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Abstract
222Rn, 220Rn, and their decay products are significant contributors to background radiation dose. Their concentration level,
pertaining exposure, and consequent dose are prime concerns in indoor environments. The present study was performed in
101 dwellings of different villages of Almora district situated in Kumaun hills of Indian Himalayan belt. Measurement of gases
and decay products were made in three different types of dwellings (i.e., mud, cemented, and stone with plaster) in three seasons
(winter, summer, and rainy). Concentration values for 222Rn and EERCwere found to be varying in the order of winter > summer
> rainy while obtained least in rainy season for the case of 220Rn and EETC. Concentration values for 222Rn and EERC were
found to be lesser for cemented houses. Relative standard deviation of concentration values was found to be higher for the rainy
season. Yearly averaged concentration values for 222Rn, EERC, 220Rn, and EETC were noted to be higher than the global
averages but comparable to some Indian studies. Annual inhalation dose due to 222Rn, 220Rn, and their progeny was found to
be 0.55–4.71 mSv/year with an average value of 2.36 ± 0.83 mSv/year. These values were measured for the first time in the study
area and provide a link for future studies in the dwellings representing higher concentration values.
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Introduction

Naturally occurring 222Rn (radon) and 220Rn (thoron) radio-
nuclides belonging to U-238 and Th-232 decay series are
generated in soil and building materials (UNSCEAR 2000).
These non-reactive gases find their way to the atmosphere
from the source term and may accumulate inside dwellings.
Once in open environment, these gases form decay products
which along with parent gases contribute almost half to the

background natural radiation dose (UNSCEAR 2000, 2010).
Their concentration levels, pertaining exposure, and conse-
quent dose are prime concerns in indoor environments (for
both general population and occupational workers). On one
hand, knowledge gathered towards 222Rn inhalation dosime-
try has good and accurate understanding of facts such as dom-
inant contribution of decay products to dose in comparison to
gases and exposure-dose relationship (Br et al. 2012; Omori
et al. 2016; Singh et al., 2016b; Ramola et al. 2016; Teras et al.
2016). On the other hand, several studies are conducted to
understand other peripheral but crucial aspects e.g.,
concentration-ventilation relationships (Jelle 2012; Mishra
et al. 2010; Vasilyev and Zhukovsky 2013), spatial distribu-
tion patterns (Barros-Diosa et al. 2007; Meisenberg et al.
2016), and validation/prediction models (Mishra et al.
2009a; Wang and Ward 2000). The outcome of any new mea-
surement campaign imparts a contributory input to the
existing knowledge framework. Important agencies, e.g.,
WHO (World Health Organization), UNSCEAR (United
Nations Scientific Committee on the Effects of Atomic
Radiation), and NSRP (National Symposium on Radiation
Physics), also focus on the issue of 222Rn inhalation hazard
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by publishing reports and issuing guidelines for sensitizing
public and government. Recently, the reference level of indoor
222Rn has been reduced from 200 to 100 Bq/m3 (WHO 2009).

