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Abstract
Surface and ground water resources are highly sensitive aquatic systems to contaminants due to their accessibility to multiple-point and
non-point sources of pollutions. Determination of water quality variables usingmathematical models instead of laboratory experiments
canhavevenerablesignificance in termof theenvironmentalprospective. In this research,applicationofanewdevelopedhybrid response
surfacemethod (HRSM)which is amodifiedmodel of the existing response surfacemodel (RSM) is proposed for the first time topredict
biochemical oxygen demand (BOD) and dissolved oxygen (DO) in Euphrates River, Iraq. The model was constructed using various
physical and chemical variables including water temperature (T), turbidity, power of hydrogen (pH), electrical conductivity (EC),
alkalinity, calcium (Ca), chemical oxygen demand (COD), sulfate (SO4), total dissolved solids (TDS), and total suspended solids (TSS)
as input attributes. The monthly water quality sampling data for the period 2004–2013 was considered for structuring the input-output
pattern required for the development of the models. An advance analysis was conducted to comprehend the correlation between the
predictors and predictand. The prediction performances of HRSMwere compared with that of support vector regression (SVR) model
which is one of themost predominate appliedmachine learning approaches of the state-of-the-art forwater quality prediction.The results
indicated a very optimisticmodeling accuracyof the proposedHRSMmodel to predictBODandDO.Furthermore, the results showed a
robust alternativemathematical model for determiningwater quality particularly in a data scarce region like Iraq.
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Introduction

Water is vital in many aspects of human life such as for drinking,
personal hygiene, agricultural purposes, manufacturing and in-
dustrial processes, biotransformation, power generation, and con-
tamination dissolution releasing (Zhang et al. 2012; Wu et al.
2018). Unsustainable anthropogenic activities often polluted wa-
ter bodies and causes high stress on freshwater resources (Chau
2005). Because of the frequent episodes of water pollution in
recent times, the prediction and assessment of water quality have
gradually attracted the attention of the environmental manage-
ment department of many countries (Gümrah et al. 2000; Page
et al. 2017).

Iraq experienced a remarkable increase in water shortage in
the last two decades due to intervention of water flow in the
upstream of major rivers, changes in climate, and gradual
declination of rainfall (Kadhem 2013; Zolnikov 2013).
Water quality is another major problem that Iraq is facing for
the past couple of decades (Zolnikov 2013). This is particu-
larly becoming a major concern for Euphrates River where
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water quality is drastically aggravated in recent years due to
agricultural developments. The issue of river water quality has
become critical for the country as it has gone beyond the
standard required for industrial, domestic, and agricultural
purposes (Rahi and Halihan 2010).

The quality of river water is defined by various physical,
chemical, and biological properties of water. Among all the
water quality parameters, dissolved oxygen (DO) is consid-
ered as the most important water quality parameter as it is
essential for the survival of all aquatic organisms.
Biochemical oxygen demand (BOD), on the other hand, is a
measure of the amount of DO in river and thus defines the
amount of organic matter available for oxygen-consuming
bacteria. DO and BOD is a composite index that can be used
to assess the favorable conditions for aquatic life and overall
quality of water. The DO and BOD affects a large number of
biological, chemical, and physical properties of water and thus
considered as the most important index of water quality. The
stream pollution control and management of river water qual-
ity and ecology activities are largely hinged on accurate deter-
mination of these two parameters. However, the analysis of
these parameters is delicate and time-consuming compared to
other water quality parameters. A great amount of cost, time,
and energy can be saved if these water quality parameters can
be predicted in a reasonable accuracy. This has inspired re-
searchers to develop reliable models for prediction of BOD
and DO from other easily available water quality data.

Modeling and forecasting of river water quality parameters
is a challenging issue for a long time. The BOD and DO
depend on many biotic and abiotic factors and their complex
interactions. The knowledge of many of these interactions are
still not clear, the data required for modeling such processes
are difficult to acquire, and mathematical formulations of the
processes are often very difficult. Therefore, physical-based
models generally used for BOD and DO modeling simplify
these complex physical processes and therefore often fail to
predict BOD and DO with reasonable accuracy.

