
RESEARCH ARTICLE

Statistical assessment of nonpoint source pollution in agricultural
watersheds in the Lower Grand River watershed, MO, USA

Fadhil K. Jabbar1,2 & Katherine Grote1

Received: 28 February 2018 /Accepted: 5 November 2018 /Published online: 14 November 2018
# The Author(s) 2018

Abstract
The water quality in many Midwestern streams and lakes is negatively impacted by agricultural activities. Although the agri-
cultural inputs that degrade water quality are well known, the impact of these inputs varies as a function of geologic and
topographic parameters. To better understand how a range of land use, geologic, and topographic factors affect water quality
in Midwestern watersheds, we sampled surface water quality parameters, including nitrate, phosphate, dissolved oxygen, tur-
bidity, bacteria, pH, specific conductance, temperature, and biotic index (BI) in 35 independent sub-watersheds within the Lower
Grand River Watershed in northern Missouri. For each sub-watershed, the land use/land cover, soil texture, depth to bedrock,
depth to the water table, recent precipitation area, total stream length, watershed shape/relief ratio, topographic complexity, mean
elevation, and slope were determined. Water quality sampling was conducted twice: in the spring and in the late summer/early
fall. A pairwise comparison of water quality parameters acquired in the fall and spring showed that each of these factors varies
considerably with season, suggesting that the timing is critical when comparing water quality indicators. Correlation analysis
between water quality indicators and watershed characteristics revealed that both geologic and land use characteristics correlated
significantly with water quality parameters. The water quality index had the highest correlation with the biotic index during the
spring, implying that the lower water quality conditions observed in the spring might be more representative of the longer-term
water quality conditions in these watersheds than the higher quality conditions observed in the fall. An assessment of macroin-
vertebrates indicated that the biotic index was primarily influenced by nutrient loading due to excessive amounts of phosphorus
(P) and nitrogen (N) discharge from agricultural land uses. The PCA analysis found a correlation between turbidity, E. coli, and
BI, suggesting that livestock grazing may adversely affect the water quality in this watershed. Moreover, this analysis found that
N, P, and SC contribute greatly to the observedwater quality variability. The results of this study can be used to improve decision-
making strategies to improve water quality for the entire river basin.
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analysis . PCA

Introduction

Nonpoint source (NPS) pollution from agricultural activities
has become the main source of contamination in surface water

in the USA. In much of the US Midwest, agriculture was
identified as the most likely source to cause impairment in
the assessed rivers and streams (USEPA 2013). The primary
pollutants from agricultural activities are excessive inputs of
nutrients through commercial fertilizer and manure (Ahearn
et al. 2005; Fournier et al. 2017; Chen et al. 2017; Kourgialas
et al. 2017), runoff from pesticides and herbicides
(Hildebrandt et al. 2008; Sangchan et al. 2013; Cruzeiro
et al. 2015), and increased turbidity due to soil erosion
(Zhang and Huang 2014). The most problematic nutrients
are phosphorus (P) and nitrogen (N), which are often carried
into streams through overland flow during rainfall events
(Driscoll et al. 2003; Maillard and Santos 2008; Kato et al.
2009; Mouri et al. 2011; Yu et al. 2015), especially before the
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growing season and after harvest (Zhu et al. 2012). Excessive
inputs of nutrients, such as nitrogen and phosphorus, to sur-
face water can contribute to eutrophication, excessive algal
growth, increased toxicity, and other adverse influences on
fish and aquatic invertebrate communities (Xu et al. 2013;
Wang and Tan 2017). Generally, all types of agricultural prac-
tices and land use, including animal feeding operations
(AFOs), are treated as agricultural NPS pollution. NPS pollu-
tion depends on hydrological conditions and is difficult to
measure or control directly. However, due to the features of
NPS pollution, field measurements, and the limitations of ex-
periments, NPS pollution management practices depend on
spatial-temporal simulation modeling, a key method used to
estimate NPS pollution related to spatial uncertainty
(Shamshad et al. 2008; Huiliang et al. 2015). Various ap-
proaches have been used to estimate the loads of NPS pollu-
tion, including small spatial-scale experiments and watershed-
scale modeling, which accurately calculates the pollution
loads of different land uses through experimental methods
(Alberti et al. 2007; Pratt and Chang 2012). Thus, the methods
used in field experimental methods are too time-intensive and
expensive to translate into practical applications (Liang et al.
2008). Furthermore, it is difficult to extend field experimental
methods to the watershed scale due to the biological and
chemical reactions and the complexity of the transport mech-
anism in the watershed.

Some research has tried to investigate the impacts of land
use and land cover on surface water quality (Haidary et al.
2013; Huang et al. 2015). The relationship between land cover
and water quality has been studied to reveal the effects of the
characteristics of watersheds on the dissolved oxygen (DO)
turbidity and river temperature (Li et al. 2015). Other research
analyzed the watershed scale in addition to using remotely
sensed data and GIS as well as multivariate analysis to esti-
mate the influence of the land cover on the nutrients,
suspended sediments, and ecological integrity of rivers (Lai
et al. 2011; Exner-Kittridge et al. 2016). For example, when
studying largely forested watersheds in North Carolina, Potter
et al. (2005) applied simple regression and stepwise regression
to develop relationships between eight independent variables
(derived from land use/land cover (LULC) and landform char-
acteristics) and the macroinvertebrate index. Schoonover and
Lockaby (2006) and Rothenberger et al. (2009) used a similar
method to develop correlations between LULC parameters
(e.g., percent of impervious surface, mixed forest, evergreen
forest, and pasture) and quality parameters (e.g., nutrient and
bacteriological characteristics) for watersheds in the USA.
Because a large number of variables are required to describe
water quality and the factors that affect it, multivariate statis-
tical analysis has become a powerful tool to investigate and
interpret the results. Among the multivariate analysis ap-
proaches, principal component analysis (PCA) has been wide-
ly used to determine how different reaches of a stream

contributes to the overall pollution load (Kannel et al. 2007;
Bu et al. 2010; Olsen et al. 2012) or which parameters are
most crucial in calculating the water quality index (WQI)
(Sharma and Kansal 2011; Koçer and Sevgili 2014;
Zeinalzadeh and Rezaei 2017). Furthermore, PCA analysis
can also illustrate how the variability of water quality proper-
ties changes with time (Ouyang et al. 2006; Jung et al. 2016).