In recent times, lot of studies have been performedworld-over
focusing on the development of advanced instrumentation for
measurement of concentration of indoor and outdoor 222Rn,
220Rn, and their decay product concentration (Irlinger et al.
2014; Mayya et al. 2010; Mishra et al. 2008, 2009b; Park et al.
2018). Studies have also been conducted in this domain targeting
development of models (Jelle et al. 2011, 2012; Jeon et al. 2017;
Kumar et al. 2014; Sahoo et al. 2011) for specific contexts. In
India, an exponential growth of similar studies can be noticed in
the past two decades. Due to large variations in climatic condi-
tions, socio-economic perspectives and geological influences;
measurements performed at different regions/environmental con-
ditions form an important basis for refined understanding of is-
sues related to 222Rn/220Rn inhalation dosimetry. Whereas aver-
age global indoor concentration of 222Rn and 220Rn is measured
to be 40 and 10 Bq/m3, respectively (UNSCEAR 2000), these
values may increase to 200 Bq/m3 as well (Ramola et al. 2016).
For India, a strong dependency of concentration levels with ven-
tilation and source term has been highlighted (Mishra et al.
2009a; Sahoo and Mayya 2010). Wide differences in source
term, climatic conditions, dwelling types, and ventilation patterns
necessitate measurements in different environments. Studies
have been conducted in hot as well as cold (Bajwa et al. 2016;
Singh et al. 2016a; Prasad et al. 2015) environments, different
dwelling types (Singh et al., 2016a; Singh et al., 2016b; Prasad
et al., 2016a; Ramola et al. 2016; Sonkawade et al. 2008), and
varying source term (Prasad et al. 2008a; Harris et al. 2006;
Ryzhakova 2012; Sahoo and Mayya 2010) conditions.
Additionally, studies such as exhalation potential of the source
(Sahoo et al. 2010), soil depth profiling (Içhedef et al. 2013), and
computational fluid dynamics–based predictions (Agarwal et al.
2016, 2014; Chauhan et al. 2015, 2014) have also been per-
formed. The contribution of exposure from building materials
is assumed to be negligible if they contain low radioactivity
and exhalation rates than soil (Sahoo et al. 2011). The contribu-
tion of 220Rn for inhalation dosimetry in the Indian context has
also been recognized (Joshi et al. 2010; Joshi et al. 2011; Ramola
et al. 2010; Sahoo et al. 2014).

Although techniques arewell established for themeasurement
of 222Rn/220Rn gas, techniques and methodology for measuring
decay product’s concentration are still evolving. Deposition-
based direct 222Rn/220Rn progeny sensors (DRPS/DTPS) can
be used for direct time–integrated measurement of decay product
concentration (Mishra et al. 2009b; Mishra and Mayya 2008;
Sharma et al. 2018). Exposure of decay products is estimated
from the product of potential alpha energy concentration
(PAEC) and exposure time. The conventional method of
converting 222Rn concentration to PAEC (equilibrium factor ap-
proach) is limited due to the uncertainty in the equilibrium factors
(Nikezic and Yu 2005). These decay products can be directly

measured employing DRPS/DTPS in terms of equilibrium
equivalent concentrations (EECs). In comparison to 222Rn, in-
door 220Rn concentration distribution is highly non-uniform. In
such a case, single point gaseous measurements cannot be relied
as summary indices representing the room conditions. By mea-
suring decay products, DTPS avoids the uncertainty due to non-
uniform concentration profile and relatively larger variation in
equilibrium factor for 220Rn. Further equilibrium factors can be
estimated using corroborated gaseous and decay product concen-
trations. Studies have shown that the equilibrium factor can be
quite different from 0.4 and 0.02 (UNSCEAR 2008) provided
for 222Rn and 220Rn dosimetry (Singh et al., 2016b; Prasad et al.
2016b; Ramola et al. 2003, 2016). It is important to assess var-
iations in equilibrium factor for an unexplored region, preferably
offering varied background conditions.

Field campaigns interpret the inferences based on the results
obtained from measurements of indoor concentration levels. It
is essential to expand the database by studying new regions/
probing relevant issues. Indian Himalayan belt is one such re-
gion which is unique due to its geology, climate, and socio-
economic perspectives (Singh et al. 2016a; Prasad et al.
2016a, b; Ramola et al. 2013, 2016). Studies performed in this
belt (Singh et al. 2016a; Ramola et al., 2005; Prasad et al. 2015)
have not covered the contributory factors responsible for main-
taining indoor levels. Singh et al. 2016a measured 222Rn/220Rn
and decay products in Almora district of this belt for winter
season only and underlined the need for extensive measure-
ments for this thoron-rich region. This study presents results
of a year-long measurement campaign conducted in Almora
district of Kumaun Himalayan region, Uttarakhand, India.
Activity concentration of 222Rn, 220Rn, and their decay prod-
ucts was measured in 101 dwellings of differing construction
materials situated at different villages. This study was conduct-
ed in three different seasons viz. winter, summer, and rainy.
Yearly averaged concentration levels, dose calculations, season-
al variations, and dependencies on the type of construction
material have been discussed. These first time elaborative re-
sults for this crucial Indian region provide a link for future
studies apart from gaining useful understanding at present.