The BOD and DO in water bodies are found to change with
time and follow stochastic behavior which encouraged devel-
oping stochastic prediction models. Regression models are
most widely used for modeling stochastic behavior of BOD
and DO. However, highly stochastic behavior of BOD and
DO makes the reliable simulation of those parameters using
conventional regression models a difficult task. It is expected
that prediction models must have the high prescient ability in
describing water quality. Therefore, simple statistical
regression-based model cannot be used for operational man-
agement of river water quality.

Soft computing models such as artificial intelligence (AI)
provide an excellent and reliable technique for modeling sur-
face and underground water quality (Gümrah et al. 2000; Shi
et al. 2018). Nevertheless, AI models exhibited robust and
reliable modeling strategies for multiple hydrological,

climatological, and environmental applications (Wang et al.
2014; Olyaie et al. 2015; Chen and Chau 2016). The main
advantage of the AI models is their capability of handling
the highly complicated nonlinear inter-parameter relationship
(Barzegar et al. 2016) on the contrary of the conventional
statistical models that are based on the assumption of linear
relationship. The applications of AI have been presented in
several predictive model forms such as artificial neural net-
work (Sudheer et al. 2006; Zou et al. 2007; May 2008; Palani
et al. 2008; Singh et al. 2009; Song et al. 2010; Balabin et al.
2011; Khalil et al. 2011; Gazzaz et al. 2012; Klaslan et al.
2014; Wu et al. 2014), support vector machine (Xu et al.
2007; Bouamar and Ladjal 2008; Yunrong and Liangzhong
2009a; Jian et al. 2010; Singh et al. 2011; Liu and Lu 2014;
Jadhav et al. 2015), adaptive neuro-inference system model
(Sahu et al. 2011; Emamgholizadeh et al. 2014; Najah et al.
2014; Ahmed and Shah 2015), and genetic programming
(Muttil and Chau 2006; Sreekanth and Datta 2010; Orouji
and Haddad 2013; Olyaie et al. 2017). On the other hand,
hybrid intelligence models revealed a good performance in
modeling water quality parameters (Wang et al. 2010; Liu
et al. 2013; Deng et al. 2015; Barzegar et al. 2016;
Ravansalar et al. 2016). In spite of the enormous implemen-
tation of AI in water quality modeling, there are still several
downsides of these AI models such as difficulty in tuning
internal parameters, time-consuming algorithms, human
modeling interaction, and lack of generalization. Therefore,
exploring new and robust mathematical models that are fea-
tured by high flexibility in solving complicated environmental
phenomena are on progress (Behmel et al. 2016).

Most recently, a new mathematical model called response
surface method (RSM) has been well recognized for its ability
to solve complex regression problem effectively (Cho 2007;
Kewlani and Iagnemma 2008; Kim and Choi 2008; Wei et al.
2008; Acherjee et al. 2009; Roussouly et al. 2012). The main
advantage of RSM is its employment of high-order polynomi-
al function (Keshtegar et al. 2016). The precision of the RSM
model relies upon the fundamental numerical capacity in light
of the fact that the essential response surface function frames
are given adaptability to model the targeted application (i.e.,
water quality variable). In the current research, a hybrid re-
sponse surface method (HRSM) has been developed for the
first time to predict water quality variables. The motivation of
proposing this study was its successful implementation in the
field of hydrology (Keshtegar et al. 2017).

The HRSM models have been developed in this study for
the prediction of BOD and DO from other easily available
water quality parameters including water temperature (T), tur-
bidity, power of hydrogen (pH), electrical conductivity (EC),
alkalinity, calcium (Ca), chemical oxygen demand (COD),
sulfate (SO4), total dissolved solids (TDS), and total
suspended solids (TSS). The modeling result is verified
against the support vector regression (SVR) model. Various
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AI models have been proposed for simulations of river water
quality parameters as mentioned above. However, SVR has
been reported in literature as the most predominate AI model
in prediction of environmental phenomena (Fahimi et al.
2016; Fengxiang et al. 2010; Singh et al. 2011; Yunrong and
Liangzhong 2009b). This study aims to develop a robust
mathematical model for the prediction of BOD and DO in
river water in order to aid river water quality management in
a data scarce region such as Iraq. This type of model is ex-
tremely important for a developing country like Iraq where the
amount of assigned budget for environmental quality moni-
toring and assessment is very limited, but the water pollution
is very frequent and more disastrous. Hence, establishing the
current research is highly significant for the sake of providing
intelligent system tomonitor the water quality variables of this
most vital river of Iraq. To the best of the knowledge of the
authors, there is no research previously conducted on such
prospective and thus the novelty is presented at this point in
addition to the proposed methodology.

