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Abstract
Although the Chinese government emphasizes the significance of public transportation development and encourages green
travel, no empirical study has examined whether the expansion of public transportation facilitates the mitigation of carbon
emissions. To this end, we employ a panel quantile regression to test the endogenous relationship between public transportation
scale and carbon emissions. The results suggest that the effect of public transportation scale on carbon emissions is heterogeneous
across China’s provinces based on the level of carbon emissions. Even so, the results still support a stable inverted U-shaped
relationship between public transportation scale and carbon emissions for provinces with different levels of carbon emissions.
That is, when public transportation scale exceeds a threshold value, the relationship between public transportation and carbon
emissions will turn from positive to negative. Our findings provide evidence advocating for public transportation development
and green travel. It is of great significance for China to respond to climate changes.
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Introduction

As the world’s largest carbon emitter, the rapid growth of
carbon emissions in China over the past 40 years has attracted
global attention (Guo et al. 2018). According to the
International Energy Agency (IEA 2011) and Chang et al.
(2013), the transportation industry is the second biggest ener-
gy consumption industry (accounting for 22% of the world’s
carbon emissions) followed by the power industry (account-
ing for 41% of the world’s carbon emissions) in 2008. It is
widely believed that the Chinese transportation industry will

continue to expand in the next few decades (Yin et al. 2015).
The acceleration of urbanization has led to an expansion of
vehicles, especially private cars, which causes environmental
problems, such as smog and carbon emissions. The Chinese
Ministry of Transportation issued the 13th Five-Year Plan for
urban public transportation in 2016, which emphasized the
significance of public transportation development and pro-
moted the priority development strategy of public transporta-
tion (ChineseMinistry of Transportation 2016)1. Although the
expansion of the scale of public transportation increases ener-
gy consumption and carbon emissions, it may also trigger an
agglomeration effect, which facilitates carbon emission reduc-
tion. However, whether the expansion of public transportation
scale, measured by the amount of urban public transportation
and passenger volume of public transportation, can reduce
pollution and improve environmental quality is still a contro-
versial topic (Beaudoin et al. 2015). The purpose of this study
is to assess the impact of public transportation scale on carbon
emissions based on provincial-level data during the Chinese
industrialization and urbanization process. The results may
provide support for promoting green travel and policy recom-
mendations for carbon emission mitigation.

1 http://zizhan.mot.gov.cn/zfxxgk/bnssj/dlyss/201607/t20160725_2066968.
html
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A growing literature focuses on the environmental impacts
of the transportation scale. Clarke and Ko (1996) found that
volatile organic compound emissions by vehicles accounted for
almost half of all emissions. Thijsse et al. (1999) argued that
traffic emissions accounted for 80–90% of air pollution in ur-
ban areas in Berlin, while accounting for 60% in the suburbs.
Chen and Whalley (2012) found that Taipei’s railway had a
significant effect on air pollution mitigation and could
effectively reduce CO emissions. Lalive et al. (2013) found that
enhancing the frequency of German railway services could
reduce NO, NO2, and CO emissions. In their review of the
existing literature on transportation, Beaudoin et al. (2015)
showed that public transportation had a green reputation, and
it was believed that it could solve congestion and improve air
quality, although the benefit was uncertain in different regions.
Beaudoin and Lin Lawell (2016) found that, although public
transportation might cause common interests to lose, US public
transportation significantly improved air quality from 1991–
2011. Song et al. (2016) used the DEA model and found that
the railway had a positive effect on environmental efficiency.
Xie et al. (2017) found that highway length increased urban
carbon emissions, but that it was only significant in large- and
medium-sized cities. Xie et al. (2018) found that there existed
an inverse U-shaped relationship between traffic density and
smog pollution (PM 2.5) in large- and medium-sized cities,
while it was not significant in small cities.

There is a wide gap between China’s provinces in terms of
economic development, energy resources, and industrial struc-
ture. Provinces with geographical relationships, as well as sim-
ilar policy backgrounds and economic characteristics, are more
likely to exchange goods, labor, and capital (Huang 2018).
Therefore, some studies claim that spatial spillover effects
may exist among Chinese provinces. Some researchers inves-
tigate the driving factors of regional energy intensity or carbon
emissions with spatial approaches to test spatial spillover im-
pacts (e.g., Jiang et al. 2014; Kang et al. 2016; Huang et al.
2017a; Huang et al. 2017c). Furthermore, several scholars have
considered regional disparities and analyzed how impacts differ
at different distribution levels by quantile regression (e.g.,
Marques et al. 2011; You et al. 2015; Hübler 2017).

In recent years, while numerous studies have focused on the
impact of traffic on environmental pollution, few scholars ex-
amined the impact of public transportation scale on carbon
emissions. As public transportation is essential for urbanization
and economic development, it is necessary to study the green
property of the public transportation scale. Therefore, based on
the theoretical analysis of the influencing mechanisms of the
direct emission effect and agglomeration effect, we use the data
of China’s 30 provinces over the period from 2002 to 2015 and
construct an empirical model to explore the nonlinear relation-
ship between public transportation scale and carbon emissions.
Furthermore, considering regional disparities, we conduct a
quantile regression with a panel quantile fixed-effect model to

assess the influence of public transportation on different pro-
vincial carbon emissions throughout the conditional distribu-
tion. This discussion is of great significance for in its response
to climate change issues and the promotion of public transpor-
tation development and green travel.

