (VS), and MAP content; and (3)
optimize treatment condition according to cost of wastewater
treatment and allowable effluent discharge limits in China.

Materials and methods

Materials

Digested swine manure (DSW) was obtained from an anaer-
obic digestion discharge pool in a pig farm in Pingxiang,
Jiangxi Province, China, which is 12 km away from the lab-
oratory. It was stored at 4 °C. Prior to the experiment, the
DSW was pretreated by filtering with a 50-mesh filter to re-
move large solids. The specific characteristics of the filtered
wastewater are shown in Table 1. The wastewater was diluted
for analysis using ultrapure water.

Design of DSW treatment system

The design of the DSW treatment is shown schematically in
Fig. 1. The system consisted of aeration, heating trap, settling
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pond, and absorption equipment. The wastewater container
with a working volume of 1 L was made of Plexiglas. Air
was introduced into the DSW via an aeration pump, and the
air flow rate could be adjusted by a flow meter to obtain the
required value.

Zhu et al. (2017) have reported the effects of parameters of
air stripping (pH, aeration rate, temperature, and stripping
time) on ammonia removal from wastewater by a single-
factor experiment, in which the mass transfer coefficient
(KLa) of ammonia stripping was 0.0084 min−1 under the con-
dition of 40 °C, pH 12.0, and 0.5 m3 h−1 L−1 aeration rate.
Based on the reported mass transfer coefficient (KLa) of

ammonia stripping, characteristic of DSW, and national dis-
charge standard for livestock wastewater in China, the initial
pH of DSW could be calculated to be 9–10 under 40 °C,
0.48 m3 h−1 L−1 aeration rate for 3 h according to Eq. (2).
The treatment experiments were performed as follows: DSW
(1 L) and MgO (0–6 g L−1) were added to the container. The
container was buried in a heating trap andmaintained at 40 °C.
Air was aerated into the bottom of the container by an air
pump at 0.48 m3 h−1 L−1 aeration rate for 3 h. After treatment,
the DSW was stirred at 150 rpm for 10 min and, then, stored
for 12 h to allow struvite accumulation and recovery at ambi-
ent temperature. The sediments were separated from the
mixed solution through centrifugation and dried at 105 °C,
and, then, their composition was analyzed. All experiments
were performed in triplicate, and their average data were re-
ported.

−ln Ct=C0ð Þ ¼ KLa � t ð2Þ

WhereCt andC0 are the ammonia nitrogen concentration at
given time t and initial in DSW (mg L−1), respectively. KLa is
mass transfer coefficient of NH3 from liquid phase to gas
phase (min−1).

Analysis methods

For the characteristic analysis of DSW, the samples were col-
lected from treatment wastewater, appropriately diluted, and

Fig. 1 Overview of the complete
nutrient recovery system in DSW

Table 1 Characteristics
of the digested swine
wastewater used in the
experiments

Parameters Average value plus
standard deviation
(triplicate)

NH4
+-N (mg L−1) 297.60 ± 2.39

TN (mg L−1) 460.20 ± 9.20

COD (mg L−1) 1602 ± 31.96

TOC (mg L−1) 780.2 ± 39.01

TP (mg L−1) 114.9 ± 7.24

TS (g L−1) 5.14 ± 0.42

VS (g L−1) 4.61 ± 0.12

Cu (mg L−1) 2.75 ± 0.10

Zn (mg L−1) 25 ± 0.35

pH 7.63 ± 0.04
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analyzed with a Lianhua 5B-6C spectrophotometer to deter-
mine NH4

+-N, COD, and total phosphate (TP) (Cao et al.
2018a). The supernatants were also collected, appropriately
diluted, and, then, filtered using 3-μm pore-sized filter paper
before analysis. Then, 0.5 mL aqueous solution was placed in
the multi N/C3100 Analyzer (Analytik Jena AG, Jena,
Germany) to determine the concentration of total carbon
(TC), total nitrogen (TN), and inorganic carbon (IC). Total
organic carbon (TOC) is the difference between TC and IC.
The pH solution was measured with a pH meter (Orion-3
STAR, Orion Corporation, USA). The total solid (TS) and
volatile solid (VS) were determined according to Standard
Methods (APHA 2009). The recovered precipitate was char-
acterized with an X-ray diffractometer (XRD D8 ADVANCE,
Bruker) and a Fourier-transform infrared spectroscopy spec-
trometer (Thermo Scientific Nicolet IS50, USA). The data
was analyzed by IBM SPSS Statistic 23.