Therefore, this study builds upon the results of previous
research by developing correlations in a large number (35)
of independent watersheds with mixed LULC (including for-
est, pasture, row crops, and urban areas) and investigating
which combinations of LULC, geologic, and topographic
properties are most predictive of both the physicochemical
water quality parameters and the biotic index. The indepen-
dent variables in these relationships are readily available GIS-
based parameters. Although similar or more accurate results
can be obtained using surface water models, such as the Soil
andWater Assessment Tool or BASINS, these models require
more sophisticated or temporally variable inputs than the re-
lationships developed in this study, and thus, are much more
difficult to implement.

The primary objectives of this study are to provide relation-
ships that can be used with readily available GIS databases
and ArcGIS tools to indicate which watersheds have the com-
bination of characteristics most likely to result in poor water
quality, to assess regionally variability in water quality param-
eters both spatially and temporally, and to determine which
water quality characteristics have the greatest impact on aquat-
ic health. Scientists and regulators can use these results to
inform sampling campaigns or to identify areas where more
sophisticated modeling is appropriate.

Methods and materials

Site background

This study was conducted in the Lower Grand River
Watershed, located in north-central Missouri and south-
central Iowa (Fig. 1). The drainage area of the Lower Grand
River Watershed is about 6112 km2, and the Grand River
drains into the Missouri River as it exits this watershed. This
watershed was chosen because it is representative, in terms of
land use, geomorphology, and geologic characteristics, of
many watersheds in the southern parts of the US Midwest.
Thus, statistical correlations derived from this watershed
may be applied to other regional watersheds with similar land
use. The primary land use in the Lower Grand River
Watershed is agricultural. About 48% of the watershed is used
for pasture or hay, and 27% is used for cultivated crops, pri-
marily corn, soybeans, and wheat. Approximately 13% per-
cent of the land is forest, and 5% is urban. The topography of
the Lower Grand River Watershed is fairly flat, with an
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average slope of 8°, as shown in Fig. 2a. Most of the study
area is covered with Quaternary deposits of glacial drift and
alluvium that are less than 30.5 m thick (Fig. 2b) (Gann et al.
1973). Soils in the study area are mostly loam, with loam, clay
loam, and silt loam being the most common soil textures
(Fig. 2c). Throughout the study area, the soils tend to be fertile
and easily erodible (Detroy and Skelton 1983). The bedrock is
primarily Pennsylvanian-age shale and limestone, with in-
cised channels filled with sandstone (Vandike 1995).

According to the Midwestern Regional Climate Center
(MRCC 2016), the average annual precipitation in the water-
shed ranges from 1029 mm in the north to 1054 mm in the
south. The greatest volume of precipitation occurs in May and
June, and stream discharge is highest during these months and

lowest during the late summer and fall (USDA-SCS 1982).
Since soil permeability is relatively low, most rainfall runs off
into streams rather than infiltrating the groundwater, and
streams typically exhibit rapid increases in discharge after
precipitation, but quickly return to low flow conditions after
surface runoff has stopped (MDNR 1984).

Surface water quality in the Lower Grand River Watershed
is variable. According to Missouri Section 303(d), about 25%
of the total length of the rivers and streams in the study area
are listed as impaired (MDNR 2016). Themost common types
of known impairments are Escherichia coli (E. coli) contam-
ination, high concentrations of phosphorus and nitrogen, high
total suspended soils, and low DO (USEPA 2016; MDNR
2016). These impairments seem to be primarily a result of

Fig. 1 The location of the Lower Grand River Watershed
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agricultural activities, although urban activities can also con-
tribute to surface water degradation in the fewwatersheds with
more development. Wilkison and Armstrong (2015) studied
the impact of commercial fertilizers in the Lower Grand River
Watershed, finding that the average application rates of agri-
cultural chemicals, such as phosphorus and nitrogen, in this
watershed have approximately doubled during the last four
decades.

Data acquisition and processing

The Lower Grand River Watershed has been divided into
64 sub-watersheds, as defined by the US Geological
Survey (USGS) hydrologic unit code HUC12-digit water-
sheds. Many of these sub-watersheds contain perennial
streams that drain into the Grand River, although some
sub-watersheds have intermittent streams (MDNR 2014).
For this study, the geologic and LULC characteristics
were determined for each of the 35 independent sub-
watersheds in the Lower Grand basin, where an indepen-
dent watershed is defined as one that receives no inflow
from another watershed. Sampling was performed near
the mouth of each sub-watershed (Fig. 3).

Surface water sampling was conducted in two major
campaigns, in the late summer/fall of 2016 and spring of
2017, to monitor the streams after and before the primary
growing season. For the late summer 2016 campaign, data
were collected from 32 sub-watersheds over three week-
ends, August 3–4, September 11–12, and September 28–
29. Three additional sub-watersheds were investigated,

but the streams were dry. Relatively little precipitation
occurred in the 2 weeks preceding data acquisition in
the late summer/fall; the average precipitation in the
2 weeks preceding these campaigns was 1.87 mm
(1.37 mm, 2.48 mm, and 1.75 mm, for the first, second,
and third weekends, respectively). All precipitation mea-
surements were calculated as the arithmetic average of the
precipitation measured by eight rain gauges located within
or adjacent to the study area, as shown in Fig. 3.
Precipitation data were downloaded from the National
Oceanic and Atmospheric Administration Climate Data
database (NOAA 2017). In the spring 2017, data were
acquired from 35 sub-watersheds on April 2–3 and April
9–10. More precipitation was received before the spring
data collection; the average for the preceding 2 weeks
before each campaign was 3.72 mm (2.74 and 4.71, for
the first and second weekends, respectively). The stream
discharge during each sampling campaign reflected the
differences in precipitation. The average discharge of all
the sampled streams during the late summer/fall was
3.6 m3/s, while the average discharge in the spring was
95 m3/s.

Although little precipitation occurred in the few weeks
prior to data acquisition, the3 months of 2016 preceding
the late summer/fall field campaign were approximately
26% wetter than average (i.e., average precipitation from
July to September in 2006 through 2017 was 317 mm,
while in 2016, it was 401 mm). This above-average pre-
cipitation may influence water quality by increasing
baseflow above normal levels, although the streams

Fig. 2 Characteristics of the Lower Grand River Watershed. a Percent slope. b Soil origin and thickness. c Soil texture
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monitored were mostly quite small and seemed more in-
fluenced by short-term (within the past few weeks) pre-
cipitation than by longer-term precipitation, as seen in the
measured discharges. During the spring campaign, pre-
cipitation was close to average; average precipitation
from February to April in 2006 through 2017 was
219 mm, while in 2017, the precipitation over these
3 months was 223 mm.