Dataset and description of the study area

The water quality parameters of Euphrates River measured at
Ramadi City, Anbar, Iraq (latitude 33°26′15″N; longitude
43°16’52″E) was used in the study (Fig. 1). The water quality
of the Euphrates River has become a serious issue in recent
years. The return flows from agricultural land and dumping of
untreated sewage into the river and its tributaries for a long
time have caused gradual deteriorations of the quality of river
water. Therefore, forecasting water quality of Euphrates River
is very important for environmental quality monitoring and
management. The water sample at the intake of a large drink-
ing water treatment plant in Ramadi City was collected for
laboratory measurement of water quality parameters. The
sampling process was based on monthly scale over the period
of 2004–2013. Long-term reliable water quality data is a ma-
jor problem in Iraq. Water quality data was available only for
those 10 years when the study was conducted, and the avail-
able data was fully utilized in the present study. The main
sources of water contamination of the Euphrates River are
agricultural and domestic wastes. The salinity of river water
is very high which increases along the course of the stream. In
addition, discharging of the untreated sewage water in the
river and its tributaries adds a serious hazard associated with
different types of water contaminants. The analysis of water
quality parameters was done upon ten physical and chemical
water properties including T, turbidity, pH, EC, slkalinity, Ca,
COD, SO4, TDS, TSS, DO, and BOD. The BOD and DO in
river water system are affected by these water quality param-
eters, and therefore, those are selected for the development of
prediction models.

Theoretical review of the predictive models

Hybrid response surface method

The RSM can be generally described as a set of approximation
polynomials limited to quadratic order for experimental calibra-
tion. A set of polynomial functions for modeling of water quality
variables (BOD and DO) at monthly time scale was derived in
this study. The regression of several data points was used to
obtain the polynomial set coefficients. The general method for
a quadratic order approximating polynomial using RSM that was
widely applied in previous researches (e.g., Afan et al. 2017;
Keshtegar et al. 2016; Yeniay 2014) involves the following
second-order function:

Y ¼ a0 þ ∑
n

i¼1
aixi þ ∑

n

i¼1
aiix2i þ ∑

n

i¼1
∑
n

j¼iþ1
aijxix j ð1Þ

The conceptual idea of prediction Bmultivariate regression
problem^ using RSM hinges on the polynomial functions in
high-order. Traditional RSM typically uses low-order polyno-
mials to approximate highly nonlinear functions and thus suffers
from limited predictive capability. Thus, selecting the appropriate
polynomials is essential to attain a high level of accuracy.
Different approaches such as multi-layer regression, Taguchi op-
timization, etc. have been adapted to improve the prediction
characteristics RSM compared to those uses typical
polynomial-based RSM. The main modification performed in
the latest equation consisted of combining the polynomial and
exponential functions to obtain a hybrid function. It is expected
that if the polynomial expression is able to approximate the high-
ly nonlinear relationship like the exponential relationship over an
extended range, it will able to provide better prediction.

For data having small standard deviation, the data points usu-
ally have narrow bounds with normal distribution function near
the mean. Hence, the input data to this function are usually nor-
malized via the following equation:

N Χ nð Þ ¼ xin−xmeann

2σxn
ð2Þ

where xmeann and 2σxn are the average and standard deviation of a
normally distributed function in which 2σxn can be replaced with
σxn because of the narrow bounds with normal distribution func-
tion near the mean value. With respect to the following normal-
ized exponential function (Eq. 3), the calibration of target values
(BOD and DO in this case) considering normalized input water
quality parameters can be done as

