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Abstract
A pot experiment was performed to examine the role of foliar applied mannitol (M) in chromium (Cr) stress alleviation in
different maize cultivars. Two maize cultivars, one tolerant (6103) and one sensitive (9108) to chromium stress, were grown in
soil treated with three concentrations of Cr (0, 5, and 10 mg kg−1) and three levels of mannitol (0, 50, and 100 mg L−1).
Chromium stress decreased the overall growth of plants by reducing the plant height, root/shoot dry weight, chlorophyll contents,
and enzymatic activities, while exacerbated the severity of reactive oxygen species in both maize cultivars. Chromium-induced
reduction in growth attributes of maize plants was relatively higher in sensitive cultivar than that of tolerant one. Uptake of Cr by
the plants and its translocation from roots to shoots increased with increasing concentration in the soil. However, foliar applica-
tion of mannitol significantly alleviated the Cr stress and improved growth, biomass, and photosynthetic pigments of maize
plants. Mannitol also considerably reduced Cr contents in leaves and roots of both cultivars. Hence, it is concluded that mannitol
can be helpful for crops grown on heavy metal, especially Cr, contaminated soils for remediation purpose.
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Introduction

During past few decades, heavymetals have played a key role in
deteriorating the quality of environment because of rapid urban-
ization, population growth, and industrialization (Farid et al.
2015; Rizwan et al. 2017a). In developing countries, the indus-
trial effluent is often used to irrigate the agricultural soils due to
shortage of freshwater. This industrial effluent with heavy metal

contamination poses highly poisonous impacts on fauna and
flora (Júnior et al. 2015; Sood et al. 2012). The accumulation
of heavy metals in edible portions of plants, especially cereals,
poses a major threat to human life (Anjum et al. 2016; Wang
et al. 2017). These heavy metals have deleterious impacts on
growth, photosynthesis, and antioxidant enzyme activities in
plants (Anjum et al. 2017; Singh et al. 2017). Chromium is a
nonessential and potentially deleterious heavy metal having no
metabolic function in plants (Kamran et al. 2016). Chromium
has 7th rank in the list of most abundant element and 21st in
most abundant heavy metal in Earth’s crust with specific density
of 7.19 g/cm3 (Economou-Eliopoulos et al. 2013). According to
the International Agency for Research on Cancer, Cr is consid-
ered as no. 1 carcinogen (IARC 1987). Ashraf et al. (2016)
reported that Cr has different oxidation states ranging from − 2
to + 6, but the most stable and common states present in the
environment are trivalent [Cr(III)] and hexavalent chromate
[Cr(VI)]. Both states show different behavior with respect to
their bioavailability and sorption in soil, translocation and ab-
sorption in aboveground biomass, and toxicity inside the plant
(Choppala et al. 2016). Several studies have illustrated the toxic
effects of Cr on morphophysiological and biochemical process-
es of plants (Jabeen et al. 2016; Kamran et al. 2016). Recent
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studies reported that Cr toxicity severely affected the agronomic
traits, photosynthetic pigments, gas exchange characteristics, ul-
trastructure of cell chloroplast and membrane, as well as prote-
omic and miRNA expression (Ali et al. 2015; Bukhari et al.
2016a, b). Several plant- and soil-related factors define the trans-
fer of Cr from soil to plant, such as plant species and genotype,
gas exchange attributes, root surface area, soil pH, texture, and
electrical conductivity (Islam et al. 2016).

Maize (Zea mays L.), an important cereal crop, is one of the
main staple foods and is widely cultivated under varying soil
and climatic conditions all over the world. It is an important
constituent of animal as well as human nutrition (Rosas-Castor
et al. 2014). Maize is an important industrial crop which is used
for ethanol manufacturing (Shahzad et al. 2016). China and
USA are two major candidates for maize consumption (Gale
et al. 2016). Maize is capable of bioaccumulation of metals
from growth medium, with greater phytoextraction potential
and higher transfer rates (Wuana and Okieimen 2010).
According to FAOSTAT (2013), the existing production of
maize is about 0.250 billion tons per annum. The demand for
maize, only in East and Southeast Asia, is anticipated to reach
around 0.291 billion tons in 2020 (Rosegrant et al. 2001).