GIS data processing

Data from remote sensing and field mapping techniques are
available in a geographic information system (ArcGIS) data-
base maintained by the Missouri Spatial Data Information
Service (MSDIS) (n.d.). Figure 2 shows the slope, soil origin,
and soil texture for the study area, as provided by the MSDIS.
ArcGIS 10.2 was used to determine the values of the

Fig. 3 Map of the Lower Grand River Watershed showing HUC12-digit sub-watersheds, sampling locations, and precipitation stations
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parameters for each of the 35 sub-watersheds. Some parame-
ters, such as soil texture, LULC classification, depth to bed-
rock, depth to the water table, watershed area, and stream
length, were obtained as shapefiles from the MSDIS. Other
information, such as slope, topographic complexity, water-
shed shape index, watershed slope/relief ratio, and mean ele-
vation, was derived from a 30-m resolution digital elevation
model (DEM) provided by the MSDIS. ArcGIS was also used
to analyze the data and to determine the average values of each
parameter for each sub-watershed, as shown in Table 1.

LULC data were also analyzed using ArcGIS. The
National Land Cover Database 2011 (Homer et al. 2015) in-
cludes 15 LULC categories (Fig. 4a). To reduce the number of
independent variables and to create more meaningful LULC
categories for this study, some of these categories were com-
bined. All categories labeled Bdeveloped^were combined into
one Burban^ classification, and all categories labeled Bforest^
were combined into one group. Similarly, Bwetland^ catego-
ries were combined (Fig. 4b).

Precipitation

To better understand how recent precipitation affects water
quality parameters, the depth of precipitation was also estimat-
ed for each sub-watershed. To obtain the most accurate pre-
cipitation information, ground-based rain gauge data were
used instead of satellite data. Precipitation depth was

calculated as the sum of all precipitation that occurred in a
2-week period prior to data acquisition at the rain gauge sta-
tion closest to each drainage basin. Since rain gauge data are
not available for each sub-watershed, the precipitation value is
an estimate based on the closest available data.

Water quality parameters

Data acquisition

Surface water samples were collected from 32 sub-watersheds
in August and September 2016 and from 35 sub-watersheds in
April 2017. Fewer samples were collected in the fall 2016
because some streams were dry. Some water quality parame-
ters were acquired in situ, including temperature, pH, SC, and
DO, all of which were measured with a YSI ProPlus
multimeter. Turbidity was also measured in the field using a
Hach 2100Q portable turbidimeter. Samples were acquired in
the field and tested for bacteria, phosphate (P), and nitrate (N)
in the laboratory. All field measurements and samples were
acquired using standard USGS procedures, including equip-
ment calibration twice a day, cleansing of all equipment be-
tween samples, and following standard procedures to avoid
contamination (USGS 2006). P and N samples were filtered
on site and collected in sterilized polypropylene bottles. When
needed, sulfuric acid was added to the N samples for preser-
vation, if the samples could not be analyzed within 24 h of

Table 1 Minimum, maximum, mean, and standard deviation for independent variables

Variable Description Minimum Maximum Mean Std. deviation

Area (km2) Area of watershed 42.4 141.0 95.2 28.5

Watershed shape index Area/square of watershed length 0.1 1.55 0.37 0.26

Average slope 1.97 7.28 4.35 1.51

Total stream length (km) Total stream length in watershed 11.2 78.7 36.3 13.2

Topographic complexity Standard deviation of elevation within watershed 12.90 47.7 28.9 11.2

Watershed slope/relief ratio (m/km) Watershed elevation change/watershed length
from outlet to highest point on perimeter

2.3 7.8 4.2 1.7

Mean elevation (m) Mean elevation of watershed 215.7 306.3 250.1 23.8

Urban (%) Percent of watershed 2.72 10.9 4.6 1.44

Forest (%) Percent of watershed 3.2 28.90 12.4 5.60

Pasture/hay (%) Percent of watershed 16.3 74.24 51.2 17.71

Cultivated crops (%) Percent of watershed 3.6 66.9 24.9 16.5

Wetland (%) Percent of watershed 0.34 23.5 4.1 6.3

Clay + silt (%) Percent of clay and silt content 52.8 79.05 63.7 4.8

Average depth to groundwater (m) 3.05 11.7 7.17 2.01

Average depth to bedrock (m) 8.6 56.9 35.5 12.6

Discharge (m3/s) (measured in field)—fall 0.0085 0.95 0.16 0.22

Discharge (m3/s) (measured in field)—spring 0.81 23.94 2.7 4.36

Precipitation (mm) fall 0.00 19.05 2.46 5.83

Precipitation (mm) spring 45.7 92.4 65.8 19.8
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collection. Sample bottles were rinsed three times with stream
water from the sampling sites before the samples were collect-
ed. Bacteria samples were collected in sterilized Whirl-Pak®
bags. All samples were preserved on ice during transportation
and refrigerated at 4 °C until they were processed. Bacteria
samples were processed within 8 h of data collection, and N
and P samples were processed within 24 h, except for a few N
samples that were preserved with acid and processed within
48 h.

Laboratory procedures were based on manufacturers’
recommendations. Bacteria samples were processed using
Coliscan® Easygel®, and samples were analyzed after
24 h of incubation for E. coli concentrations. N and P
(orthophosphate) were analyzed using a Hach DR 3900
spectrophotometer. N concentrations were analyzed using
the chromotropic acid method (Hach Method 10020),
where N reacts with chromotropic acid to change the col-
or of the solution, with a maximum absorbance at 410 nm.
Soluble reactive P concentrations were analyzed using
ascorbic acid (HACH standard procedure 8048). In this
process, the P in the sample reacted with ammonium mo-
lybdate to form a phospho-molybdate complex, which
then reacted with the ascorbic acid reagent to change the
color of the solution. For both N and P, the concentrations
were determined by measuring the intensity and wave-
lengths of light passing through the sample after reaction
with the powder-pillow reagents.