Yn ¼ a1n þ a2nexp N Xnð Þ½ � ð3Þ

To approximate the unknown coefficients a1n and a2n, Eq.
(3) can be incorporated with Eq. (1) to obtain the HRS func-
tion:
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Y ¼ a0 þ ∑
n

i¼1
aiY ni þ ∑

n

i¼1
aiiY n2i

þ ∑
n

i¼1
∑
n

j¼iþ1
aijY niY nj ð4Þ

where Yni is the same as given in Eq. (3). The unknown coef-
ficients in the latest equation are usually estimated using the
following error function:

e ¼ E−Y½ �T E−Y½ � ð5Þ

where Y = P(Yn)
Ta, E are the observed target values (BOD and

DO). The basic polynomial function that depends on Eq. (3)
can be computed as

P Ynð Þ ¼ 1; yn1; yn2; :::; ynn; yn21; yn
2
2; :::; yn

2
n; yn1yn2; yn1yn3; :::; ynn−1ynn

� �
ð6Þ

Following minimization of the error function given in Eq.
(5), the unknown coefficients can be estimated as follows:

a ¼ P Ynð ÞTP Ynð Þ
h i−1

P Ynð ÞTE
h i

ð7Þ

By combining the latest equation with Y given above, the
prediction of BOD and DO can be fulfilled as

Y ¼ P Ynð ÞT P Ynð ÞTP Ynð Þ
h i−1

P Ynð ÞTE
h i

ð8Þ

For illustration purpose, Fig. 2 shows the proposed hybrid
response surface method. The figure displays four layers in-
volved in the structure of the HRSM model that can be used
for the prediction using exponential functions and hybrid
polynomial.

The input data is presented in the first layer. The second
layer defines the normalization process for the supplied data.
This is followed by the calibration of the targeted BOD and
DO variables in accordance with the normalized input attri-
butes using Eq. (3), reported earlier. At the last layer, the
regression problem is solved using the second-order polyno-
mial function given in Eq. (4). More information of the devel-
opment of HRSM can be found in other published researches
(Keshtegar and Heddam 2017; Keshtegar et al. 2017).

Support vector regression

As a distinguished intelligence predictive model, SVR had
been applied successfully in environmental studies (Singh
et al. 2011; Fahimi et al. 2016). Therefore, in this study, it
was selected to verify the prediction proficiency of HRSM
model. Recently, the SVR has been applied in several areas
such as soft computing, environmental studies, and engineer-
ing as a learning algorithm. It has demonstrated a better pre-
diction and forecasting accuracies when compared with other
forecasting methods like neural network (Liu and Lu 2014).
The process and theory of SVR development is available in

Fig. 1 The case study location
Ramadi water plant station
located on the Euphrates River in
Iraq
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the literature (Vapnik 1995). A statistical way of machine
learning and minimization of structural risk form the basis
for the development of SVR, aimed at reducing upper bound
error compared to the commonly experienced local training
error in other machine learning methods. Based on recent
evaluations, there are several improvements in the SVR com-
pared to other soft computing learning algorithms such as the
implementation of a set of kernel equations that is highly
dimensionally spaced but does not involve nonlinear transfor-
mations, thereby making data to be indispensable and linearly
separable since there is no room for assumption during the
functional transformation. Besides, the method is unique in
its solution due to the convex nature of the optimal problem.
Different algorithms have been proposed for optimization of
the internal parameters of SVR including bat algorithm, firefly
algorithm, particle swarm optimization, and univariate

marginal distribution algorithm. Among those, the nature-
inspired algorithm, firefly, has been highly recommended in
recent studies (Ch et al. 2014; Moghaddam et al. 2016;
Shamshirband et al. 2016; Ebtehaj et al. 2017; Ghorbani
et al. 2017a, b, c; Tao et al. 2018). Yang (2010) developed
firefly (FFA) algorithm as a biologically inspired
metaheuristic optimization algorithm which depends on cer-
tain biological behaviors such as the characteristic flashing of
light by Fireflies. Fireflies attract preys or mates through bio-
luminescence. When compared to other conventional
metaheuristic algorithms, the FFA has shown promising, effi-
cient, interesting, and robust potentials in achieving global
optimization.