Results and discussions

Change in pH value in DSW

The pH value in DSW is a vital condition to ensure a success-
ful stripping process (Gustin and Marinsek-Logar 2011). OH−

could promote the phase equilibrium to shift toward NH3 and
increase the vapor pressure of NH3, and, then, the released
NH3 from DSW can be effectively removed with air
(Elsayed 2015). In Fig. 2, the pH value increased rapidly with
increase to 1.0 g L−1 MgO and, then, steadily increased with
the increase before treatment, which is mainly due to water
diffusion into MgO particles and reaction on the surface.
Equation (3) describes the hydroxylation of MgO in aqueous

environment. After the reaction, the Mg2+ and OH− could be
released to drastically increase pH value in DSW, and, then,
the aqueous solution gradually becomes supersaturated with
Mg(OH)2 (Stolzenburg et al. 2015).

MgO sð Þ þ H2O lð Þ→MgOHþ
surfaceð Þ þ OH−→Mg2þ

þ 2OH− ð3Þ

The pH over 9.2 in DSW may be attributed to
unequilibrium ofMg(OH)2 (pKsp = 11.1), caused by an excess
of MgO (Chimenos et al. 2003). The pH of SW was approx-
imately 7.63, 8.24, 9.17, 9.61, and 9.77 after adding 0, 0.05,
1.0, 3.0, and 6.0 g L−1 MgO, respectively. Many studies re-
ported that the pH range for the lowest solubility of magne-
sium ammonium phosphate (MAP) was 8.0–10.0
(Stolzenburg et al. 2015). Thus, there had no significant effect
on solubility ofMAPwith adding 0.05–6 g L−1 MgO to DSW.

After treatment under the condition of 40 °C and
0.48 m3 h−1 L−1 aeration rate for 3 h, the pH of DSW had a
similar increasing trend as before treatment with increase of
MgO. The pH value was higher than that before treatment and
increased sharply from 8.07 to 10.23 whenMgO dosage ranged
from 0 to 1.5 g L−1, which was mainly attributed to the high
dissolution of MgO under the treatment temperate (40 °C) in
DSW (Liu et al. 2011). Furthermore, phosphorus concentration
at the initial reaction also increases the solubility of MgO due to
the ion pair formation of Mg2+, NH4

+, and PO4
3− (Stolzenburg

et al. 2015) and, then, steadily increased the pH to 10.78 at
6 g L−1 MgO owing to decrease of organic acids by adsorption
precipitation of Mg(OH)2 in DSW (Cai et al. 2017). Many stud-
ies reported that the change in pH was closely related to the
release of ammonium, and the maximum reduction of ammoni-
um could be achieved at pH 9.0–10.0 due to ammonia gas
formation (pKa = 9.2) (Song et al. 2018; Gustin et al. 2011).
The pH of DSW increased from 9.17 to 9.9 at 1.0 g L−1 MgO
in DSWafter treatment. Therefore, the NH3 volatilization would
reach the maximum value at 1.0 g L−1 MgO in DSWaccording
to ammonia gas formation (pKa = 9.2).

Change of NH4
+-N and TN concentrations in DSW

The concentration and removal efficiency of NH4
+-N and TN in

DSW under different MgO dosages is shown in Fig. 3a, b, re-
spectively. Figure 3a shows that the NH4

+-N removal efficiency
increased as the MgO dosage increased. The two main reasons
for the efficient removal were shown as follows: (1) Abundant
OH− produced byMgO and H2O could promote the phase equi-
librium of ammonia nitrogen toward the gaseous form and in-
crease the rate of mass transfer and vapor pressure of NH3.
Therefore, the NH3 can easily enter the bubbles present in the
DSW and is then removed by the air (Zhu et al. 2017). (2)Fig. 2 Effect of MgO on pH before and after treatment
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Formation of struvite precipitation (MgNH4PO4·6H2O) with
Mg2+ and PO4

3− in DSW (Tansel et al. 2018). The NH4
+-N

concentration decreased notably from 297.6 to 87.45 mg L−1

(70.61% removal rate) at 40 °C under the condition of
0.48 m3 h−1 L−1 for 3 h stripping with 0.05 g L−1 MgO in
DSW. It was observed within the reaction that when 0.15 g L−1

MgO was added, NH4
+-N concentration decreased to

67.6 mg L−1 (≤ 80 mg L−1, GB 18596-2001) with a removal rate
of 77.28%. The NH4

+-N concentration decreased from 297.6 to
21.04 mg L−1 (92.93% removal rate) when 1.0 g L−1 MgO was
added. The NH4