Because water quality can change quickly with time,
macroinvertebrate analysis was performed to assess the

average water quality over a longer time period than was
used for the water chemistry measurements (Paulsen et al.
2008; Buss and Vitorino 2010; Mereta et al. 2013; López-
López and Sedeño-Díaz 2014; Van Ael et al. 2015; Gezie
et al. 2017). Aquatic macroinvertebrates were acquired and
identified using the bioassessment protocol for Missouri
(MDNR 2003). The macroinvertebrates were collected
using a 1000-μm kick net placed in the downstream section
of a riffle zone. A 1-m by 1-m area immediately upstream of
the net was disturbed by vigorous shuffling in the stream-
bed. For sites that did not contain riffles, the net was placed
downstream of a root mat, and the area around and under-
neath the root mat was disturbed. The net was then lifted,
and macroinvertebrates were removed from the net, identi-
fied to the lowest taxonomic level (generally, genus), and
counted. All remaining macroinvertebrates were placed in-
to a sample jar and preserved with 80% ethyl alcohol for
more rigorous identification in the laboratory. In general,
macroinvertebrate collection was performed at two loca-
tions within each site. As macroinvertebrate collection at
each site was very time-intensive, macroinvertebrates were
acquired only during the fall 2016 and only at 16 sites.

Stream discharge was determined using standard USGS
procedures. Each stream was divided into 20 evenly spaced
intervals, and the water velocity and depth were measured at
the center of each interval. A USGS Pygmy Meter Model
6205 was used to measure velocity. Stream discharge was
calculated as the sum of the velocity, depth, and width for each
interval, for all intervals of the product.

Fig. 4 Land use categories a before reclassification and b after reclassification and aggregated into eight categories
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Summary of water quality parameters

To assess stream health based on macroinvertebrate popula-
tions, the biotic index (BI) was calculated (Eq. 1). The BI is
based on the classification of macroinvertebrates depending
on their tolerance of pollution and was calculated for each site
using

BI ¼ ∑
s

i¼1

TViN i

N t
ð1Þ

where S is the number of taxa in the sample, TVi is the pollu-
tion tolerance value of the ith taxon, Ni is the density of the ith
species taxon as abundance (numbers per square meter), and
Nt is the total number of macroinvertebrates in the sample
(Lenat 1993). Tolerance values range from 0 (highly intoler-
ant) to 10 (highly tolerant) and were chosen for each taxon
using the protocol developed by Sarver (2005), which is ap-
plicable to this study area. The BI is also scored from 0 to 10
(Table 2), with 0 indicating generally excellent water quality
and 10 indicating generally very poor water quality
(Hilsenhoff 1988).

Stream health can also be assessed using the water quality
index (WQI) (Eq. 2), which was calculated using the method
developed by Cude (2001). The WQI is based on the sub-
index measurements of pH, temperature, DO, biochemical
oxygen demand, nitrate, total phosphorus, total dissolved
solids, and fecal coliform. It provides a summary of water
quality, ranging from 0 (very poor) to 100 (excellent)
(Kaurish and Younos 2007; Ramos et al. 2016).

WQI ¼ ∑
n

i¼1
SI iWi ð2Þ

whereWQI is the water quality index, SI is sub-index i, andWi

is the weight given to sub-index i.

Statistical data analysis

Statistical analyses were performed using the Statistical
Package for Social Sciences (SPSS) software. The water qual-
ity parameters were first analyzed using the Cunnane

probability method to determine if they were normally distrib-
uted at α = 0.01. The critical correlation coefficients for the
fall (n = 32) and spring (n = 35) data sets were 0.950 and
0.954, respectively. Some factors were normally distributed
without any transformations, but others required transforma-
tion. Various transforms were tried (e.g., logarithmic, natural
log, square root, and cubed root), and the transform with the
highest correlation coefficient (R) (closest to the normal dis-
tribution) was applied in all further analyses. If the data were
normally distributed without a transformation, no transforma-
tion was performed. All parameters were normally distributed
either before or after transformation.

Six analyses were performed on the water quality data.
First, the standard parametric summary statistics were calcu-
lated for each variable. Next, a pairwise comparison was per-
formed for each water quality variable acquired in the spring
and fall. The differences for each characteristic were calculat-
ed, and the Cunnane method was again employed to deter-
mine whether the differences were normally distributed. If the
differences were normal, the paired t test was employed to
determine if the two data sets were statistically different. If
the differences were not normal, the sign test was used. The
third analysis was a simple linear regression between each
independent variable (i.e., LULC, geologic, or topographic
parameters) and each dependent variable (i.e., water quality
parameter) to determine the strength and direction of the cor-
relation between each pair of variables. The fourth analysis
was a stepwise linear regression to determine which indepen-
dent variables were most useful for predicting water quality
parameters. The partial F entry test and partial F removal test
had a significance level of α = 0.05. The coefficient of multi-
ple determination (R2) for each regression equation indicates
the proportion of the variability in the water quality parame-
ters that can be explained by the independent variable. The
fifth analysis compared the biotic index values with the WQI
to determine how well the biotic index predicted the WQI.
The final analysis was a principal component analysis of the
physicochemical water quality variables and the BI.

Results

Summary statistics of water quality parameters

Summary statistics for each of the water quality parameters
measured in this experiment are shown in Table 3. This table
shows that significant variations in water quality occurred
between watersheds within each data campaign and that some
parameters varied significantly between data campaigns.
Temperature was much higher during the fall than during the
spring, which indicates that the streams probably had a larger
proportion of surface runoff compared to baseflow during the
fall. Temperature was alsomore variable during the fall, which

Table 2 Biotic index and pollution levels

Biotic index Water quality rating Degree of organic pollution

0.00–3.5 Excellent No apparent organic pollution

3.51–4.5 Very good Slight organic pollution possible

4.51–5.5 Good Some organic pollution probable

5.51–6.5 Fair Fairly substantial pollution likely

6.51–7.5 Fairly poor Substantial pollution likely

7.51–8.5 Poor Very substantial pollution likely

8.51–10.0 Very poor Severe organic pollution likely
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may be related to the generally lower discharge during this
season, as smaller streams are more susceptible to changes in
air temperature. Two of the least variable parameters were pH
and P, with relatively little variation between watersheds or
with season. SC showed significant variations between water-
sheds, but relatively little variation with season. DO was sig-
nificantly higher during the spring, perhaps due to increased
turbulence in the streams, associated with higher discharge.
Turbidity, N, and E. coli counts, all of which would be expect-
ed to increase with increasing overland flow, had much higher
values during the spring.

Pairwise comparison of fall and spring data

Table 4 shows the pairwise comparisons for eachwater quality
parameter that was acquired in both the fall and spring. The
fall and spring data sets were statistically different, with fairly
low p values for all water quality parameters. This suggests
that temporally variable factors influencing these parameters
may be more important than static factors in estimating sur-
face water quality.