Evaluation of model performance

The simulationwas done by using a new set of input variables,
and the results obtained using HRSM and SVR models were
compared with the observed BOD and DO, using different
performance measuring indicators including scatter index
(SI), mean absolute percentage error (MAPE), root mean
square error (RMSE), mean absolute errors (MAE), root mean
square relative error (RMSRE), mean relative error (MRE),
BIAS, and correlation coefficient (R2), following most of ma-
chine learning researches evaluation (Moeeni et al. 2017):

MAE ¼ 1

n
∑
n

i¼1
jxi−yij ð9Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑
n

i¼1
xi−yið Þ2

s
ð10Þ

MAPE ¼ 1

n
∑
n

i¼1
j xi−yi

xi
j � 100 ð11Þ

Fig. 2 The structure of the proposed HRSM predictive model

Table 1 Basic statistics of the measured water quality variables

Variable Unit Min Max Median Mean SD CV%

Temperature °C 9 38 22 21.8 8.2 0.37

Turbidity NTU 7.3 73.4 12.4 18.9 15 0.79

pH – 7.3 8.1 7.8 7.7 0.1 0.02

EC μs/cm 1324 1896 1449.5 1484.4 125.2 0.08

Alkalinity Mg/l 104 162 124 125.4 12.4 0.09

Ca Mg/l 77 105 85 86.3 6.3 0.07

COD Mg/l 8.3 108 11.1 12.2 9 0.73

SO4 Mg/l 212 449 385 383.5 32.9 0.08

TDS Mg/l 863 1289 1113.5 1102.7 93.8 0.08

TSS Mg/l 12 196 35 56.7 49.5 0.87

BOD Mg/l 2.9 5 3.7 3.8 0.5 0.15

DO Mg/l 5.9 7.9 7.2 7 0.5 0.08

Table 2 The correlation statistic between each inspected water quality
(predictor attribute) and the targeted water quality BOD and DO

Input variables attributes Targeted variables

BOD DO

Temperature 0.678 0.746

Turbidity 0.250 0.332

pH 0.361 0.316

EC 0.330 0.360

Alkalinity 0.281 0.331

Ca 0.126 0.180

COD 0.442 0.304

SO4 0.040 0.032

TDS 0.200 0.159

TSS 0.273 0.351
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SI ¼ RMSE

x
ð12Þ

R2 ¼
∑
n

i¼1
xi−x

� �
− yi−y
� �� �2

∑
n

i¼1
xi−x

� �2
∑
n

i¼1
yi−y

� �2 � 100 ð13Þ

RMSRE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1

xi−yi
xi

� �
2

n

vuuut ð14Þ

BIAS ¼
∑
n

i¼1
xi−yið Þ
n

ð15Þ

Table 3 The investigated input combinations to predict BOD and DO water quality variables

Models Temperature Turbidity pH EC Alk CA COD SO4 TDS TSS

M1 √
M2 √ √
M3 √ √ √
M4 √ √ √ √
M5 √ √ √ √ √
M6 √ √ √ √ √ √
M7 √ √ √ √ √ √ √
M8 √ √ √ √ √ √ √ √
M9 √ √ √ √ √ √ √ √ √
M10 √ √ √ √ √ √ √ √ √ √

Table 4 The statistical performance indicators for the testing period of BOD variable prediction using HRSM and SVR models