Topography and experimental techniques

Geology of study area and house statistics

This study was conducted in the dwellings of Almora district
(latitude: 29°36′ N, longitude: 79°30′ E) in Kumaun Himalaya
of Uttarakhand (Fig. 1). This hilly region is covered by the
Himalayan range and its elevation varies from 750 to 1950 m
with the average elevation of 1861 m above the sea level. The
study area consists of highly mylonitised porphyritic, granite,
quartz porphyry, schist phylites slates, and quartzites (Prasad
et al. 2008b). The crystalline zone of Almora is divided into
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two distinct lithologic units: (i) Sarju formation, represented by
the porphyries, migmatities, schists, and micaceous quartzites;
(ii) Duram formation represented by quartzites (Valdia 1963).
The geology and composition of soil of this region are expected
to be different from other regions of Himalayan belt. Apart from
the geology, radioactive source term and emanation transport
determine the exhalation potential of soil and rocks. Dwellings
inAlmora district aremostlymade up bymud, stonewith cement
plaster, and brick with cement plaster. The mud houses are the
oldest constructed dwellings as comparedwith stonewith cement
plaster and brick with cement plaster and are relatively poorly
ventilated. In contrast, cemented houses are ventilated and con-
structed of concrete which includes calcite and some other min-
erals. A pre-survey for measuring outdoor gamma radiation
levels was conducted covering the entire Almora district.
Consequently, villages/blocks were segregated into three differ-
ent groups/gamma radiation zones (≤ 0.01, 0.11–0.20, and ≥
0.20 μSv/h). A number of dwellings of different construction
types (mud, stone with cement plaster, and brick with cement
plaster) in each zone were then selected by ensuring statistical
compliances. In all, a total of 101 dwellings categorized as mud
houses, stone with cemented houses, and cemented houses were
fixed for elaborative measurements (in villages shown in Fig. 1).

Experimental techniques

Measurement of gas concentration

Single entry pin-hole–based dosimeter technique, indigenously
developed by Bhabha Atomic Research Centre (BARC), was

used for the measurement of indoor 222Rn and 220Rn concentra-
tions (Sahoo et al. 2013). The schematic diagram for Pin-hole
dosimeter is shown in Fig. 2. Through the single entry face, gas
enters (through glass fiber filter paper) to the first chamber name-
ly B222Rn + 220Rn^ compartment and subsequently diffuses
(through pin holes) to the second chamber called B222Rn^ cham-
ber. The LR-115 detector films are fixed at the end of each
compartment to register the track formed by alpha particle emit-
ted from 222Rn, 220Rn, and their decay products. The first com-
partment measures both 222Rn and 220Rn while the second mea-
sures only 222Rn. Details about this technique and device are
discussed extensively in Sahoo et al. 2013. These devices (pin-
hole dosimeters) have been used in several studies in recent past
(Singh et al. 2016a; Meisenberg et al. 2016; Singh et al., 2016b;
Ramola et al. 2016).

Fig. 1 Locations of all villages
selected for measurements

Fig. 2 Schematic diagram of single entry pin-hole dosimeter
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Measurement of decay product concentration

Measurement of 222Rn and 220Rn decay product was carried
out using Direct 222Rn Progeny Sensor (DRPS) and Direct
220Rn Progeny Sensor (DTPS), respectively. These devices
comprise of LR115 detector film and an aluminized mylar
coupled in a cassette-type assembly. The thickness (37 μm
thickness for DRPS, 50 μm thickness for DTPS) of mylar is
selected so as to register tracks due to alpha particles emitted
from 214Po (α energy 7.69 MeV) and 212Po (α energy
8.78 MeV) in the case of 222Rn progeny detection and from
212Po (α energy 8.78 MeV) in the case of 220Rn progeny
detection (see Fig. 3).

Equilibrium equivalent concentration of the decay products
in the air can be calculated from the tracks counted using
sensitivity and calibration factors. Details of technique, cali-
bration, and conversion factors can be found elsewhere
(Mishra et al. 2010, 2009a, b; Mishra and Mayya 2008).
These sensors have been routinely used in different studies
in recent past (Bajwa et al. 2016; Singh et al. 2016a; Mishra
et al. 2014; Singh et al. 2016b; Ramola et al. 2016).