Our study contributes to the existing literature in the fol-
lowing ways. First, we analyze the influencing mechanisms of
the direct emission effect and the agglomeration effect.
Previous studies have neglected the relationship between pub-
lic transportation scale and carbon emissions and lack rigorous
theoretical analysis about the impact of the public transporta-
tion scale on the environment. Second, although the Chinese
government advocates using public transportation in daily life
and promote green travel, it lacks empirical evidence to sup-
port it. We construct an empirical model, including the public
transportation scale variable. We find that there exists a stable
inverted U-shaped relationship between public transportation
and carbon emissions. That is, when the public transportation
scale exceeds a threshold value, the relationship between pub-
lic transportation and carbon emissions will turn from positive
to negative. Third, we use a new panel quantile regression
model with non-additive fixed effects and assess the impacts
of public transportation on carbon emissions throughout the
conditional distribution, with a particular focus on the prov-
inces with the most and least emissions, which are arguably of
the most interest. From a policy perspective, it is more inter-
esting to understand what happens at the extremes of a
distribution.

The remainder of the paper is organized as follows. The
BTheoretical framework and hypothesis^ section is the theo-
retical framework about the influencing mechanisms and hy-
pothesis. The BMethodology and data^ section introduces the
methodology and data. The BEmpirical analysis^ section pre-
sents the empirical results and discussions. The BConclusion^
section concludes the paper with policy recommendations.

Theoretical framework and hypothesis

Public transportation affects carbon emissions through the di-
rect emission effect and the agglomeration effect (including
the scale effect and the technology effect), which may cause
an inverted U-shaped relationship between public transporta-
tion scale and carbon emissions. The direct emission effect of
public transportation holds that energy consumption increases
as public transportation grows, which leads to an increase in
carbon emissions (see Fig. 1). In the initial stage, although
public transportation scale increases, the convenience of pub-
lic transportation services is not attractive. It has not yet
formed an agglomeration effect. That is, with the growth of
the amount of public transportation and passenger volume, the
corresponding public transportation expansion directly leads
to carbon emission growth in the initial stage.
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With the continuous expansion of public transportation, the
agglomeration effect, which includes the scale effect and the
technology effect, increases. For example, with the emergence
of rail transit, more residents have come to favor the conve-
nience of public transportation. Residents who rely on private
cars may turn to public transportation, which may reduce the
usage and possession of private cars (Zheng et al. 2017).More
residents choose public transportation as a means of travel and
form the scale effect, which will surpass the negative
externality of environmental pollution caused by the
expansion of public transportation. Lu et al. (2007) found that
the rapid growth of vehicles is a major factor in the increase of
carbon emissions. Private cars are a major source of energy
consumption for urban transportation and a major contributor
to urban transportation carbon emissions. Kennedy (2002)
pointed out that public transportation was less energy
intensive and produced lower carbon emissions. Vincent and
Jerram (2006) conducted a scenario simulation and found that
public transportation had a greater potential to reduce green-
house gas than private cars.

Mohring (1972) pointed out that the growth of urban bus
transportation frequency and residents’ use rate could produce
a scale effect. Farsi et al. (2007) confirmed that the establish-
ment and development of multi-modal urban public transpor-
tation could increase economies of scale and scope. Xie et al.
(2018) proposed that the increase in traffic density could lead to
population scale and economic agglomeration. Therefore, the
expansion of the amount of public transportation and passenger
volume can lead to an enhanced scale effect, which may neg-
atively affect carbon emissions. More specifically, the expan-
sion of public transportation can effectively reduce travel costs,
improve regional accessibility, and contribute to the mobility of
populations and production factors (Fan et al. 2012; Beaudoin
et al. 2015). Fujita et al. (2001) indicated that the reduction in
travel costs could bring about population concentration. At the
same time, the expansion of public transportation can facilitate

intra-regional trade and economic expansion as the cost of
transportation declines (Lakshmanan 2011).

Meanwhile, the expansion of public transportation leads to
the continuous gathering of the population, production factors,
and economic activities, which produces a significant agglom-
eration economic effect and enhances total factor productivity
(Brakman et al. 1996). All these changes lead to the technol-
ogy effect. The improvement of total factor productivity en-
hances energy efficiency and reduces pollution emissions (Lin
et al. 2011; Otsuka 2014). Moreover, the agglomeration effect
promotes knowledge spillover and information exchange,
which forms a good innovation environment and improves
technological progress and energy efficiency (Xie et al.
2017). Glaeser and Kahn (2010) proposed that the scale econ-
omy brought about by the agglomeration effect of population
and economic activities is an important mechanism for con-
trolling and reducing energy consumption.

To summarize, we suppose that public transportation does
not reach the optimal scale in the initial stage and the direct
emission effect plays a major role. The expansion of public
transportation will lead to the increase of carbon emissions.
Furthermore, when the scale of public transportation expands
to a certain extent, the agglomeration effect, including the
scale effect and the technology effect, will result in carbon
emission reduction. That is, the carbon emissions caused by
public transportation expansion may be reduced when public
transportation expands to a certain extent. Based on the ana-
lytic mechanisms commented on above, we propose the fol-
lowing hypothesis.

Hypothesis: There exists an inverted U-shaped relationship
between public transportation scale and carbon emissions.