Models SI MAPE RMSE MAE RMSRE MRE BIAS R2

HRSM

Model 1 0.073 5.831 0.278 0.214 0.076 0.006 − 0.002 0.67

Model 2* 0.035 2.764 0.136 0.103 0.035 − 0.002 0.016 0.92

Model 3 0.079 5.588 0.301 0.217 0.075 − 0.034 0.147 0.70

Model 4 0.117 9.722 0.442 0.374 0.112 − 0.054 0.236 0.40

Model 5 0.122 10.05 0.462 0.389 0.115 − 0.042 0.201 0.26

Model 6 0.112 6.905 0.426 0.273 0.102 − 0.048 0.206 0.44

Model 7 0.149 10.14 0.566 0.403 0.137 − 0.074 0.314 0.21

Model 8 0.120 7.818 0.456 0.310 0.109 − 0.054 0.231 0.37

Model 9 0.126 8.000 0.477 0.320 0.115 − 0.042 0.185 0.31

Model 10 0.096 7.014 0.363 0.263 0.098 − 0.013 0.072 0.49

SVR

Model 1 0.097 8.332 0.369 0.304 0.102 0.005 0.014 0.41

Model 2 0.119 9.279 0.452 0.337 0.126 0.028 − 0.076 0.31

Model 3 0.066 5.645 0.252 0.209 0.068 − 0.021 0.097 0.76

Model 4 0.122 8.578 0.464 0.339 0.113 − 0.077 0.312 0.51

Model 5* 0.066 5.046 0.251 0.194 0.063 − 0.043 0.173 0.85

Model 6 0.106 8.535 0.403 0.329 0.102 0.0424 − 0.151 0.57

Model 7 0.154 12.459 0.585 0.480 0.146 − 0.092 0.359 0.39

Model 8 0.174 12.200 0.658 0.447 0.184 0.0943 − 0.349 0.40

Model 9 0.142 11.177 0.537 0.415 0.145 0.0010 − 0.012 0.53

Model 10 0.125 10.043 0.474 0.374 0.130 0.0398 − 0.130 0.37

* indicates the best modeling input combination
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MRE ¼
∑
n

i¼1

xi−yi
xi

� �
n

ð16Þ

where xi; yix and y are observed, predicted mean value of
observation, and mean value of predictions, respectively.
The criteria perform in different ways; for instance, bias is a
measure of the systematic tendency of a model to underesti-
mate or overestimate the target values. A positive bias, for
example, implies that observed values of BOD and DO, on
average, are higher than that of predicted values and vice
versa. The eight statistical metrics mentioned above can be
used for the assessment of all forms of errors in model output
as well as to assess the association and similarity of model
output with observed data. Therefore, it is expected that the
use of those eight criteria together would help in selection of
the best model in an unbiased way.

Application results

Deterioration trend of water quality can be inspected via water
quality prediction models. As described in the earlier parts, this

studymainly focusedon the prediction of two important chemical
parameters (i.e., BOD andDO). Both parameters have been clas-
sicallyusedfordecadesasindicatorsofwaterquality,andundoubt-
edlyaccurateprediction, in this case, is essential to ease theprotec-
tive initiatives. In this work, a new predictive HRSMmodel was
introduced and the performance of new model is compared with
verywell-knownAImodel (e.g.,SVR).HRSMis relativelyanew
approach that can predict complex patterns using the approximat-
ing tool. The superiority of the proposed model is checked by
analyzing different forms of errors inmodel simulation.

Exploratory analysis of Euphrates River water quality param-
eters are given in Table 1. For a better understanding of the
influence of each predictor on the targeted variables, correlation
coefficients of each input variable with BOD and DOwere com-
puted (Table 2). It was found that the correlation coefficients of
all water quality parameters except temperature were low and
insignificant. A total of ten parameters were used to predict the
BOD and DO. In this respect, ten different models were con-
structed with the combination of different input parameters,
which were labeled as (M1, M2, M3, …, M10). According to
Table 3, model 1 (M1) consists of only one water quality param-
eter (i.e., temperature), M2 consists of two parameters, and like-
wise, M10 consists of all (ten) parameters to be fed as input
attributes to the predictive models. As the number of input

Table 5 The statistical performance indicators for the testing period of DO variable prediction using HRSM and SVR models