Simple regression

Simple regression analysis was done between all water quality
indicator variables and all independent variables (i.e., LULC,
geologic, and topographic factors). For water quality charac-
teristics that were not normal before transformation (i.e., tur-
bidity, N, P, and E. coli), the transformed (square root) data
were used for the correlation analysis. The correlation coeffi-
cient (Pearson’s coefficient or R) and the statistical signifi-
cance of each regression relationship is shown for the most
significant correlations between water quality variables and
the independent variables in Tables 5 and 6 for the fall and
spring, respectively. These tables illustrate that the

independent variables that best correlate with water quality
indicators vary with season for some water quality indicators
but remain more temporally consistent with others. During the
fall, the independent variable that correlated most often with
water quality was the Bpasture/hay^ land use category; this
land use was significant for N, P, E. coli, and turbidity. Since
pasture includes land where livestock graze, it is probable that
these water quality parameters are affected by animal waste
and/or erosion created by animals near streambanks (Walters
et al. 2011). The percent of urban land also correlated with
multiple water quality parameters, including E. coli, P, and
temperature. The Lower Grand watershed is predominantly
rural, but several sub-watersheds include developed areas.
Leaching from septic tanks, municipal sewage, lawn fertilizers
or urban stormwater runoff may impact streams. Although the
fall was relatively dry, the second most frequently observed
independent variable was precipitation, which was the most
significant factor related to N and SC. These correlations sug-
gest that even small amounts of precipitation can be signifi-
cant for transporting nutrients and other dissolved solids to
surface water (Narasimhan et al. 2010; Jeznach et al. 2017).
DO correlated best with the geologic factors of depth to bed-
rock and depth to groundwater, while temperature and pH had
only weak or statistically insignificant correlations.

The spring data exhibited many of the same independent
factors correlated to water quality parameters along with sev-
eral new correlations. Unlike in the fall, cultivated crops had
more effect, being significantly correlated with N, SC, and
temperature. This effect might result from the timing of fertil-
izer application because approximately twice as much fertil-
izer is applied near planting time in the spring than during the
fall in Missouri (Fulhage 2000; Missouri Agricultural
Experiment Station 2014). The composition of the fertilizer
is also significant, as approximately four times as much nitro-
gen is applied in the spring as in the fall, but the amount of

Table 3 Summary statistics of water quality parameters for two sampling campaigns

Variable Fall Spring

Minimum Maximum Mean Std. deviation Minimum Maximum Mean Std. deviation

T (°C) 16.10 28.60 21.55 3.62 10.10 15.40 12.3 1.53

pH 7.13 8.35 7.77 0.40 7.65 8.75 8.26 0.32

DO (mg/L) 0.30 9.51 3.48 2.38 4.65 11.18 9.10 1.85

SC (μs/cm) 205.60 605.00 307.34 99.28 150.00 461.90 271.74 78.84

Turbidity (NTU) 4.33 219.00 47.64 54.59 17.50 428.00 94.88 89.5

Phosphate (mg/L) 0.12 13.43 1.12 3.28 0.19 10.38 0.74 1.70

Nitrate (mg/L) 0.10 21.60 1.77 5.29 0.64 18.80 2.78 3.16

E. coli (cfu/100 mL) 100.0 1350.0 509.37 347.47 0.00 4550.00 1012.85 1245.78

Biotic index (BI) 4.0 7.42 5.35 1.02

WQI 51.63 84.65 66.30 8.43 42.67 85.56 68.73 8.86
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phosphatic fertilizer is approximately equal in the spring and
fall (Missouri Agricultural Experiment Station 2014). The per-
centage of land classified as urban was less significant during
the spring, when only E. coli correlated with this parameter.

An evaluation of regression coefficients indicates that only
some of the factors most highly correlated with water quality
indicators are seasonal. This variability is probably due to
changes in the proportion of surface runoff and baseflow in
streams. Geologic factors, such as depth to groundwater and
slope as well as LULC factors correlated strongly with water
quality indicators. This means that topographic and geologic
factors cannot be neglected when determining the watersheds
with the greatest risk of water quality impairment.

Stepwise multiple regression

Stepwise multiple regression was performed to determine
which independent variables were most suitable for predicting
water quality indicators in different seasons. Stepwise regres-
sion only employs independent variables that significantly
improve the correlation after other independent variables are
considered. For example, slope and topographic complexity
may both correlate strongly with water quality, but these in-
dependent variables are often correlated. Therefore, it is not
useful to include them both in a regression equation because it
would not greatly improve the estimation of a water quality
indicator. In addition, it would add unnecessary complexity to
the relationship and make data acquisition more arduous.
Consequently, the only parameters included in the following
stepwise regression equations are those that most significantly
and independently improve the correlation to water quality
indicators. As with the correlation analysis, water quality pa-
rameters that were not normal before transformation were
transformed prior to regression, but those that were normally
distributed without a transformation were not transformed.
Table 7 displays the stepwise regression results for the fall,
while Table 8 presents similar results for the spring.

Table 7 shows that during the fall, a statistically significant
regression equation could be generated for each of the water
quality indicators, but the quality of these predictions (as
shown by the R2 value) was often low. The parameters where
more than 50% of the variance could be predicted using re-
gression relationships were temperature, DO, SC, and biotic
index. In some cases, the independent variables in the regres-
sion equation were the same as those with high correlation
coefficients in Table 5; however, other water quality indicators
were best predicted by variables without the highest correla-
tion. For the stepwise regression relationships with higher
Pearson coefficients, geologic parameters (e.g., depth to bed-
rock, depth to groundwater, soil type) were often more helpful
for predicting water quality indicators than were LULC char-
acteristics. For several of the relationships with lower Pearson
coefficients, precipitation was the most significant variable,Ta
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suggesting that the timing of a measurement may strongly
influence the result.

During the spring (Table 8), the regression relationships
often had lower Pearson coefficients than during the fall.
Only temperature and SC had relationships where more than
50% of the variability could be explained by the correlation
variables. As with the fall, geologic or topographic parameters
had a greater effect than LULC variables, although urban land
use was significant for E. coli and P, and pasture/hay was
important for N.