Estimation of equilibrium factors for 222Rn and 220Rn

Equilibrium equivalent concentration (EEC) of 222Rn/220Rn is
equal to that quantity of 222Rn/220Rn which is in secular equi-
librium with its decay products giving equivalent potential
alpha energy concentration (PAEC) for the progeny nuclides
actually present in the atmosphere. EERC and EETC used in
the present context are the total EEC of 222Rn and 220Rn mea-
sured by DRPS and DTPS, respectively. The equilibrium fac-
tor is defined as the ratio of EERC/EETC to the 222Rn/220Rn
concentration in the environment. The equilibrium factors for
222Rn (FRn) and

220Rn (FTn) were calculated by using Eqs. (1)
and (2) (UNSCEAR 2000).

FRn ¼ EERC
CR

ð1Þ

FTn ¼ EETC
CT

ð2Þ

where CR and CT are the concentrations of
222Rn and 220Rn,

respectively, measured by the single entry pin-hole–based
dosimeter.

Estimation of total annual inhalation dose

The total annual inhalation dose (D/AID) due to the exposure
of indoor 222Rn, 220Rn, and their progeny can be obtained
from the following equation (UNSCEAR 2000, Ramola
et al. 2016).

D mSv=yð Þ ¼ 0:17þ 9� FRð Þ � CR þ 0:11þ 40� FTð Þ � CTf g
� 8760� 0:8� 10−6

ð3Þ

On substituting the value of FRn and FTn from Eqs. (1) and
(2), this equation gets converted to

AID mSv=yð Þ ¼ 0:17� CR þ 9� EERC þ 0:11� CT þ 40� EETCð Þ
� 8760� 0:8� 10−6

ð4Þ

In the present study, the total annual inhalation dose (AID)
due to the exposure of indoor 222Rn, 220Rn, and their progeny
has been calculated by using Eq. (4).

Annual effective dose (AED) due to the exposure of 222Rn,
220Rn, and their progeny can be calculated by using Eqs. (5)
and (6).

AEDR mSv=yð Þ ¼ EERC Bq=m3
� �� 8760 h� 0:8

� 9 nSv Bq:h=m3
� �−1 � 10−6 ð5Þ

AEDT mSv=yð Þ ¼ EETC Bq=m3
� �� 8760 h� 0:8

� 40 nSv Bq:h=m3
� �−1 � 10−6 ð6Þ

where EERC and EETC are the equilibrium equivalent con-
centrations of 222Rn and 220Rn, respectively, for the dwellings
of the study area. The dose conversion factors are 0.17 and 9
for 222Rn and its progeny concentrations and 0.11 and 40 for
220Rn and its progeny concentrations, respectively
(UNSCEAR 2000). The indoor occupancy factor was taken
as 0.8 as for the study area (UNSCEAR 1993). The multipli-
cation factor 10−6 is used for unit conversion from

Fig. 3 Sketch of direct 222Rn/220Rn progeny sensors (DRPS/DTPS)
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nanosieverts to millisieverts. Since the equilibrium factors
vary with environmental factors, these factors have been esti-
mated independently for individual dwellings.

Results and discussion

As already discussed, 222Rn, 220Rn, and associated decay
products are expected to vary in differing seasons,

dwelling types, and geographic conditions. Air exchange
rate plays a vital role in seasonal differences while source
term is linked with types of building material and soil.
Although such variations have been qualitatively studied
in several studies (Cosma et al. 2013), the results cannot
be extrapolated to a specific region/context. This section
discusses the results obtained from measurements of the
above mentioned quantities for the study region.
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Fig. 4 a 222Rn frequency distribution curve for all seasons. b 220Rn frequency distribution curve for all seasons. c EERC frequency distribution curve for
all seasons. d EETC frequency distribution curve for all seasons

Table 1 Statistical data of seasonal variation for indoor 222Rn, 220Rn, and their progeny

Statistical parameters 222Rn (Bq/m3) 220Rn (Bq/m3) EERC (Bq/m3) EETC (Bq/m3)

W S R W S R W S R W S R

Range 28–217 27–199 14–175 13–213 9–182 5–151 8–76 6–65 3–54 0.01–5.36 0.02–4.54 0.01–4.02