Models SI MAPE RMSE MAE RMSRE MRE BIAS R2

HRSM

Model 1 0.052 3.689 0.374 0.266 0.051 − 0.008 0.075 0.51

Model 2* 0.023 1.620 0.168 0.117 0.022 − 0.003 0.032 0.90

Model 3 0.047 3.253 0.336 0.226 0.049 0.003 − 0.010 0.60

Model 4 0.051 3.707 0.365 0.258 0.053 0.016 − 0.099 0.55

Model 5 0.058 4.705 0.417 0.323 0.063 0.019 − 0.113 0.41

Model 6 0.079 5.152 0.563 0.344 0.087 0.000 0.007 0.40

Model 7 0.065 4.338 0.463 0.296 0.071 0.006 − 0.024 0.34

Model 8 0.055 3.919 0.397 0.268 0.060 0.015 − 0.093 0.47

Model 9 0.065 4.816 0.466 0.339 0.067 − 0.006 0.054 0.45

Model 10 0.074 5.224 0.532 0.359 0.079 − 0.011 0.084 0.41

SVR

Model 1 0.050 3.896 0.358 0.278 0.049 − 0.007 0.066 0.54

Model 2 0.045 3.595 0.322 0.256 0.045 − 0.002 0.030 0.62

Model 3 0.043 3.608 0.310 0.255 0.043 0.002 0.000 0.65

Model 4* 0.031 2.688 0.223 0.188 0.032 0.009 − 0.056 0.83

Model 5 0.063 4.698 0.452 0.334 0.063 − 0.005 0.055 0.40

Model 6 0.070 4.995 0.502 0.339 0.077 0.040 − 0.266 0.37

Model 7 0.062 4.754 0.446 0.339 0.061 − 0.014 0.118 0.40

Model 8 0.066 5.495 0.472 0.390 0.066 − 0.008 0.067 0.46

Model 9 0.062 4.678 0.444 0.318 0.068 0.020 − 0.126 0.37

Model 10 0.073 5.425 0.525 0.388 0.072 − 0.009 0.083 0.30

* indicates the best modeling input combination
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parameter gradually increased from M1 to M10, the changes in
model performance provides the influence of each input param-
eter. Thus, ten models were constructed in this study in order to
provide information regarding the sensitivity of the ten input
parameters considered in this study in prediction of HRSM and
SVR.

The model performance of HRSM and SVR is tabulated in
Tables 4 and 5. According to the presented values, the HRSM
was found to perform excellent in the prediction of both BOD
and DO using the second input combination (M2) (tempera-
ture and turbidity). On the other hand, the benchmark model
(SVR) attained the best results for fifth input combination

(M5) for prediction of BOD and fourth input combination
(M4) for prediction of DO. This can be explained owing to
the fact that mathematical models behave differently from one
case to another following the explicitness of the internal mech-
anism between the predictors and the predictand. Figure 3 ex-
hibits the model performance using the scatter plots and time
series plots over the testing phase. The illustrated results of BOD
belong to the best achievement of the HRSM for M2 and the
best performance of SVR for M5. The HRSM prediction
showed more accurate performance than the best SVR model.
The highest correlation R2 was obtained using HRSM, 0.92
(M2), whereas it was 0.85 for SVR (M5). Figure 3 also shows

Fig. 3 Scatter plots and time
series presentation for the actual
and predictive models
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the results for DO models. The highest values of correlation for
HRSM and SVR DO models were (R2 = 0.9 (M2)) and (R2 =
0.83 (M4)), respectively.

In clearer appraisal for the various performance indicators,
the results of the best input combinations are enlightened in
Fig. 4. The SI, RMSE, MAE, and RMSRE were compared
using a bar diagram in the figure. The results showed that the
HRSM had significantly lesser error compared to the SVR for
all cases. For instance, the scatter index (SI) of BOD prediction
using HRSM and SVR was 0.035 and 0.119, respectively. The
scatter index (SI) of DO prediction using HRSM and SVR was
0.023 and 0.031, respectively. It is evident that a remarkable
augmentation was achieved using HRSM. Similarly, the
RMSE, MAE, MAPE, and RMSRE indicators showed very
promising results using HRSM for both the targeted variables.

It was observed that HRSM showed better performance
compared to SVR in predicting BOD and DO in most of the
cases. It proves the robustness of the proposed model in
comprehending the internal relationship between the predic-
tors and predictand of the water quality parameters. The cor-
relation coefficient achieved using HRSM was 0.9 (M2). On
the other hand, SVR predicted DO with best input combina-
tion M4 with R2 value of 0.83. The details of the performance
indicators of HRSM and SVR models in predicting DO are
given in Tables 4 and 5, respectively. The results of other
performance indicators such as SI, RMSE, MAE, and
RMSRE for M2 are given in Fig. 4b.