Plants can fight against various biotic and abiotic stresses
with the help of different organic solutes including polyols, ol-
igosaccharides, and proline.Mannitol, a common natural polyol,
is a key osmolyte synthesized by many plants which plays a
pivotal role in carbon and energy storage and regulation and
osmoregulation of coenzymes (Mitoi et al. 2009; Pharr et al.
1995). Because of the ability to scavenge the reactive oxygen
species (ROS) and free radicals, mannitol is considered as an
important antioxidant (Tandon et al. 2003; Khare et al. 2010).
Mannitol is reported to have significant role in reducing salinity
and osmotic stress in various plants (Bhauso et al. 2014) and
maintaining the cell turgor pressure (Siringam et al. 2011).
Mannitol has been reported to play an important role in stabiliz-
ing the membrane and protein structure, scavenging the ROS,
maintaining the photosynthetic apparatus, and osmoprotection
in various species under abiotic stress (Chan et al. 2011).
Mannitol plays a vital role in salt stress tolerance (Sickler et al.
2007) and carbon utilization efficiency (Keunen et al. 2013).

The present work was designed to examine the ameliora-
tive impact of mannitol on maize cultivars, grown under Cr
stress, in terms of growth, photosynthetic pigments, and anti-
oxidant enzymatic activities.

Materials and methods

Soil sampling and analysis

The soil samples, collected from agricultural field, were properly
mixed and sieved by 2-mm sieve. Standard methods were
employed to analyze the soil pH and EC (Soltanpour 1985), soil

organic matter (Jackson 1962), and soil texture (Abbas et al.
2017). The physicochemical properties of soil are given in
Table 1.

Pot experiment

A pot experiment was performed in the Botanical Garden
of GCUF on two maize cultivars, one tolerant (6103) and
the other sensitive (9108) to chromium stress (data not
shown). The trial was run using completely randomized
design (CRD) having six replicates. Stress was induced
by using three levels of chromium (Cr VI) (0, 5, and
10 mg kg−1soil) as K2Cr2O7. Three concentrations of M
(0, 50, 100 mg L−1) were selected for foliar application.
Every pot was filled with 6 kg soil. The pots were irri-
gated until they became saturated. When the soil was fully
moisturized, the seeds of maize were sown uniformly by
hand. After 15 days of germination, thinning was done to
maintain two plants per pot. Mannitol was sprayed four
times during the experiment. First spray was done after
1 week of germination; 2nd, 3rd, and 4th spray was ap-
plied after 2, 4, and 6 weeks of sowing, respectively; and
Tween 80 was used as sticking agent. The pots were
covered to avoid soil contamination during spray and ro-
tated randomly throughout the growth period. After
2 weeks of germination, the N, K, and P fertilizers were
applied at the rate of 120, 25, and 50 kg ha−1, respective-
ly. Urea, potassium sulfate, and diammonium phosphate
fertilizers were used as sources of N, K, and P,
respectively.

Table 1 Soil physiochemical properties

Texture Sandy clay loam

Sand (%) 52.0

Silt (%) 24.0

Clay (%) 24.0

ECe (dS m−1) 2.86

pH (1/2.5 soil to water ratio) 7.65

Organic matter (%) 0.34

SAR (mmol−1)1/2 5.60

HCO3 (mmol L−1) 3.68

Available P (mg kg−1) 2.16

SO4
2− (mmol L−1) 6.48

Cl− (mmol L−1) 2.19

K+ (mmol L−1) 0.03

Na2+ (mmol L−1) 3.48

Ca2+ + Mg2+ (mmol L−1) 3.69

Available Zn2+ (mg kg−1) 0.72

Available Cu2+ (mg kg−1) 0.23

Available Cr+6 (mg kg−1) 0.17
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Growth traits

Plants were harvested after 10 weeks of treatment. The growth
characteristics, such as leaf area, number of leaves per plant,
root length, and plant height, were measured on fresh plant
samples. The roots and shoots were separated, followed by
oven drying at 70 °C to measure their dry biomass.