Methodology and data

Methodology

Because public transportation affects carbon emissions
through the direct emission effect and the agglomeration ef-
fect, we establish an empirical model by adding the public
transportation scale variable. Inspired by Xie et al. (2018),
we also add its quadratic term to the model to investigate the
possible nonlinear relationship between public transportation
scale and carbon emissions.

Meanwhile, we consider five control variables in our em-
pirical model. First, following Dietz and Rosa (1994), who
indicated that population factors could affect pollution emis-
sions, we consider population in our model. The absolute
indicator of population size is not scientifically comparable
due to the large discrepancy between the sizes of administra-
tive divisions and the populations of cities (Xie et al. 2018).
We use population density to reflect population in provinces.
Second, to test whether there is an environmental Kuznets

direct emission effect
agglomeration effect

ln public

2lnCO

(scale effect and
technology effect)

Fig. 1 Inverted U-shaped relationship between public transportation
scale and carbon emissions. Notes: lnCO2 denotes CO2 emissions and
lnPublic denotes urban public transportation scale
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curve (EKC) in China, we add per capita GDP (PGDP) and its
quadratic term to our empirical model. Third, we include en-
ergy consumption in our model. Scholars have found that
energy consumption has a significant impact on pollutants
(e.g., Nasir and Rehman 2011; Li et al. 2016). Fourth, we
choose the ratio of total trade to GDP as the proxy variable
of the openness level. Scholars indicate that trade openness
can affect energy intensity through technology spillover,
which has a great influence on carbon emissions (e.g., Yan
2015; Huang et al. 2017b; Huang et al. 2018). Fifth, we con-
sider the impacts of foreign direct investment (FDI) on carbon
emissions. Several studies have analyzed the impact of FDI on
the environment, as developed regions may transfer pollution
emissions to developing regions through FDI (Coughlin and
Segev 2000; Zhang and Zhou 2016; Xie et al. 2018). The
empirical model is as follows:

lnCO2it ¼ α0 þ β1 lnPublicit þ β2 lnPublicit
2

þβ3 lnUrbanit þ β4lnPGDPit þ β5lnPGDP
2
it

þβ6 lnECit þ β7lnOpenit þ β8lnFDIit þ μi þ δt þ εit

ð1Þ

where CO2 is the CO2 emissions; Public denotes the number
of urban public transportation; Urban denotes the population
density; PGDP is the per capita GDP; EC is the energy con-
sumption; Open means the trade openness level, measured by
the total trade volume divided byGDP; and FDI represents the
foreign direct investment.

Furthermore, to investigate the heterogeneity of the effect
of urban public transportation scale on different levels of CO2

emissions, we employ a panel quantile regression model with
the non-additive fixed effects proposed by Powell (2016).
Quantile regression is appropriate when the variables of inter-
est have varying effects at different points of the conditional
distribution of the outcome variable. There has been a grow-
ing body of literature that combines quantile estimation with
panel data. In the mean regression, panel data allows for the
inclusion of fixed effects to capture within-group variation.
Many quantile panel data estimators use an analogous method
and include additive fixed effects. However, the additive fixed
effects change the underlying model. We implement the
quantile regression estimator for panel data (QRPD) with the
non-additive fixed effects introduced by Powell (2016).

The main advantage of this method relative to the existing
quantile estimators with additive fixed effects (αi) is that it
provides estimates of the distribution of lnCO2it given Dit,
instead of lnCO2it − αi given Dit. Powell (2016) noted that
the latter is undesirable. This is because observations at the
top of the (lnCO2it −αi) distribution may be at the bottom of
the lnCO2itdistribution and, therefore, the additive fixed effect
models cannot provide information about the effects of the
policy variables on the outcome distribution. Thus, Powell’s

(2016) method provides point estimates that can be interpreted
in the same way as the ones coming from a cross-sectional
regression. It is also consistent with a small T. The underlying
model is:

lnCO2it ¼ ∑
8

j¼1
D

0
itβ j U

*
it

� �
; ð2Þ

where lnCO2it is the CO2 emissions for province i at year t; βit
is the parameter of interest; and Dit is the set of explanatory
variables (here, we choose eight explanatory variables: public
transportation scale and its quadratic term, GDP per capita and
its quadratic term, urban population density, total energy con-
sumption, FDI, and trade openness). U*

it is the error term that
may be a function of several disturbance terms, some fixed
and some time-varying. The model is linear in terms of pa-

rameters and D
0
itβ τð Þ is strictly increasing in τ. In general, for

the τth quantile of lnCO2it, the quantile regression relies on the
conditional restriction:

P lnCO2it ≤D
0
itβ τð ÞjDit

� �
¼ τ ð3Þ

Equation (3) indicates that the probability of the outcome
variable is smaller than the quantile function, which is the
same for all Dit and equal to τ. Powell’s (2016) QRPD esti-
mator allows this probability to vary by individual and even
within individuals as long as such variation is orthogonal to
the instruments. Thus, QRPD relies on a conditional restric-
tion and an unconditional restriction, letting Di = (Dit,⋯,
DiT):

P lnCO2it ≤D
0
itβ τð ÞjDit

� �
¼ P lnCO2it ≤D

0
isβ τð ÞjDit

� �
;

P lnCO2it ≤D
0
itβ τð Þ

� �
¼ τ

ð4Þ

Powell (2016) develops the estimator in an instrumental
variables context given instruments Zit = (Zi1,⋯, ZiT), but
notes that, if the explanatory variables are exogenous (in
which case Di = Zi), many of the identification conditions are
met trivially. Estimation uses the generalized method of mo-
ments. Sample moments are defined as:

ĝ̂ bð Þ ¼ 1

N
∑
N

i¼1
gi bð Þwithgi bð Þ

¼ 1

T
∑
T

i¼1
Zit−Zi

� �
1 lnCO2it ≤D

0
itb

� �h i� �
ð5Þ

where Zi ¼ 1
T ∑

T
i¼1Zit.