A comparison of stepwise regression relationships devel-
oped using data acquired during the spring and fall show that
for approximately half of the water quality parameters (e.g.,
temperature, E. coli, pH, DO, and turbidity), one independent
variable occurs in the regression equation for both seasons.
However, the relationships developed using the spring data
present differing (usually additional) independent variables.
The independent variable that remains significant across both
seasons tends to be the most critical predictor for each water
quality indicator. For some water quality indicators, such as

SC, N, and P, the independent variables in the regression re-
lationships differ completely depending on season. This sug-
gests that the loading mechanisms for these parameters may
vary significantly with season and recent land use modifica-
tions, such as fertilizer application, so different seasonal
models may be required to predict water quality using simple
stepwise regression relationships.

Water quality and biotic indexes

The results of the WQI are shown in Fig. 5. The fall WQI
values ranged from 52 (very poor) to 97 (excellent), while
WQI values during the spring ranged from 43 (very poor) to
86 (very good). During the spring, about 70% of the water-
shed sites were degraded. The lower WQI in the spring might
have been caused by increased surface runoff that carried re-
cently applied nutrients, sediment, and bacteria to the streams.

The WQI value is based on several physicochemical
water quality parameters and bacterial concentration.
These parameters may change with time and are difficult

Table 6 Correlation coefficients between water quality indicators and watershed landscape characteristics during the spring

Factor of correlation R p value Factor of correlation R p value Factor of correlation R p value

DO pH Temperature

Average depth to groundwater
(m)

0.55 0.000 Average depth to groundwater
(m)

0.60 0.000 Pasture/hay% 0.62 0.000

Precipitation (mm) 0.30 0.040 Clay + silt% 0.47 0.02 Cultivated crops% 0.60 0.000

SC Escherichia coli (E. coli) Turbidity

Average slope 0.70 0.000 Urban% 0.41 0.003 Discharge (m3/s) 0.50 0.001

Average depth to bedrock (m) − 0.55 0.000 Pasture/hay% 0.3 0.043 Average slope 0.37 0.013

Cultivated crops% 0.54 0.000

Nitrate Phosphate Biotic index

Pasture/hay% 0.40 0.012 Pasture/hay% 0.43 0.031 Nitrate (mg/L) 0.52 0.019

Cultivated crops% 0.30 0.020 Precipitation (mm) 0.40 0.040 Phosphate (mg/L) 0.45 0.040

Turbidity (NTU) 0.30 0.012

Table 5 Correlation coefficients between water quality indicators and watershed landscape characteristics during the fall

Factor of correlation R p value Factor of correlation R p value Factor of correlation R p value

DO pH Temperature

Average depth to bedrock (m) 0.72 0.000 Discharge (m3/s) − 0.15 0.25 Urban% 0.53 0.05

Average depth to groundwater (m) 0.52 0.006

SC Escherichia coli (E. coli) Turbidity

Precipitation (mm) − 0.47 0.012 Urban% 0.37 0.045 Clay + silt% 0.63 0.000

Pasture/hay% 0.37 0.05 Pasture/hay% 0.58 0.005

Average slope 0.54 0.001

Nitrate Phosphate Biotic index (BI)

Precipitation (mm) 0.6 0.013 Urban% 0.4 0.031 Turbidity (NTU) 0.58 0.008

Pasture/hay% 0.40 0.03 Pasture/hay% 0.33 0.03 Phosphate (mg/L) 0.47 0.031
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to measure on a continuous basis. Macroinvertebrate pop-
ulations are more time-consuming to sample in the field
but can provide information about average water quality
over time. Figure 6a compares the WQI and biotic index
for the fall data, displaying the expected trend between

these variables; however, the correlation is too low to
meaningfully relate these two parameters. Figure 6b pre-
sents the biotic index data acquired in the fall with the WQI
calculated using water quality measurements collected in
the spring. Even though these data sets were acquired at

Table 7 Stepwise regression
models between water quality
indicators and watershed
landscape characteristics during
the fall

Beta coefficients R R2 p value

Model for temperature

Average depth to bedrock − 0.07 0.84 0.70 0.000

Total stream length 0.13

Beta coefficients (constant) = 26.4

Regression equation: Temperature = 26.4–0.07 (average depth to bedrock) + 0.13 (total stream length)

Models for E. coli

Urban 3.6 0.56 0.32 0.006

Beta coefficients (constant) = − 10.4
Regression equation: E. coli = 3.6 (urban) − 10.4

Model for pH

Precipitation − 0.18 0.32 0.10 0.000

Beta coefficients (constant) = 8.44

Regression equation: pH = 8.44–0.18 (precipitation)

Model for DO

Average depth to bedrock 0.04 0.72 0.52 0.007

Average depth to groundwater 0.1

Beta coefficients (constant) = −3.2
Regression equation: DO= − 3.2 + 0.04 (average depth to bedrock) + 0.1 (average depth to groundwater)

Model of turbidity

Average slope − 0.25 0.64 0.4 0.002

Urban − 3.41
Beta coefficients (constant) = 119.7

Regression equation: Turbidity = 119.7 − –0.25 (average slope) − 3.41 (urban)

Model of SC

Precipitation 11.06 0.83 0.70 0.002

Clay + silt 4.3

Beta coefficients (constant) = − 309.4
Regression equation: SC = − 341.73 + 11.06 (precipitation) + 4.3 (clay + silt)

Model for nitrate

Precipitation 0.46 0.53 0.28 0.001

Urban 0.37

Beta coefficients (constant) = − 1.1
Regression equation: Nitrate = 0.46 (precipitation) + 0.37 (urban) − 1.1

Model for phosphate

Precipitation 0.07 0.57 0.32 0.02

Beta coefficients (constant) = 0.57

Regression equation: Phosphate = 0.57 + 0.07 (precipitation)

Model for biotic index (BI)

Turbidity 0.3 0.88 0.78 0.002

Urban − 0.9
Temperature 0.14

Beta coefficients (constant) = 4.25

Regression equation: BI = 0.3 (turbidity) − 0.9 (urban) + 0.14 (temperature) + 4.25
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different times, there is a significantly better correlation
between the WQI and the biotic index for the spring mea-
surements than for the fall. This suggests that the water

quality measurements acquired in the spring may be more
indicative of the longer-term conditions for the streams in
this study.