+-N concentration decreased to 16.90 mg L−1

with a removal efficiency of 94.34% when MgO concentration
was further increased to 6 g L−1 MgO in DSW. The NH3 vola-
tilization rate was extremely high initially between 0.05 and
1.0 g L−1 MgO, and no significant difference was observed be-
tween 1.0 and 6.0 g L−1MgOdosagesmainly due to the decrease
in the driving force and emission rate caused by the depletion of
NH3 and in DSW (Provolo et al. 2017). The MgO dosage was
consistent with predicted dosage according to pH in DSW. In
addition, while the MgO dosages increased to 0.15 g L−1, the

NH4
+-N concentration in DSWwas up to discharge standard (≤

80 mg L−1), and with removal efficiency of 79.22%.
The effect of MgO on the total nitrogen removal is shown

in Fig. 3b. The variation of the curve is similar to the change of
ammonium removal owing to NH4

+-N being the main com-
ponent of nitrogen source, which accounts for 64.15% of TN
in DSW. In addition, the removal efficiency of TN was lower
than NH4

+-N. The TN concentration in DSW decreased from
460.2 to 30.61 mg L−1 with 93.3% removal rate at 6.0 g L−1

MgO. TN concentration was 68.27 mg L−1 with addition of
0.15 g L−1 MgO under the condition of 40 °C and
0.48 m3 h−1 L−1 aeration rate for 3 h.

Change in the TOC and COD concentrations in DSW

After anaerobic digestion treatment, the DSW would contain a
high amount of organic substance, such as carbohydrates, lipids,
and acetic acid, produced frommicrobial metabolism. In Fig. 4a,
the result shows that TOC removal rates significantly increased

Fig. 3 Change of NH4
+-N (a) and TN (b) concentrations with different

MgO contents in DSW (*P < 0.05; **P < 0.01)

Fig. 4 Change of TOC (a) and COD (b) contents with different MgO
concentrations in DSW (*P < 0.05; **P < 0.01)
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to 66.90% with the increase to 1.5 g L−1 MgO owing to incor-
poration into the struvite crystal lattice and sorption on the sur-
face of struvite. Furthermore, the presence of carboxyl and hy-
droxyl groups in the polymeric substances can combine with
Mg2+, forming a complex precipitated substance (Liu et al.
2011; Huang et al. 2017), and, then, increase slowly due to
depletion of the negative group. TOC removal efficiency was
reaching 70.13% at 6 g L−1 MgO and TOC concentration in
DSW decreased from 682.2 to 244 mg L−1, representing
64.2% reductions at 0.75 g L−1 MgO.

COD concentration represents demand of oxygen for deg-
radation of dissolved organic compounds in DSW, which has
a positive correlation with TOC concentration. Therefore, a
similar trend of change with COD concentration was observed
after treatment. In Fig. 4b, the COD concentrations in DSW
decreased from 1602.2 to 385.4 mg L−1 (≤ 400 mg L−1,
Chinese discharge standards), representing 75.94% reductions
at 0.75 g L−1 MgO, while TOC decreased from 682.2 to
244 mg L−1 with removal efficiency of 64.24%. Considering
the treatment cost and discharge standard (≤ 400 mg/L),
0.75 g L−1 MgO was the optimal dosage for COD removal.

Change in the TP concentration

The addition of Mg could increase the formation of struvite
crystallization to decrease TP content in DSW (Tansel et al.
2018). Figure 5 reveals the evident effect of MgO on TP
concentration in DSW. As seen in Fig. 5, under the condition
of 40 °C, 0.48 m3 h−1 L−1 for 3 h stripping, the TP concentra-
tion significantly decreased from 114.88 to 1.92 mg L−1

(98.33% removal rate) with the addition of 1 mg L−1 MgO
(Mg:P molar ratio = 6.6) in DSW due to the formation of
struvite precipitation (P < 0.01) and, then, had no significant
difference with the increase to 6 g L−1 MgO, which indicated

that the PO4
3−-P was almost exhausted by the formation of

struvite precipitation with magnesium and released NH3 at
1.0 g L−1 MgO in DSW. The TP concentration decreased from
114.88 to 4.57 mg L−1 (≤ 8 mg L−1, GB 18596-2001) with an
85.93% removal rate at 0.75 g L−1 MgO in DSW.