Using Eq. (5), the parameter set is defined as:

B≡ bjτ− 1
N ≤ 1

N ∑
N

t¼1
1 LnCO2it ≤D′

itb
� �

≤τ
� �

for all t. Then,

the parameter of interest is estimated as β̂ τð Þ ¼ argmin
b∈β

ĝ
0
bð Þ
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Âĝ
0
bð Þ for some weighting matrix Â. The model is estimated

using the Markov chain Monte Carlo (MCMC) optimization
method2.

Data

We use a balanced panel dataset of 30 provinces in China from
2002–2015. Tibet, Hong Kong, Macao, and Taiwan are ex-
cluded due to the unavailability of data. The key explanatory
variable in our analysis is urban public transportation. We use
the amount of urban public transportation and passenger vol-
ume of urban public transportation to represent the public
transportation scale. The urban public transportation of each
province includes busses, tramcars, and rail traffic. The data
are taken from the Wind database.

We also incorporate five control variables into the model.
The data on PGDP, FDI, trade openness, and urban population
density are collected from the China Statistical Yearbook. All
monetary value data are calculated at constant prices in 2002.
The data of energy consumption are obtained from the China
Energy Statistical Yearbook. The data of CO2 emissions for 30
provinces are collected from the China Emission Accounts
and Datasets (CEADS)3 according to Shan et al. (2016). For
variable definitions and units, please refer to Table 1.

The statistical descriptions of variables are shown in
Table 2. All variables are expressed in natural logarithms. It
can be seen by comparing the 0.5 quantiles (i.e., the median
values) with the mean values of the variables that the distri-
butions of these variables are distinct. For example, the 0.5
quantile of CO2 emissions is 5.265 and its mean value is
5.243. In addition, the Jarque-Bera (JB) test statistic for nor-
mality confirms rejection of the null hypothesis for all series at
a 1% level of significance. The skewness and kurtosis tests
also indicate that the distribution of sample data is not normal.
These statistic results together reveal that the linear regression
model based on the conditional mean estimation may encoun-
ter challenges (Zhu et al. 2016). These results further inspire
us to employ the quantile regression approach to detect wheth-
er the effect of public transportation on CO2 emissions is het-
erogeneous across economies based on their level of CO2

emissions in this paper.
Figure 2 reports two scatter plots. The first one shows a

positive relationship between the amount of urban public
transportation and carbon emissions, whereas with an increase
in the number of urban public transportation, the positive re-
lationship between them gradually decreases and tends to-
wards negative. As shown in the second plot, a clear associa-
tion between CO2 emissions and the passenger volume of
urban public transportation is plotted as an inverted U-shape.

This result reflects that there is a positive relationship between
the passenger volume of urban public transportation and CO2

emissions when the passenger volume of urban public trans-
portation is at a lower level, while it is negative at higher
levels. This result provides a direct explanation for the con-
struction of nonlinear models.

Empirical analysis

Panel unit root test and panel cointegration results

Before estimating the panel regression models, we test wheth-
er these variables are stationary. If this condition is not met, the
results could show spurious relationships. We check the sta-
tionary properties for all variables in this paper, as well as the
detailed results of the Fisher ADF unit root tests (Maddala and
Wu 1999), Fisher PP tests (Choi 2001), and CIPS test (Pesaran
2007), and these are shown in Table 3. The ADF-Fisher and
Fisher PP tests are designed to test the null hypothesis of the
individual unit roots in the panel versus the stationary alterna-
tive. The CIPS test accounts for the presence of cross-section
dependence.We find that all variables are I (1) series at the 1%
significance level for the sample data.

With a strong evidence that all variables are stationary at
the first difference, the panel cointegration test is applied to
estimate the existence of the long-run equilibrium relationship
among CO2 emissions and their determinants (including pub-
lic transportation, energy use, per capita GDP, urban popula-
tion density, trade openness and FDI). More specifically, the
panel cointegration is checked by the Pedroni (2004) and Kao
(1999) tests, the results of which are presented in Table 4.
According to the Pedroni test for the full data sample, two
out of the four panel-based statistics reveal evidence of panel
cointegration among the variables at a 1% level of signifi-
cance. Additionally, two of the three group test statistics reveal
evidence of panel cointegration at a 1% level of significance.

2 All estimations are done in STATA using David Powell’s quantile estimator
with non-additive fixed effects available at
3 http://www.ceads.net/

Table 1 Variable definition

Variable Explanation Unit

CO2 CO2 emissions Ten thousand tons

Public Urban public transportation number –

Trans Passenger volume of urban public
transportation

Ten thousand people

Urban Urban population density People/km2

PGDP GDP per capita RMB

EC Energy consumption kg of oil equivalent

Open Total amount of import and export
trade (% GDP)

Percent (%)

FDI Foreign direct investment Ten thousand RMB

4004 Environ Sci Pollut Res (2019) 26:4000–4012
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In sum, four of the seven tests suggest that there is panel
cointegration among these variables. The Kao test also sug-
gests that there is panel cointegration at a 1% level of signif-
icance. Overall, there is strong statistical evidence in favor of
panel cointegration between carbon emissions and their driv-
ing factors.