Table 8 The stepwise regression
models between water quality
indicators and watershed
landscape characteristics during
the spring

Beta coefficients R R2 p value

Model for temperature

Average slope 1.2 0.78 0.61 0.000

Watershed slope/relief ratio − 0.57
Average depth to bedrock − 0.01
Beta coefficients (constant) = 11.8

Regression equation: Temperature = 11.8 + 1.2 (average slope) − 0.57 (watershed slope/relief ratio) − 0.01
(average depth to bedrock)

Model for E. coli

Urban 4.3 0.60 0.36 0.001

Beta coefficients (constant) = 24.5

Regression equation: E. coli = 4.3 (urban) + 24.5

Model for pH

Average depth to groundwater 0.03 0.67 0.46 0.002

Precipitation 0.005

Beta coefficients (constant) = 7.03

Regression equation: pH = 7.03 + 0.03 (average depth to groundwater) + 0.005 (precipitation)

Model for DO

Average depth to groundwater 0.15 0.55 0.30 0.001

Beta coefficients (constant) = 5.42

Regression equation: DO= 0.15 (average depth to groundwater) + 5.42

Model of turbidity

Discharge 0.011 0.61 0.37 0.001

Average slope − 0.12
Beta coefficients (constant) = 11.35

Regression equation: Turbidity = 0.011 (discharge) − 0.12(average slope) + 11.35
Model of SC

Average slope 29.6 0.75 0.57 0.001

Average depth to bedrock 0.5

Beta coefficients (constant) = 82.6

Regression equation: SC = 29.6 (average slope) + 0.5 (average depth to bedrock) + 82.6

Model for nitrate

Pasture/hay −0.02 0.43 0.18 0.053

Average slope 0.14

Beta coefficients (constant) = 3.03

Regression equation: Nitrate = 0.014 (average slope) − 0.02 (pasture/hay) + 3.03
Model for phosphate

Average slope 0.21 0.51 0.26 0.024

Urban 0.08

Beta coefficients (constant) = 3.47

Regression equation: phosphate = 0.21 (average slope) + 0.08 (urban) + 3.47

Model for biotic index

Nitrate 0.86 0.67 0.45 0.037

Precipitation −0.02
Beta coefficients (constant) = 5.5

Regression equation: BI = 0.86 (nitrate) − 0.02 (precipitation) + 5.5
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Principal component analysis

Three principal components were obtained with eigenvalues
> 1, which accounted for 68.4% of the total variance in the
data set in the fall and 69.2% in the spring. Figure 7 illustrates
the first two principal components for each of these seasons,
while Table 9 presents the strength of the correlation for indi-
vidual parameters.

In the fall, the first principal component (PC1) correlated
most highly with P and N, and more weakly with SC. This
component seems to be primarily associated with fertilizer
runoff. The second principal component (PC2) correlated
most highly with turbidity, E. coli, and BI. Turbidity may be
affected by manure application but may also be strongly in-
fluenced by grazing livestock and associated streambed ero-
sion. The correlations observed in PC2 imply that the biotic
index could be more affected by livestock-related runoff (ei-
ther directly from grazing livestock or from manure applica-
tion to fields) than by the application of chemical fertilizers. In
the spring, parameters were more similarly correlated with
both PC1 and PC2, with fewer very strong correlations with
either component than in the fall. PC1 was most correlated

with P, pH, and BI, while PC2 was most correlated with SC
and N. Since the BI data were only acquired in the fall, the
apparent correlation between BI and P in the spring (Fig. 7)
may not be significant. However, the correlation between N
and E. coli in the spring may indicate a common livestock-
based source for these factors.

Discussion

The results of this study reveal that water quality parameters
can vary significantly with season and may reflect recent land
use, such as fertilizer application.Many of the results followed
expected patterns; DO and turbidity are both higher when
discharge is larger (i.e., in the spring, in this study). SC was
lower during the spring, perhaps due to dilution. P-values
were higher in the fall. This can be explained by higher dis-
charge in the spring even though fertilizers are applied in
approximately equal amounts in the fall and spring. N and
E. coli are significantly higher in the spring, when more
nitrogen-based fertilizer is applied and when more manure
may also be applied.

Fig. 5 Spatial distribution of the WQI for the study area during the fall and spring
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Fig. 6 Comparison between the
water quality index (WQI) and
biotic index (BI). a Fall. b Spring

Fig. 7 PCA biplots of water quality indicators for fall and spring based on the first two PCs
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Compared to the literature, our study found similar re-
sults in its correlations of water quality with land use, geo-
logic, or topographic parameters. For example, Tong and
Chen (2002) studied correlations between land use and
water quality parameters in watersheds in Ohio. They used
data available from the US Environmental Protection
Agency (USEPA) averaged over an 8t-year period and
found that nitrogen, phosphorus, and fecal coliform were
all positively correlated with both agricultural and urban
land use. Similarly, our research found that these water
quality parameters were correlated with pasture/hay land
use, and E. coli and P were also correlated with the per-
centage of urban land. During the spring, cultivated crops
were also significant for N. The correlation analysis
(Spearman’s rank) performed by Tong and Chen (2002)
showed that the correlations between each of these water
quality parameters and urban land use was greater than the
correlation with agricultural land use. Even though the per-
cent of urban land in our study was small, our results also
established that the percent of urban land was significant,
although not always more significant than agricultural land
use. The correlation factors (i.e., Pearson’s correlation co-
efficient) in our investigation were generally higher than
those observed by Tong and Chen (2002), possibly because
we collected data for a relatively short time, whereas their
data over a longer time span.

Galbraith and Burns (2006) focused on the impact of land
modification on water quality in non-flowing water bodies
(e.g., lakes, wetlands, estuaries, etc.) in southern New
Zealand. They found that the conversion of native grasslands
to pasture increased nutrient concentrations and turbidity. The
Lower Grand study also showed that pasture/hay land use was
highly correlated to nutrient concentrations and turbidity as
well as to E. coli.

The results of this study were less similar to research con-
ducted in the eastern USA, which has a very different physi-
ography. Potter et al. (2005) considered the impact of land use
as well as of topographic and geologic factors on benthic
macroinvertebrates in North Carolina, and they found that
forest was the land use variable that correlated most closely
with macroinvertebrate health, while watershed shape was the
second most important variable. However, we found that
neither of these variables showed a high correlation with
macroinvertebrate health, possibly because we studied
primarily agricultural watersheds, not those what were
heavily forested. Also, our study correlated chemical water
quality parameters with macroinvertebrate health, with
nutrients and turbidity being highly correlated to the biotic
index.