Chlorophyll and carotenoid contents

After 8 weeks of treatment, fresh leaf samples were harvested
to measure chlorophyll (a, b, total chlorophylls) and caroten-
oid contents according to the methodology given by
Lichtenthaler (1987).

Electrolyte leakage, H2O2, MDA, and antioxidant
enzymes

After 8 weeks of treatment, the electrolyte leakage (EL),
H2O2, MDA, and antioxidant enzymatic activities were mea-
sured on plant leaves. The samples were autoclaved at 32 °C
for 2 h, and EC1 was noted. The same samples were again
autoclaved at 121 °C for 20 min to measure EC2 thereafter.
Then, EL was calculated as described by Dionisio-Sese and
Tobita (1998) using the following equation:

EL ¼ EC1=EC2 � 100

The H2O2 contents were measured by homogenizing the
samples with 50 mM phosphate buffer having pH 6.5. The
samples were centrifuged for 25 min, followed by addition of
20% H2SO4 (v/v). The specimens were again centrifuged for
15 min. The H2O2 contents were measured by running the
samples at 410 nm absorbance (Jana and Choudhuri 1981).
The MDA contents were measured by using the technique
described by Zhang and Kirham (1994).

The activities of SOD, POD, CAT, and APX were estimat-
ed spectrophotometrically. The leaf samples were mixed with
0.05 M phosphate buffer (pH 7.8) and centrifuged for 10 min.
POD and SOD contents were obtained as described by Zhang
(1992), while APX and CAT contents were measured by fol-
lowing Nakano and Asada (1981) and Aebi (1984),
respectively.

Measurement of Cr contents

The samples were rinsed with dilute HCl, dried at 70 °C, and
grinded to fine powder. The plant samples (1 g each) were
burnt to ashes at 450 °C for 12 h and digested with10 mL of
HNO3-HClO4 (3:1 v/v) thereafter. The specimens were kept
overnight and further digested by adding 5 mL of the same
solution (Rehman et al. 2015). The Cr contents were estimated
by atomic absorption spectrophotometer.

Statistical analysis

Data was presented with means of the three replicates.
Analysis of variance (ANOVA) was done using the statistical
package (SPSS, version 16.0), followed by the Tukey’s post
hoc test among means of different treatments to estimate sig-
nificant difference.

Results

Growth and physiological traits

Growth characteristics of maize plants such as height, leaf
area, root length, and number of leaves plant−1 were consid-
erably decreased due to Cr stress at 10 mg kg−1. With increas-
ing Cr concentration in growth medium, there was a regular
reduction in all growth parameters of both varieties (Tolerant
6103, Sensitive 9108) (Fig. 1.). Foliar application of M (50,
100mgL−1) on stressed plants improved root length, leaf area,
plant height, and number of leaves plant−1 as compared to Cr
treatment alone.

Agronomic traits

Agronomic characteristics of maize plants such as dry weight
of leaves, roots, and stems were depressed with increasing Cr
concentration in both varieties (Tolerant 6103, Sensitive
9108). Maximum reduction in biomass was noticed at
10 mg kg−1 Cr treatment in both varieties (Fig. 2.) However,
foliar application of mannitol enhanced the dry weight of all
parts of plants with dose-additive manner in both maize
varieties.

Oxidative stress

Increasing Cr concentration imposed the oxidative stress on
plants by increasing the EL, H2O2, and MDA contents in root
and leaves of both cultivars (Fig. 3). Foliar application of
mannitol, at both concentrations (50, 100 mg L−1), consider-
ably ameliorated the oxidative stress in roots and leaves of
plants. However, the severity of oxidative stress was more
pronounced in Cr-sensitive cultivar (9108) than the tolerant
one (6103) as shown by higher concentration of EL, H2O2,
and MDA.