Panel causality test

The existence of a panel long-run cointegration relationship
among CO2 emissions and their determinants suggests that
there must be the Granger causality in at least one direction.
This study employs two approaches of causality testing
among panels to examine the causal relationship between
the impact factors and CO2 emission. The first is to treat the
panel data as one large, stacked set of data, and then perform
the Granger causality test in the standard way, with the excep-
tion of not letting data from one cross-section enter the lagged

values of data from the next cross-section. This method as-
sumes that all coefficients are the same across all cross-sec-
tions. A second approach adopted by Dumitrescu-Hurlin
(2012) makes an extreme opposite assumption, allowing all
coefficients to be different across cross-sections. Because this
paper mainly investigates the relationship between public
transportation and carbon emissions, we only list the test of
causality between public transportation and carbon emissions.
The panel Granger causality results are presented in Table 5.

By using the first approach, we find non-bidirectional
causality from public transportation scale to carbon emis-
sions. Under the framework of Dumitrescu-Hurlin (2012),
we find that our results reject the null hypothesis that
lnPublic does not homogeneously cause lnCO2. Our re-
sults reveal that public transportation has a significant
impact on carbon emissions. Overall, there is strong sta-
tistical evidence in favor of causality running from public
transportation scale to carbon emissions.

Table 2 Descriptive statistics

lnCO2 lnPublic lnTrans lnUrban lnPGDP lnEC lnOpen lnFDI

Mean 5.243 9.137 11.921 7.546 11.335 9.084 2.936 14.946

q(25) 4.761 8.680 11.476 7.219 9.951 8.673 2.192 13.533

q(50) 5.265 9.171 11.960 7.648 11.053 9.120 2.584 15.285

q(75) 5.849 9.751 12.514 7.993 11.854 9.638 3.652 16.386

Maximum 7.348 10.981 13.911 8.749 28.618 10.569 5.171 18.187

Minimum 0.000 6.811 9.059 4.522 8.089 6.400 1.273 10.049

Std. dev. 0.924 0.799 0.870 0.739 3.052 0.760 1.001 1.848

Skewness − 1.219 − 0.476 − 0.528 − 1.199 4.458 − 0.676 0.677 − 0.440
Kurtosis 7.732 3.043 3.511 5.146 24.689 3.767 2.366 2.353

Jarque-Bera 495.931*** 15.884*** 24.074 181.307*** 9623.711 42.268*** 39.111*** 20.869***

Obs. 420 420 420 420 420 420 420 420

Notes: *, **, *** are statistical significance at 10%, 5%, and 1%, respectively

0
2

4
6

8

9 10 11 12 13 14

lnTrans

LnCO2 Fitted values

0
2

4
6

8

7 8 9 10 11

LnPublic

LnCO2 Fitted values

Fig. 2 Scatter plot: relationship of CO2 emission and urban public
transportation number, and the passenger volume of urban public
transportation, respectively. Notes: lnCO2 denotes CO2 emissions and

lnPublic denotes urban public transportation number, and lnTrans
denotes the passenger volume of urban public transportation
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Basic results of panel regression model

Before the model estimation, we test multi-collinearity be-
tween the public transportation scale variable and other ex-
planatory variables, specifically the population scale variable.
It proves that there is no multi-collinearity among explanatory
variables.We conduct our regression using a fixed effect mod-
el, and the results are shown in Table 6. The first column only
considers public transportation as an explanatory variable, the
second column adds the quadratic term of public transporta-
tion into the model, and the third column adds control vari-
ables, such as population density, per capita GDP and its qua-
dratic term, energy consumption, openness, and FDI.

As seen in column (1) of Table 6, public transportation is
significantly positive at the 1% level, which indicates that the
expansion of public transportation increases carbon emis-
sions. This result is similar to that of Xie et al. (2017), who
also focus on the effect of transportation on emissions, which

indicates that construction of transportation infrastructure in-
creases urban carbon emissions. However, Xie et al. (2017)
did not investigate the nonlinear relationship between public
transportation and carbon emissions.

Further, we consider the quadratic term of public transpor-
tation and the results in the second column show that the
coefficient of public transportation is significantly positive,
whereas the quadratic term coefficient is significantly nega-
tive. This result indicates that there is an inverted U-shaped
relationship between public transportation and carbon
emissions. When adding control variables gradually, the
results remain stable. Public transportation has a direct
emission effect and agglomeration effect on carbon
emissions. When the scale of public transportation exceeds
the threshold value, the agglomeration effect may exceed the
direct emission effect, and the expansion of public
transportation will help promote the reduction of carbon
emissions. Chinese provinces should focus on constructing
public transportation systems and rationally expanding
public transportation in order to cross the threshold value
early. The results in Xie et al. (2018) made similar conclu-
sions, as they found an inverted U-shaped relationship