AM ± SD 89 ± 35 83 ± 35 75 ± 34 73 ± 43 69 ± 37 53 ± 35 30 ± 13 27 ± 12 21 ± 11 2.30 ± 1.42 2.08 ± 1.31 1.39 ± 0.86

RSD 0.39 0.42 0.46 0.59 0.53 0.66 0.42 0.45 0.51 0.62 0.63 0.62

GM, GSD 82, 1.47 77, 1.5 67, 1.6 61, 1.82 59, 1.81 42, 2.11 28, 1.61 25, 1.66 19, 1.77 1.53, 3.24 1.62, 2.82 0.98, 2.89

W winter, S summer, R rainy
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Effect of seasons

Four-month blocks (November to February—winter, March
to June—summer, and July to October—rainy) were selected
as representing three consecutive seasons (W, S, R) for a year.
Daily mean temperature ranges for these blocks (i.e., winter,
summer, and rainy) are 13.3–19.4, 21.1–31.1, and 24.5–
28.7 °C, respectively. Both gas and progeny dosimeters were
deployed in dwellings for each of the above seasons. Figure 4
(a, b) and (c, d) represent the frequency distribution of mea-
sured 222Rn-220Rn concentration and EERC-EETC concentra-
tion, respectively, in all dwellings for respective seasons.

As can be seen, frequency distribution curves for both
222Rn and 220Rn followed lognormal distribution pattern for
all seasons. A lognormal distribution function was conse-
quently fitted for individual frequency distributions.
Parameters for fitted distributions (geometric mean, GM and
geometric standard deviation, GSD) are shown in Table 1.
This table also represents arithmetic mean and standard devi-
ation (AM ± SD) and relative standard deviation (RSD) cal-
culated for these distributions. Average values (AM, GM) for
the case of 222Rn were found to be varying in the order of
winter > summer > rainy, while dispersion parameters (GSD,
RSD) were seen to be relatively higher during the rainy

season. 222Rn concentrations measured for this region were
found to be comparable to other studies conducted in nearby
regions (Prasad et al. 2016a, b) as well as with worldwide and
Indian average (UNSCEAR 2000). Smaller difference for
winter and summer season is possibly due to the offset of
ventilation conditions of these seasons. In contrast to general
ventilation patterns of cold regions, doors and windows are
opened during daytime in winters to allow warm sunlight
inside dwellings (except during extreme events such as snow-
fall). This makes ventilation rates for summers (where air
mixing is higher) and winters more or less similar. The num-
ber of houses in the higher concentration range (> 100 Bq/m3

for radon) was found to be more for winters (28) compared to
summer (24) and rainy season (24). The increase in dispersion
parameters for the rainy season can be explained on the basis
of the difference in source term effects for different dwellings.
In the rainy season, water fills the pores of soil decreasing
exhalation potential and also affects the emission from build-
ingmaterial under moist conditions. Such an effect is expected
to be different for different types of dwellings thereby increas-
ing dispersion in the rainy season.

For 220Rn, relatively lesser effect of ventilation (comparing
winter and summer values) was noticed. But similar to the
case of 222Rn, rainy season measured values were

Fig. 5 a Box-Whisker plot of 222Rn and 220Rn variations. b Box-Whisker plot of EERC and EETC variations

Table 2 Statistical data of indoor 222Rn, 220Rn, and their progeny for different types of dwellings

Statistical
parameters

222Rn (Bq/m3) 220Rn (Bq/m3) EERC (Bq/m3) EETC (Bq/m3)

M C S M C S M C S M C S

Range 55–184 27–95 40–139 22–182 14–74 9–156 8–55 7–39 11–42. 0.88–4.08 0.02–0.48 0.84–2.51

AM ± SD 101 ± 36 62 ± 16 81 ± 24 86 ± 39 42 ± 17 64 ± 33 31 ± 10 21 ± 9 27 ± 8 2.66 ± 0.80 0.21 ± 0.08 1.93 ± 0.42

RSD 0.35 0.26 0.3 0.45 0.39 0.52 0.33 0.42 0.31 0.3 0.39 0.22

GM, GSD 96, 1.42 60, 1.31 77, 1.36 76, 1.68 39, 1.56 56, 1.80 29, 1.47 19, 1.63 26, 1.39 2.53, 1.42 0.19, 1.74 1.87, 1.29