Antioxidant enzymatic activities

Under Cr stress, a significant reduction in the activities of
antioxidant enzymes was observed both in leaves and root of
maize plants. But foliar application of mannitol, at both con-
centrations (50, 100 mg L−1), on Cr-stressed plants consider-
ably improved the activities of antioxidant enzymes (SOD,
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POD, CAT, and APX) in both cultivars, as compared to those
treated with same Cr concentration without mannitol. The
highest increase in antioxidant enzymatic activities was ob-
served at higher mannitol concentration (100 mg L−1) (Fig. 4).

Photosynthetic characteristics

Photosynthetic traits including chlorophyll a, b, total chloro-
phyll, and carotenoids were considerably reduced in leaves of
plants grown under Cr stress at both levels (5 and 10 mg kg−1)
in comparison with the control (Fig. 5) in both verities
(Tolerant 6103, Sensitive 9108). But, foliar applied mannitol
on Cr-stressed plants significantly enhanced chlorophyll pig-
ments and carotenoids, as compared to those facing Cr stress
without mannitol. However, mannitol was more effective in
enhancing chlorophyll contents at lower Cr concentration
(5 mg kg−1), as compared to the higher one (10 mg kg−1) in
both varieties.

Chromium contents

Chromium contents in maize plants increased with increasing
Cr concentration in the growthmedium in a dose-additive way
in roots and leaves of both maize cultivars (Fig. 6). Highest Cr
contents were obtained at maximum applied Cr level
(10 mg kg−1). There were higher Cr contents in roots than that
in leaves. But the exogenous application of mannitol signifi-
cantly reduced the Cr contents in roots and leaves of both
maize varieties. The highest reduction in Cr contents was ob-
served at maximum mannitol level (100 mg L−1).

Discussion

In present study, the growth and biomass of maize were se-
verely suppressed by Cr toxicity as compared with control
(Figs. 1 and 2). This growth and biomass reduction might be
due to ultrastructural changes in mesophyll cells of leaves
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Fig. 1 Impact of chromium on plant height (a), root length (b), number of
leaves (c), and leaf area (d) in two different hybrids of maize, one is
tolerant (6103) and other is sensitive (9108), cultivated in soil along
with three different chromium levels (0, 5, and 10 mg kg−1) and three

different mannitol levels (0, 50, and 100 mg L−1) with three replicates.
The significant difference between the values is of P < 0.05 which is
shown by different letters
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(Gill et al. 2015; Antoniadis et al. 2017). Also, the reduction in
nutrient uptake by plants due to Cr stress might have resulted
in plants’ biomass reduction (Tauqeer et al. 2016). Foliar ap-
plication of mannitol significantly alleviated the Cr-induced
deterioration in growth and biomass of maize plants. This
increase in biomass and growth, because of foliar applied
mannitol, has also been noticed in various plant species under
drought (Ullah et al. 2014) and salinity stress (Kaya et al.
2013). The improvement in growth and biomass of plants with
mannitol might be ascribed to its utilization in plant leaves,
where it might have served as a source of nitrogen and carbon
(Mitoi et al. 2009). Chlorophyll contents and carotenoids were
reduced by Cr toxicity both in leaves and root of maize (Fig.
5). Similar results have been found in many other plants like
sunflower (Singh et al. 2013), wheat, and mung bean under Cr
stress (Jabeen et al. 2016). Many other heavy metals like Cd,
Ni, and Cu also decreased the chlorophyll and carotenoid
contents in various plants species (Farooq et al. 2016). The

reduction in photosynthetic pigmentsmight be associatedwith
ultrastructural changes in chloroplasts (Bukhari et al. 2016a;
Najeeb et al. 2011). However, the foliar applied mannitol sig-
nificantly alleviated the Cr-induced stress and improved pho-
tosynthetic pigments of maize plants. It has been reported
previously that the mannitol enhanced the photosynthetic pig-
ments under Cr stress in maize (Kaya et al. 2013), which
might be due to higher photosynthetic rate.