Table 3 Panel unit root test

Level First difference

CIPS ADF PP CIPS ADF PP

lnCO2 − 1.358 (0.894) 4.844 (1.000) 2.529 (1.000) − 3.056*** (0.000) 233.495*** (0.000) 263.316*** (0.000)

lnPublic − 1.956 (0.120) 1.417 (1.000) 1.247 (1.000) − 2.301*** (0.000) 209.123*** (0.000) 239.644*** (0.000)

lnTrans − 1.786 (0.371) 5.687 (1.000) 1.229 (1.000) − 2.738*** (0.000) 174.015*** (0.000) 253.425*** (0.000)

lnEC − 1.65 (0.636) 7.959 (1.000) 0.222 (1.000) − 2.261*** (0.000) 150.586*** (0.000) 166.048*** (0.000)

lnUrban − 1.114 (0.999) 7.876 (1.000) 7.447 (1.000) − 2.184*** (0.010) 354.906*** (0.000) 395.273*** (0.000)

lnPGDP − 1.458 (0.904) 22.815 (1.000) 7.126 (1.000) − 2.682*** (0.000) 97.800*** (0.000) 96.102*** (0.000)

lnOpen − 0.471 (1.000) 38.608 (0.986) 49.162 (0.839) − 2.468*** (0.000) 312.486*** (0.000) 333.505*** (0.000)

lnFDI − 1.788 (0.368) 5.236 (1.000) 1.409 (1.000) − 2.317*** (0.000) 115.496*** (0.000) 169.191*** (0.000)

Note: The significance probabilities for corresponding tests are reported in parentheses

*, **, *** are statistical significance at 10%, 5%, and 1%, respectively

Table 4 Panel cointegration test

Panel 1, the Pedroni test

Test statistics Statistic Prob.

Panel v-statistic (weighted) − 4.581 1.000

Panel ρ-statistic (weighted) 5.252 1.000

Panel PP-statistic (weighted) − 14.649*** 0.000

Panel ADF-statistic (weighted) − 2.433*** 0.008

Group ρ-statistic 7.676 1.000

Group PP-statistic − 23.638*** 0.000

Group ADF-statistic − 1.879*** 0.030

Panel 2, the Kao test

t-statistic Prob.

ADF − 2.526*** 0.006

Notes: *, **, *** are statistical significance at 10%, 5%, and 1%,
respectively

Table 5 Panel causality test

Panel 1: Panel causality test: stacked test

Null hypothesis: F-statistic

lnPublic does not the Granger cause lnCO2 5.299***

lnCO2 does not the Granger cause lnPublic 1.648

Panel 2: Panel causality test: the pairwise
Dumitrescu-Hurlin (2012) test

Zbar-stat.

Null hypothesis:

lnPublic does not homogeneously cause lnCO2 5.459***

lnCO2 does not homogeneously cause lnPublic 4.245***

Notes: *, **, *** are statistical significance at 10%, 5% and 1%,
respectively
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between urban transportation density and smog pollution.
Nevertheless, they did not discuss the impact of public trans-
portation on the environment.

From column (1), considering all control variables, the co-
efficient of population density is negative at the 5% significant
level. This result indicates that the increase in urban population
density can have an agglomeration effect, which helps to reduce
carbon emissions. This result is consistent with the conclusions
of Xie et al. (2018). The technological progress is significantly
positive, indicating that energy consumption leads to an in-
crease in provincial carbon emissions. Increased energy con-
sumption is the main cause of carbon emissions (Wang et al.
2014). However, the per capita GDP and its quadratic term are
not significant, which indicates that the EKC hypothesis is not
obvious. The relationship between economic development and
carbon emissions does not show an inverted U-shaped relation-
ship. Additionally, there is no significant evidence to suggest
that a relationship exists between openness, FDI, and carbon
emissions. Such results may be because the basic regression is
based on conditional mean ordinary least squares (OLS) esti-
mation and does not take into account the heterogeneity of the
distribution, which may result in overestimation or underesti-
mation (Zhu et al. 2016; Hübler 2017). Therefore, we use a
panel quantile model with fixed effects to further clarify the
impact of public transportation on carbon emissions.

Panel quantile results

To investigate whether the effect of public transportation on
CO2 emissions varied across different provinces, we employ a
panel quantile regression with the non-additive fixed effects
proposed by Powell (2016). Quantile regression is able to
describe the entire conditional distribution of the dependent

Table 6 Panel fixed effect regression results (urban public
transportation number)

(1) (2) (3)

ln Public 1.514*** (22.33) 6.696*** (10.87) 4.539*** (8.73)

ln Public2 − 0.287***
(− 8.46)

− 0.238***
(− 8.60)

lnUrban − 0.056** (− 2.21)
lnPGDP − 0.014 (− 0.15)

lnPGDP2 0.001 (0.25)

lnEC 1.131*** (9.38)

lnOpen − 0.006 (− 0.12)

lnFDI 0.027 (0.96)

Constant − 8.590***
(− 13.86)

− 31.820***
(− 11.34)

− 26.409***
(− 11.40)

R2 0.562 0.630 0.771

Obs. 420 420 420

Notes: Z-statistics are in parentheses; ***, **, and * denotes significance
at 1%, 5%, and 10%, respectively
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variable (carbon emissions). Using this model, we are able to
assess the determinants of carbon emissions throughout the

conditional distribution, with a particular focus on the prov-
inces with the most and least emissions—those that are

Fig. 3 Dynamic of panel quantile
regressions coefficients. Notes:
The dashed line represents the
95% confidence interval for the
quantile regression estimator
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arguably of the most interest. The results are reported for the
10th, 20th, 30th, 40th, 50th, 60th, 70th, 80th, and 90th per-
centiles of the conditional emission distribution in Table 7. To
see the dynamics of estimated elasticity for the effects of key
factors on carbon emissions across different quantiles, this
paper lists the curve of the coefficient in Fig. 3. The empirical
results show that the impacts of various factors, particularly
public transportation, on carbon emissions are heterogeneous.