On the east coast, Schoonover and Lockaby (2006) studied
the impact of land cover in 18 watersheds in western Georgia.
The watersheds in their study were much more urbanized than
the Lower Grand River watersheds, and row crops were rare.
Most watersheds in their study area were dominated by a
single land cover class (i.e., unmanaged forest, managed for-
est, pasture, developing, or urban). They found that more ur-
banized watersheds typically had higher nutrients and E. coli
than less urbanized watersheds. In the Lower Grand water-
shed, the percentage of land classified as urban is small, but
urban land use still occurred as a factor that correlated signif-
icantly with several water quality parameters. This suggests
that runoff from developed land, septic tanks, or municipal
sewage may significantly impact water quality even in areas
that are predominantly rural. Schoonover and Lockaby’s
(2006) work also had a temporal component. They found that
nutrient concentrations were higher during storm flow than
during baseflow conditions. In the Lower Grand study, nutri-
ent concentrations seemed to bemore influenced by the timing

Table 9 Factor loadings values of
water quality indicators for fall
and spring

Fall Spring

PC1 PC2 PC3 PC1 PC2 PC3

Parameter

T − 0.411 0.397 − 0.646 0.400 0.346 0.693

pH − 0.012 − 0.171 0.465 − 0.678 0.393 − 0.313
DO 0.411 − 0.185 0.727 − 0.574 0.276 − 0.342
EC 0.591 − 0.330 − 0.431 − 0.176 0.796 0.507

Turbidity − 0.195 0.800 0.311 0.255 − 0.503 − 0.302
P 0.810 0.396 − 0.201 0.790 − 0.117 − 0.137
N 0.912 0.142 − 0.246 0.465 0.664 − 0.476
E. coli − 0.159 0.732 − 0.038 0.571 0.540 − 0.529
BI 0.398 0.641 0.346 0.662 0.045 0.169

Eigenvalue 2.396 2.094 1.668 2.649 1.986 1.596

Total variance (%) 26.61 23.26 18.52 29.43 22.06 17.73

Cumulative variance (%) 26.61 49.88 68.41 29.43 51.49 69.23
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of fertilizer application. As such, concentrations of N were
significantly higher in the spring (when more nitrogen fertil-
izer is applied) than in the fall. P concentrations were higher in
the fall, even though P fertilizer is applied in approximately
equal amounts in the spring and fall.

PCA analysis demonstrated significant seasonal variations
in PC1 and PC2 factors, as did other studies (Ouyang et al.
2006; Garizi et al. 2011). Several of the factors that influenced
variability in the fall were the same as those observed by other
researchers. Ouyang et al. (2006) acquired data in the fall and
spring along the lower St. John’s River in Florida, and they
found that the most influential parameters for PC1 were N, P,
and EC (related to SC) (positively correlated) and organic
carbon (negatively correlated). In another study along the
Nakdong River, Jung et al. (2016) discovered that PC1 was
influenced by N, P, EC, organic carbon, and chemical oxygen
demand. In the Lower Grand River, the fall PC1 was most
influenced by N, P, and SC (positively correlated). In the
spring, Ouyang et al. (2006) found that PC1 was most influ-
enced by color, organic carbon (positively correlated) as well
as alkalinity and SC (negatively correlated), while our study
found that SC was weakly negative correlated with PC1 but
strongly and positively correlated with PC2 in the spring.

Conclusions

Basic water quality measurements were acquired in 35
primarily agricultural watersheds during the fall and fol-
lowing spring. These measurements were used to calcu-
late the biotic index and water quality index and were
correlated with a variety of geologic, topographic, and
LULC parameters. Pairwise comparison of the data ac-
quired during the fall and spring showed that all water
quality parameters were statistically different data sets
with p < 0.02 for all parameters, which suggests that the
timing of water quality sampling is critical. Simple regres-
sion analysis of all variables revealed that correlations
between independent variables and water quality indica-
tors fluctuated with the season but that the Bpasture/hay^
LULC category (which includes livestock grazing) was
statistically significant for several water quality indicators
for both sampling campaigns. The percentage of land used
for cultivated crops was only significant in the spring,
when more fertilizer is applied. The amount of precipita-
tion in the 2 weeks preceding data collection was also
significant for some water quality parameters. The varia-
tion between seasons as well as the significance of pre-
cipitation to the correlations again implies that the timing
of sampling campaigns may influence the correlations.
Geologic parameters, such as depth to bedrock, depth to
water table, slope, and soil type, were also significantly
correlated to water quality parameters. Stepwise

regression of independent variables and water quality in-
dicators showed that different relationships were devel-
oped in the fall and spring. However, many of the inde-
pendent variables within the stepwise regression relation-
ships were the same for both seasons, indicating that some
geologic or LULC parameters seem to consistently predict
water quality. In the predictive relationships, topographic
and geologic parameters occurred with the same or greater
frequency as LULC parameters. Comparison of the water
quality index with the biotic index demonstrated that
these two indexes were best correlated during the spring,
implying that the lower water quality conditions observed
in the spring might be more representative of the longer-
term water quality conditions in these watersheds. The
correlation of turbidity, E. coli, and BI in the PCA analy-
sis suggests that livestock grazing may adversely affect
water quality in this watershed. PCA analysis also re-
vealed that N, P, and SC contribute greatly to the ob-
served water quality variability.

This study produced several practical implications: (1)
sampling time, including both season and time since precip-
itation, may significantly impact correlations between water
quality and LULC or geologic factors. Thus, timing should
be a key aspect of the experimental design for field cam-
paigns. (2) Both LULC and geologic/topographic variables
are necessary to predictwater quality indicators, so proposed
best management practices to improve water quality should
be undertaken with strong consideration of the geologic and
topographic conditions of each site. Promoting bestmanage-
ment practices in those watersheds that are most likely to be
impaired (based upon geologic or topographic parameters)
could help maximize the environmental benefit, with the
least outlay of financial resources. (3) Although stepwise
regression equations between water quality indicators and
independent variables changed with the season, some inde-
pendent variables were valuable predictors of water quality
regardless of the season. This suggests that itmaybe possible
to partially predict water quality indicators based on other
factors, such as topographic, geologic, and LULC informa-
tion. Predictive relationships cannot be used to provide spe-
cific values for water quality parameters but may be helpful
for targeting sampling campaigns in streams most likely to
experience impairment. This could createmore efficient reg-
ulatory monitoring and improve resource allocation for wa-
ter management. (4) The biotic index correlated most with
parameters often associated with agriculture or urban runoff
(i.e., N, P, turbidity) andwas only weakly correlated with the
WQI, calculated using Cude’s (2001) generally accepted
method. This implies that macroinvertebrate assessment
could help to distinguish LULC inputs independently from
physicochemical water parameters, and that other methods
of calculating the WQI might be needed to better predict
biological responses based on physicochemical properties.
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