M mud, C cement, S stone with cement
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significantly lesser. The difference in ventilation effects on
222Rn and 220Rn concentration has also been highlighted in
other studies (Omari et al. 2016; Prasad et al. 2015). Similar
arguments as used in the case of 222Rn explain the lower
values and higher dispersion observed in rains. For the case
of decay products, frequency distribution plots of EERC and
EETC (shown in Fig. 4 c, d) are also lognormal distributed.
Mathematically calculated parameters (AM ± SD, RSD) and
fit-estimated GM are shown in Table 1. As can be noted,
seasonal variations in EERC and EETC parameters were sim-
ilar to the case for that of 222Rn and 220Rn. Maximum values
for average parameters were obtained in winters as expected.
Additionally, values of parameters (range as well as average
values) decreased slightly for the rainy season. Increased RSD
in the rainy season for EERC and EETC follows the same
trend as for their parent gases.

Effect of building material

Next, yearly data was segregated on the basis of building type
in order to interpret the effect of building material on indoor
concentration levels. As already mentioned, sampling was
performed in three types of dwellings viz. mud house,
cemented house, and stone with cemented house. In each of
these houses, sensors were exposed in all three seasons i.e.,
three readings for each house for an entire year. The distribu-
tion of 222Rn, 220Rn, EERC, and EETC for this case has been
represented in Fig. 5 (a) and (b) and average parameters are
shown in Table 3.

For 222Rn, average concentration values were found to be
significantly lower in cemented houses. Mud houses resulted
in higher values of average parameters due to the effect of the
source term. In the case of 220Rn, lower average concentration
values were found in the cemented house, similar to the trend
for 222Rn. This trend of lowest averaged values for cemented
houses was also followed for EERC and EETC (see Fig. 5 (b)
and Table 2). Significantly high exhalation rates and radium/

thorium content for the soil (used as mud in construction of
these houses) samples collected from some locations (Semwal
et al. 2018) can be attributed to higher values of 222Rn, 220Rn,
EERC, and EETC. Apart from that, improper/bare flooring for
these houses also contributes towards higher diffusional and
convectional flux. In conjunction with the previous section,
RSD was also estimated for these cases. RSD was also ob-
served to be affected by the change of building material. It is
expected as measured values for each set of dwelling type
comprise rainy season concentration values. Lesser concentra-
tion values in the cemented house may be attributed to the fact
that there is a coating of cement on the floor thereby decreas-
ing the radiation inward flux affecting indoor concentration
(Singh et al. 2016a).

Inferences from yearly data

After studying the effect of seasons and building material on
the measured concentration values, the entire year data was
pooled for further deductions. In this way, available 303 data
points (three measured values for each dwelling) were
grouped for yearly analysis for the study region.

Figure 6 represents the frequency distribution curve for
222Rn and 220Rn concentration measured throughout the year.
The range of concentration and mean values (calculated and
estimated from fitting) are presented in Table 3. These values
are compared with results and parameters (wherever
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Fig. 6 Frequency distribution
curve for annual 222Rn and 220Rn
concentration

Table 3 Annual statistical data of 222Rn, 220Rn, and their progeny

Statistical parameters 222Rn
(Bq/m3)

220Rn
(Bq/m3)

EERC
(Bq/m3)

EETC
(Bq/m3)

Range 14–217 5–213 3–76 0.01–5.36

AM ± SD 82 ± 35 65 ± 39 26 ± 13 1.92 ± 1.28

GM, GSD 75, 1.53 53, 1.96 23, 1.72 1.30, 3.03
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applicable) from other studies conducted in recent times for
different Indian regions in Table 4.