With regard to public transportation, the results show that
the response of carbon emissions to public transportation is
clearly heterogeneous across different quantiles, but they still
support that the expansion of public transportation has a sig-
nificant positive effect on carbon emissions for most quantiles
when controlling for other factors. More specifically, at the
lower quantiles, such as the 10th and 20th quantiles, which
correspond to the provinces with lower carbon emissions, the
estimated coefficients of lnPublic are 1.696 and 1.395 and it is
significant at the 10% level. In contrast, at the higher
quantiles, such as the 70th and 80th quantiles, which corre-
spond to the provinces with higher CO2 emissions, the coef-
ficients of lnPublic are 0.705 and 0.495, which pass the sig-
nificance test at the 10% level, as well. By comparing the
coefficient of lnPublic in the lower quantiles and higher
quantiles, it is revealed that the increase of public transporta-
tion has a much greater effect on increasing carbon emissions
in these provinces with fewer carbon emissions than in those
provinces with higher carbon emissions. As seen in Fig. 3, as
the quantiles increase (i.e., as CO2 emissions increase), the
effect of the public transportation on CO2 emission fluctuates
between 0.5 and 1.75. Furthermore, the empirical results in
Table 7 and Fig. 3 indicate that, at each quantile, the coeffi-
cients of lnPublic2 are negative and significant but different at
each quantile. Even so, overall, this indicates that the relation-
ship between public transportation and CO2 emissions is an
inverted U-shape for China’s provinces with different levels of
carbon emissions. This result means that, when the public
transportation scale exceeds a threshold value, the relationship
between public transportation and carbon emissions will turn
from positive to negative. This finding is in line with the
results of the basic regression and validates the analysis of
the previous mechanism.

For control variables, we find that energy consumption has
a positive impact on carbon emissions, but there exist hetero-
geneous effects on carbon emissions across different quantiles.
In particular, as seen in Fig. 3, as the quantiles increase, the
size of the effect of urban public transportation on CO2 emis-
sions decreases. This result indicates that, for these provinces
with lower carbon emissions, energy use has a greater effect on
increasing carbon emissions than in those provinces with
higher carbon emissions. Overall, the increase in energy con-
sumption causes the increase in carbon emissions. This result
is consistent with that of Zhu et al. (2016), which indicated that
energy consumption would cause more carbon emissions

unless more renewable energy was applied.Moreover, we find
that the coefficient of per capita GDP is positive, and its qua-
dratic term coefficient is negative at each quantile, which
proves the (EKC) hypothesis for Chinese provinces at different
levels of carbon emissions. This finding is in line with the
results of You et al. (2015), who verified the inverted U-
shaped relationship between income and pollutant emissions
at different quantiles by using a panel quantiles model.

Concerning urban population density, we find that the ef-
fects of population density on carbon emissions are heteroge-
neous, as well. A large slope coefficient is observed when
carbon emissions are sufficiently close to the tails of the dis-
tribution, and a small coefficient should be observed when
CO2 emissions are close to the median. That is, for the prov-
inces with smaller carbon emissions and larger carbon emis-
sions, increased population density would increase carbon
emissions, but for provinces with moderate carbon emissions,
increasing population density would help reduce carbon emis-
sions. This result indicates that a higher population density can
relieve carbon emissions in moderate emission provinces.

In addition, it is found that there is clear heterogeneity in
the impact of openness on carbon emissions. In particular, at
lower quantiles, such as the 10th and 20th, the coefficients of
lnOpen are significant and positive at the 10% significance
level. However, at the higher quantiles, such as the 60th,
70th, 80th, and 90th, we find that the coefficients of lnOpen
are significantly negative. This result indicates that, for prov-
inces with lower carbon emissions, openness has a positive
effect on carbon emissions, while it plays a negative role for
provinces with higher carbon emissions.

The impact of FDI on carbon emissions in Chinese prov-
inces is not homogeneous. FDI has a negative effect on carbon
emissions for provinces with lower carbon emissions (e.g., at

Table 8 Panel fixed effect regression results (passenger volume of
public transportation)

(1) (2) (3)

lnTrans 1.032*** (22.85) 5.155*** (9.69) 4.391*** (10.59)

lnTrans2 − 0.177***
(− 7.77)

− 0.178***
(− 10.08)

lnUrban − 0.056** (− 2.32)
lnPGDP 0.019 (0.22)

lnPGDP2 − 0.001 (− 0.16)

lnEC 1.087*** (9.69)

lnOpen 0.019 (0.38)

lnFDI 0.012 (0.46)

Constant − 7.063***
(− 13.11)

− 30.889***
(− 9.95)

− 31.371***
(− 13.12)

R2 0.573 0.631 0.792

Obs. 420 420 420

Notes: Z-statistics are in parentheses; ***, **, and * denotes significance
at 1%, 5%, and 10%, respectively
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the 10th, 20th, and 30th quantiles), whereas it has a positive
effect on carbon emissions for provinces with higher CO2

emissions (e.g., at the 80th and 90th quantiles). This result
supports the halo effect hypothesis in most Chinese provinces,
especially in low emission provinces. Our results are similar to
those of Zhang and Zhou (2016) who found evidence in sup-
port of the halo effect hypothesis in China.