Change and traits of the recovered sediments
from DSW

As result of quantities of solids insetting into the sediments dur-
ing struvite precipitation process, it is unfeasible to obtain pure
struvite for analysis. Some studies reported that the calcium con-
centration in swine manure was about 40–60 mg L−1 and that
calcium has great influence on the purity of struvity in precipi-
tates due to the formation of amorphous calcium phosphate
(ACP) (Yan and Shih 2016; Ye et al. 2011). Yan and Shih
(2016) reported that there was a positive linear correlation be-
tween struvite content in precipitates and Mg/Ca molar ratio in
the initial solution. The struvite contents in the precipitates were
generally 95% while Mg/Ca molar ratio was 10:1. In this study,
Mg/Camolar ratio will be 10–20:1 after adding 0.75 g L−1MgO,
and the struvite content in the precipitates will be over 95%.
Therefore, the effect of calcium on the purity of struvite precip-
itation could not be ignored.

The purification process of struvite mainly included two
steps, acid dissolution and alkali precipitation, according to
Liu et al. (2011). In Fig. 6, at 0–1.0 g L−1 MgO, statistical
analysis revealed that the MAP formation significantly in-
creased with increased Mg level (P < 0.01). The struvite for-
mation gradually increased to 424.65 mg L−1 (85.91%) at
1.0 g L−1 MgO with pH 9.17–9.9 in DSW and, then, no sig-
nificant difference with increase in MgO dosage due to deple-
tion of phosphorus sources (Huang et al. 2016b). Furthermore,
increasing the pH to over 10 with increase in MgO dosage
could promote gasification of ammonia nitrogen in solution
converted from NH4

+ to NH3, which cannot be used for
struvite crystallization. The results indicated that the
1.0 g L−1 MgOwas optimal added dosage in DSW for struvite
formation, and the corresponding pH values were 9.17–9.90
in wastewater according to Fig. 2. The results were consistent
with foregoing reported optimum pH (9.0–10.0) for MAP
precipitation in DSW (Song et al. 2018; Lin et al. 2018).

During formation of struvite crystallization, there is settle-
ment of massive solids along with the crystal to the bottom of
the reactor due to insert into the crystal lattice or adsorption to
the surface of struvite (Liu et al. 2011). As shown in Fig. 6, the
recovery VS concentration from DSW significantly increased
to 1.42 g L−1 with increase to 1.5 g L−1 MgO (P < 0.01) due to
added Mg2+ mainly using to struvite formation and limited
adsorption capacity of struvite and, then, slowly increased to
1.81 g L−1 at 6 g L−1 MgO because of adsorption of Mg2+ and
flocculation precipitation of Mg(OH)2 with solid in DSW.
According to Fig. 4b and Fig. 6, the recovered VS basically

Fig. 5 Effect of MgO concentration on TP in DSW (*P < 0.05;
**P < 0.01)
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corresponded to the removal rate of TOC, which mainly
contained organic polymeric substances. In addition, the
change in VS showed a similar trend with TS. As shown in
Fig. 6, the recovery TS from DSW drastically increased to
1.74 g L−1 at 1.5 MgO g L−1 and, then, slowly increased to
2.14 g L−1 with the addition of 6.0 g L−1MgO. In addition, the
results also exhibited that the VS was the main component in
TS, and its content was over 80% depending on the co-
precipitation of organic substance with struvite in wastewater.

To determine the mechanism of precipitation during the treat-
ment process, FTIR and XRD characterization of sediments
were conducted. The FTIR spectrum (Fig. 7a) demonstrated that
the ammonium characteristic bands (1430, 1490, and 1650 nm)
of the struvite mixture almost completely appeared after treat-
ment (Huang et al. 2016a), thereby suggesting that the sediment
contained ammonium that formed into struvite. Furthermore, the
XRD patterns (Fig. 7b) revealed that the characteristic peaks of
struvite and brucite appeared in the sediments after treatment
(Huang et al. 2016b), whereas no characteristic peaks of struvite
were observed in samples without MgO treatment. Thus, the
sediments that contained struvite were formed by adding MgO
with ammonium and phosphorus in DSW.

Recovery from DSW under optimal treatment
condition

Considering the treatment cost and national discharge standard
of NH4

+-N, TP, and COD for livestock wastewater in China, the
optimal MgO concentration was 0.75 g L−1 under the condition
of 40 °C and 0.48m3 h−1 L−1 aeration rate for 3 h, and the NH4

+-
N, TP, and COD in DSW significantly decreased from 297.6,
114.9, and 1602.2 mg L−1 to 35.6 (≤ 80), 4.57 (≤ 8), and 385.4
(≤ 400) mg L−1, respectively, at 0.75 g L−1 MgO. In addition,
262.0 mg L−1 NH4

+-N could be recovered from DSW with

Fig. 6 Change of sediments with
different MgO contents in DSW
(*P < 0.05; **P < 0.01)

Fig. 7 FTIR patterns (a) and XRD spectrums (b) of sediments
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recovery efficiency of 88.03% by absorption of phosphoric acid
(81.2%) and precipitation of MAP (7.83%). A total of
110.33 mg L−1 TP could be obtained through precipitation of
MAP (365.06 mg L−1) with recovery efficiency of 74.8% and
flocculation (21.24%). The TS and VSwere 1.18 and 0.71 g L−1

with recovery of 23.41 and 16.82%, respectively. The MAP and
VS were approximately 308.5 and 600.1 mg g−1 in recovery
sediments at 0.75 g L−1 MgO, respectively.