As can be seen from Tables 3 and 4, average values of
222Rn, 220Rn, EERC, and EETC concentration measured for
the study region are higher than the global averages but also
comparable to those obtained from other studies in recent
times. Observed 222Rn concentration range (i.e., 14–217 Bq/
m3) for this study is distinctly towards the upper range
reflected in maximum mean value (82 ± 35 Bq/m3).
Measured 220Rn concentration (65 ± 39 Bq/m3), EERC (26
± 13 Bq/m3), and EETC (1.92 ± 1.28) for the study region
was found to be comparable to other study regions but slightly
tending towards the higher values. This observation is also
consistent when specifically comparing the results of this
work with those from measurements made in other

Himalayan/hilly regions. In the absence of data on
emanation/exhalation potential and environmental factors, it
is not possible to dwell further into the comparative analysis.
Nevertheless, the values measured for this region in corrobo-
ration with the conclusions of other studies reaffirm the sig-
nificance of Indian Himalayan belt with respect to background
radon/thoron measurements.

A close look at Fig. 6 suggests that indoor 222Rn and 220Rn
concentration crossed 100 Bq/m3 for a significant number of
houses. To dwell further, Pie charts (Fig. 7) are drawn for
measured yearly gas and decay product concentration values.
It can be visualized from these plots that a total of 60.07,
20.79, 3.96, and 0.03% and 38.61, 15.84, 2.31, and 0.66%
houses correspond to measurement ranges 50–100, 100–
150, 150–200, and 200–250 Bq/m3 of 222Rn and 220Rn

Table 4 Comparison of results of the present study with recent studies conducted for Indian regions

222Rn concentration range
(Bq/m3), AM

220Rn concentration range
(Bq/m3), AM

EERC range, AM
(Bq/m3)

EETC range,
AM
(Bq/m3)

Location References

10–82 (33) 7–180 (79) – – Haryana Kumar et al. (2015)

44–157 44–240 10–63 1–5 Himanchal Pradesh Bajwa et al. (2016)

21–94 (55) 17–125 (39) 13–57 (25) 0.5–3.5 (1.8) Punjab Bangotra et al. (2015)

25.5–208.5 (63.8) 6.7–290 (89.6) 12.3–61.2 (29.3) 1.11–6.31 (2.74) Himachal Pradesh Singh et al. (2016b)

21.6–119.5 13.5–159 7.4–45.7 0.4–4.6 Punjab Saini et al. (2016)

27–148 (54) 5–174 (43) 7.6–48.6 (19.5) 0.6–4.6 (1.9) Garhwal Himalaya Ramola et al. (2016)

9–58 (28) 23–185 (83) 5–38 (18) 0.48–5.49 (1.69) Jammu and Kashmir Himalaya Sharma et al. (2018)

14–217 (82) 5–213 (65) 3–76 (26) 0.01–5.36 (1.92) Almora Present study

Fig. 7 Pie chart for concentration
of 222Rn, 220Rn, and their decay
products
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concentration, respectively. For the case of 222Rn, measured
concentration values were higher than the reference level of
100 Bq/m3 (WHO 2009) in 25% dwellings of the study re-
gion. For 220Rn, 19% and 38% of dwellings showed concen-
tration values higher than100 and 50 Bq/m3 (arbitrary chosen
references), respectively. For EERC and EETC, 49% and 50%
of dwellings were observed having concentrations higher than
yearly averaged 26 and 1.92 (median) value, respectively.
220Rn activity concentration and EETC were found to be sig-
nificantly higher than global indoor average for this region.
This is due to high thoron surface exhalation rates (0.65–
6.43 Bq/m2/sec) and thorium content (27.46–89.00 Bq/kg)
measured from soil samples collected from some of the loca-
tions from this region (Semwal et al. 2018). A separate elab-
orative study is being conducted in this study region specifi-
cally targeting high concentration houses to investigate the
reason for the same. As a final step, equilibrium factor and
annual effective doses (due to radon, thoron, and combined)
are estimated for the study region (using Eqs. (1), (2), (3), (4),
and (5)). These values are summarized in the form of Table 5.

Although EF for 222Rn and its progeny were found to vary
from 0.12–0.82, yearly averaged value (i.e., 0.34 ± 0.14) was
close to the reference value (0.4) for the outdoor environment.
On the contrary, EF for 220Rn and its decay products was
estimated to be a bit higher (0.037 ± 0.035) in comparison to
its reference value (0.02) but with large uncertainty. Annual
effective dose due to 222Rn and 220Rn calculated for the study
region was found to be 1.67 ± 0.64 and 0.54 ± 0.29 mSv/y,
respectively. Annual inhalation dose due to 222Rn, 220Rn,
and their progeny were found to be 0.55–4.71 mSv/y with
an average value of 2.36 ± 0.83. These values (i.e., EF and
AID) are also compared with deductions made in recent stud-
ies carried out in nearby regions in Table 6. It can be seen that

these values are comparable to values obtained from other
studies and compilation report (ICRP 2011).