The different results of per capita GDP, trade openness, and
FDI in the panel quantile regression show that our study is
corrected for distributional heterogeneity, which could reduce
the likelihood of under- or over-estimating the relevant coef-
ficients. The results provide evidence that OLS regression
only provides an incomplete explanation of the effect of pub-
lic transportation and control variables on carbon emissions.

Robustness analysis

To evaluate the robustness of our results, we replace the mea-
surement of public transportation with the passenger volume
of urban public transportation (lnTrans). The results are shown
in Table 8. The results show that, regardless of the quadratic
term of public transportation, public transportation has a pos-
itive effect on carbon emissions at a 1% significance level.
Considering the quadratic term of public transportation, there
is a significant, inverted U-shaped relationship between public
transportation and carbon emissions. Thus, the role of public
transportation in reducing emissions by influencing residents’
travel habits or choice of means of transportation is revealed.
The increase in the passenger volume of urban public trans-
portation means that more people choose public transportation
rather than private cars. Other control variables are consistent
with the previous regression results. Although the expansion
of public transportation increases carbon emissions in the
short term, it can facilitate carbon emission reduction once it
exceeds the threshold value.

Using the passenger volume of public transportation to
replace the measurement of public transportation, we re-
estimate the panel quantile model. The results are shown in
Table 9. We still find that, at different quantiles, there is an
inverted U-shaped relationship between public transportation
and carbon emissions. This result illustrates that certain scales
of public transportation can facilitate carbon emissions both
for high and low emission provinces. Our results are robust.

Conclusion

The traffic industry is the second biggest energy consuming
industry, followed by the power industry, and contributes
greatly to Chinese carbon emissions. Although the Chinese
government emphasizes the significance of public transporta-
tion development and encourages green travel, there is no
empirical evidence supporting whether public transportationTa
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facilitates carbon emission mitigation. Therefore, given this
background, examining the impact of public transportation
scale on carbon emissions is of great significance for promot-
ing green travel and public transportation construction. In this
study, we consider the environmental impact mechanisms of
the public transportation scale from the perspective of the
direct emission effect and the agglomeration effect.
Empirically, we investigate the impact of public transportation
on carbon emissions using panel data from 30 provinces in
China from 2002–2015. The results are outlined as follows.

(1) We find that (i) the effect of public transportation scale
on carbon emissions is heterogeneous across China’s provinces
based on the different distribution of carbon emissions. (ii)
There is a stable, inverted U-shaped relationship between pub-
lic transportation and carbon emissions. That is, when the pub-
lic transportation scale exceeds a threshold value, the relation-
ship between public transportation and carbon emissions will
turn from positive to negative. (iii) Under the framework of a
panel quantile model, we find that the inverted U-shaped rela-
tionship is robust, although it varied slightly across the different
provincial carbon emission distribution. Therefore, local gov-
ernments should develop different public transportation con-
struction plans based on their actual carbon emission levels.

(2) There exist heterogeneous effects of control variables
on carbon emissions across different quantiles, as well. More
specifically, for provinces with lower carbon emissions, ener-
gy use has a greater effect on increasing carbon emissions than
in those provinces with higher carbon emissions. Population
density increases carbon emissions in provinces with smaller
carbon emissions and larger carbon emissions, while it has a
negative impact on carbon emissions in moderate carbon
emission provinces.

(3) The EKC hypothesis is confirmed in Chinese provinces
with different levels of carbon emissions. Openness can help
to reduce carbon emissions in provinces with higher carbon
emissions, while it increases carbon emissions in provinces
with lower carbon emissions. However, FDI can reduce car-
bon emissions in provinces with lower carbon emissions. The
results for FDI support the halo effect hypothesis in most
Chinese provinces, especially in low emission provinces.

Based on these findings, we make some policy sugges-
tions. First, the Chinese government should focus on con-
structing and improving the green transportation system and
increasing public transportation investment. There is a stable,
inverted U-shaped relationship between China’s public trans-
portation and carbon emissions. Although the initial public
transportation scale increases carbon emissions, a larger pub-
lic transportation system can certainly help to reduce emis-
sions. Provinces with different emission levels should expand
their public transportation according to their threshold values.

Second, in the process of urbanization, the Chinese gov-
ernment should relax the household registration policy that
restricts population movement. Doing so can enhance

economic scale and facilitate carbon emission reduction
through the agglomeration effect. Meanwhile, the scale of
public transportation should be adapted to the regional popu-
lation density and economic development level. Doing so can
promote provinces to cross the threshold point earlier and
achieve carbon emission reduction.

Finally, the Chinese government and manufacturers should
focus on improving energy efficiency and reducing the direct
carbon emissions of public transportation vehicles. Since the
direct emission effect still plays a major role, it is important to
reduce the direct emissions of public transportation. The gov-
ernment should reasonably formulate emission standards for
public transportation vehicles. These standards should provide
support policies and encourage manufacturers to carry out
technological innovation and promote the application of clean
technology in order to reduce the carbon emissions of public
transportation.

As for relevant research in the future, some topics, such the
impacts of different forms of transportation on the environ-
ment, deserve further study. It will be interesting to explore the
differences in the effects of different kinds of transportation as
China advocates for green development modes.
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