The characteristics of supernatant solutions, sediments, and
dried sediments under the optimal MgO dosages are shown in
Fig. 8. After treatment, the supernatant showed greater lucid-
ity than the original solution. The cause of this phenomenon is
closely related to TS and VS concentration in DSW. The re-
moval rate of TS and VS in DSW gradually enhanced with the

increase in MgO, as previously described. The MgO suspen-
sion in DSW is actually a very effective hydration process,
including MgO dissolution and Mg(OH)2 precipitation step,
and more than 90% of the initial MgO is converted into
Mg(OH)2 (Stolzenburg et al. 2015). Therefore, the sediments
mainly consisted ofMg(OH)2, MgNH4PO4, and organic com-
ponents, according to the abovementioned investigation.

Economic analysis

The economic evaluation of nutrient removal by the combined
technology is shown in Table 2. In this preliminary assessment,
the values of the recovered product, investment, and labor were
not taken into account, and only the costs of chemicals and

Fig. 8 Diagram of phase of DSW
under the optimal treatment
condition

Table 2 Economic analysis of the nutrient removal process by the combined technology

Removal nutrients Chemicals/energy Requirement amount Market price Cost Total actual cost References

NH4
+-N, TP,

COD
MgO 5.49 kg kg−1

NH4
+-Nremoved

0.12 $ kg−1 0.66 $ kg−1

NH4
+-Nremoved

9.44 $ kg−1

NH4
+-Nremoved

This study

H3PO4 (85%) 2.14 kg kg−1

NH4
+-Nremoved

0.4 $ kg−1 0.86 $ kg−1

NH4
+-Nremoved

Energy consumption 79.2 kw h−1 kg−1

NH4
+-Nremoved

0.1 $ kw−1 h−1 7.92 $ kg−1

NH4
+-Nremoved

NH4
+-N Struvite precipitation 10.3 $ kg−1

NH4
+-Nremoved

Huang et al. (2011)

NH4
+-N Struvite precipitation 14.9 $ kg−1

NH4
+-Nremoved

Webb et al. (1995)

NH4
+-N Biological process 5.65 $ kg−1

NH4
+-Nremoved

Iaconi et al. (2010)
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energy (electricity) were considered. Due to energy consumption
of heating trap and air pump, the cost of electricity represented
approximately 83.8% of the overall costs. It can be calculated
that the total cost of chemicals and energy is 9.44 $ kg−1 NH4

+-
Nremoved, which was less than the previously reported costs
(Huang et al. 2011; Iaconi et al. 2010). Ueno and Fujii (2001)
showed that the market price of the recovered struvite was ap-
proximately 4.5 $ kg−1 NH4

+-Nremoved. If the value of the recov-
ered struvite is considered in the economic analysis, the cost of
this technology was only 4.94 $ kg−1 NH4

+-Nremoved, which is
lower than the 5.65 $ kg−1 NH4

+-Nremoved cost of the biological
process (Iaconi et al. 2010).

Conclusion

The removal of nutrients from DSW was enhanced by
employing the stripping method with MgO as an active com-
ponent. NH4

+-N, TP, and COD in DSW could be effectively
removed by using a combined technology. Under the treat-
ment condition of 40 °C and 0.48 m3 h−1 L−1 aeration rate
for 3 h, NH4

+-N, TP, and COD significantly decreased to 35.6
(≤ 80), 4.57 (≤ 8), 385.4 (≤ 400) mg L−1 at 0.75 g L−1 MgO,
respectively, because of the coordinated action of stripping,
struvite precipitation, and coagulation/flocculation, thereby
satisfying the national discharge standards for DSW. The
MAP and VS were approximately 308.5 and 600.1 mg g−1

in sediments at 0.75 g L−1MgO, respectively. This technology
could effectively recover and remove the nutrients from DSW
to achieve environmental protection and as a sustainable and
renewable resource of nutrients. Finally, the economic evalu-
ation of nutrient removal by the combined technology present-
ed that the process was as effective as and less costly than
biological nitrogen removal if the recovered struvite was used
as a fertilizer.
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