Conclusions

This study was conducted in 101 dwellings of different con-
struction materials situated at different villages in Almora
District, Uttarakhand, located in Indian Himalayan belt.
222Rn, 220Rn, and their decay product’s concentration were
measured by using a single entry pin-hole–based dosimeter
and DRPS/DTPS, respectively. The measurement campaign
was conducted in the entire year covering winter, summer, and
rainy seasons. For the case of 222Rn, average concentration
values were found higher in winter season followed by sum-
mer and rainy season. The role of ventilation and source flux
reduction in rains has been discussed. For 220Rn, concentra-
tion values were lesser for rainy season but similar for other
two seasons. An interesting observation pertains to higher
relative standard deviation (RSD) noticeable for rainy season
for both 222Rn and 220Rn. Reduction of the source term in
rains is expected to be different for different construction ma-
terial thereby increasing dispersion characteristics. Seasonal
variations of EERC and EETC were found to be following
their parent gases. For 222Rn/220Rn (and EERC/ EETC), av-
erage concentration values were found to be varying as per the
order: mud > stone with stone > cement houses based on the
construction material of dwellings. Lesser concentration
values in the cemented house may be due to the coating of
cement on the floor causing a decrease in the radiation inward
flux. Twenty-five percent dwellings of study region were
found to be having 222Rn concentration more than 100 Bq/
m3 averaged for the entire year. For 220Rn, 19% and 38% of

Table 5 Range and the average value of equilibrium factor and annual inhalation dose due to indoor 222Rn/220Rn

Equilibrium factor Annual effective dose (mSv/y) AID (mSv/y)

222Rn and its progeny 220Rn and its progeny 222Rn and its progeny 220Rn and its progeny

Range 0.12–0.82 0.001–0.24 0.42–3.49 0.004–1.14 0.55–4.71

AM ± SD 0.34 ± 0.14 0.037 ± 0.035 1.67 ± 0.64 0.54 ± 0.29 2.36 ± 0.83

Table 6 Comparison of
equilibrium factor and dose
results of the present study with
other Indian studies

Equilibrium factor range, AM AID, AM

(mSv/y)

References

222Rn and its progeny 220Rn and its progeny

0.10–0.62 (0.4) 0.02–0.17 (0.07) 0.8–4.6, 1.8 Ramola et al. (2016)

0.12–0.77 (0.50) 0.01–0.34 (0.05) – Singh et al. (2016b)

0.15–0.95 (0.45) 0.01–0.16 (0.04) 1.1–4.1 (2.4) Saini et al. (2016)

0.12–0.82 (0.34) 0.001–0.24 (0.037) 0.55–4.71 (2.36) Present study
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dwellings showed concentration values higher than 100 Bq/
m3 and 50 Bq/m3, respectively. Measured EERC and EETC
were found to be higher than yearly averaged value i.e., 26 and
1.92 for 49% and 50% dwellings, respectively. High exhala-
tion potential and radioactivity content in the soil samples
collected from some locations of the study region could be
attributed to the observed concentration values. Yearly aver-
aged value of equilibrium factor (EF) estimated for 222Rn and
its progeny and 220Rn and its progeny was 0.34 ± 0.14 and
0.037 ± 0.035, respectively. Average effective dose due to
222Rn and 220Rn was calculated to be 1.67 ± 0.64 and 0.54 ±
0.29 mSv/y, respectively. Annual inhalation dose due to
222Rn, 220Rn, and their progeny was found to be 0.55–
4.71 mSv/y with an average value of 2.36 ± 0.83 mSv/y.
These radiation doses are comparable with other Indian results
in nearby regions in recent times. The elaborative findings
from this study are important for Indian database for indoor
222Rn/220Rn exposure.
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