Under Cr stress, maize plants faced oxidative stress in-
duced by overproduction of ROS (Fig. 3). Same results
were observed in various plant species under stressful con-
dition (Habiba et al. 2015; Ahmad et al. 2017). Under
heavy metal stress, many plant species revealed the higher
production of ROS like sunflower (Rizwan et al. 2017b),
barley, and wheat (Gill et al. 2016). Like heavy metals,
salinity and drought also increased the ROS production in
plants (Arshad et al. 2016). In the current study, foliar
application of mannitol significantly decreased the ROS
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production under Cr stress. This decrease in ROS produc-
tion with mannitol application might be ascribed to en-
hanced performance of antioxidant defense system (Islam
et al. 2016). It has also been reported that the application of
mannitol decreased lipid peroxidation in wheat plants under
salt stress (Seckin et al. 2009).
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Fig. 3 Impact of chromium on leaf MDA (a), root MDA (b), leaf H2O2

(c), root H2O2 (d), EL in leaves (e), and EL in roots (f) in two different
hybrids of maize, one is tolerant (6103) and other is sensitive (9108),
cultivated in soil along with three different chromium levels (0, 5, and

10 mg kg−1) and three different mannitol levels (0, 50, and 100 mg L−1)
with three replicates. The significant difference between the values is of
P < 0.05 which is shown by different letters

�Fig. 4 Impact of chromium on SOD leaf and root (a, b), POD leaf and
root (c, d), CAT leaf and root (e, f), and APX leaf and root (g, h) in two
different hybrids of maize, one is tolerant (6103) and other is sensitive
(9108), cultivated in soil along with three different chromium levels (0, 5,
and 10 mg kg−1) and three different mannitol levels (0, 50, and
100 mg L−1) with three replicates. The significant difference between
the values is of P < 0.05 which is shown by different letters
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Plants develop their defense system through antioxidant
enzymatic activities against various environmental stresses
(Kanto et al. 2015). The Cr toxicity decreased the antioxidant
enzyme activities in both leaves and roots of maize plants
(Fig. 4). Similar findings have also been noticed in various
plants under Cr stress (Farid et al. 2017). The decrease in
antioxidant enzymatic activities might be attributed to higher
Cr uptake by maize plants (Fig. 4), which might have reduced
the plants’ self-defense system. However, the mannitol appli-
cation significantly alleviated the Cr-induced reduction in an-
tioxidant enzymatic activities of maize plants. It has also been
reported that the mannitol enhanced the activities of antioxi-
dant enzymes in peanut under drought and salt stress, which
might be attributed to the reduction in ROS production
(Bhauso et al. 2014).

In recent study, the increasing Cr concentration in soil me-
dia significantly increased the uptake and accumulation of Cr,
both in leaves and root of maize plants (Fig. 6). These findings
are similar to those reported in Brassica napus (Gill et al.
2015), barley (Ali et al. 2013), and tobacco (Bukhari et al.
2015). The higher Cr concentration was observed in roots than
that in leaves. However, mannitol significantly reduced the Cr
uptake and translocation from roots to leaves. This decline in
Cr uptake might be associated with the protective role of man-
nitol in cell membrane stability, which might have resulted in
reduced entry of Cr in cytoplasm (Bhauso et al. 2014).

Conclusion

Our study concluded that Cr application to soil media signifi-
cantly reduced the physiological and morphological parameters
of maize plants. But the foliar application of mannitol effective-
ly alleviated the Cr-induced toxic effects in maize plants. The
mannitol application enhanced the morphophysiological pa-
rameters, chlorophyll contents, carotenoids, and anti-oxidant
enzymatic activities, while reduced the ROS production and
Cr uptake and translocation both in leaves and root of plants,
which suggested the protective role of mannitol in maize under
heavy metals stress. However, the mechanism of Cr stress alle-
viation by mannitol and its uptake still bears a question mark
which should be further studied.
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