In both BOD and DO prediction, it seems that consider-
ation of more input variables is not always better for predic-
tion. The prediction matrices demonstrated better prediction
skill when fewer variables were used in constructing the pre-
dictive model. It was found that the HRSM performed better
in the prediction of both BOD and DOwhen trained with only
two parameters (i.e. temperature and turbidity). This observa-
tion matches well with the correlation values presented in
Table 2 in which temperature and turbidity were found as
the major attributes that affect the BOD and DO magnitudes.
Indeed, the primary goal of a unique prediction model should
be achieved closer approximation rather than including more
parameters in the process. It is significantly important from the
perspective of laboratory efforts. Also, this is highly valuable
for the catchments that lack environmental information. The
results indicate that it is important to focus on particular pa-
rameters only that have significant impact on prediction pro-
cess and internal relations. Involving more parameters some-
time may confuse the model and lead to inaccurate prediction
or the astray. Here, the accuracy in the prediction of BOD and
DO are prioritized than the number of parameter involve-
ments. In this case study, M2 outperformed in almost every
cases which consists of only two parameters (i.e., temperature
and turbidity). Temperature was exclusively considered in the
M1 model. Therefore, the result indicates that the turbidity is
the key parameter that provides the best prediction. It should
be noted that turbidity has a significantly high coefficient of
variance (CV%) in Euphrates river along with TSS, which is
also directly related to turbidity. When more parameters were
included (i.e., M3, M4 and so on), both the models have to
reform the relations among the parameters and get biased by
the parameters which have less or no influence on BOD and
DO variations.

The Taylor diagram is another way to compare model
performance by visualizing the errors (Taylor 2001).
These diagrams graphically summarize the model efficien-
cy and are quite new in the presentation of water quality
model performance. The Taylor diagrams of HRSM and
SVR for both BOD and DO are given in Fig. 5a–d. The
position of each model on the diagram measures the accu-
racy of the model in simulating BOD and DO compare to
observed data. Figure 5a shows the highest correlation for
HRSM with M2 combination. The simulated BOD that ap-
proximated well compared to actual data lies nearer to the
point marked Bactual^ on the x-axis. The RMSE between
the simulated and the observed BOD is represented in the
diagram as proportional to the distance from the observed
point. The standard deviation of the simulated BOD is pro-
portional to the radial distance from the origin of the dia-
gram. The standard deviation for all cases was found to vary
between 0.3 and 0.5.

On the other hand, the predicted BOD by SVR model, as
given in Fig. 4b indicates that SVR with M5 is the closest to
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Fig. 4 a Comparing errors in BOD prediction for M2. b Comparing
errors in DO prediction for M2
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the observed data as it has the largest correlation and lowest
value of RMSE. The M2 which was the best model of HRSM
showed correlation value slightly more than the SVR model.
The models M3, M4, and M6 were found to fall in the mid-

range category. Also note that, although models M4 and M9
showed the same correlation, M4 approximated the amplitude
of the variations (standard deviation) better than M9 and
yielded a lower RMSE.

(a)

(b)

Fig. 5 Taylor diagram graphical
presentation for BOD variable
over the testing phase using a
HRSM and b SVR predictive
models. Taylor diagram graphical
presentation for DO variable over
the testing phase using c HRSM
and d SVR predictive models
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Figure 5c, d demonstrated the Taylor diagram for DO. Like
BOD, M2 was found to perform exceptionally well among all
the model input combinations by having the largest correlation

of 0.9. It also achieved the lowest standard deviation and
RMSE. The M6, M10, and M5 correlated similarly with the
observed values (0.4); yet, M5 showed better standard

(c)

(d)

Fig. 5 (continued)
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deviation among the three models. Although the models M1,
M3, and M4 performed moderately and had the correlation
values between 0.5 and 0.6, M3 achieved the second position
in approximating the DO using HRSM model. For SVR, it
was found that the M4 performed very well as it showed the
highest correlation (0.8) and the lowest RMSE. The M2 and
M3 performed moderately well (correlation coefficients were
0.62 and 0.65, respectively) whereas M3 had slightly better
standard deviation and RMSE in comparison to M2. Among
all the models, M10 performed very poorly as it showed the
lowest correlation (0.3) and the largest RMSE values.

From the above analysis and the description of the plotted
Taylor diagrams, it can be argued that HRSM can simulate
BOD and DO more accurately when trained with the temper-
ature and the turbidity data of water. It is very clear, especially
for this case study, the BOD and DO are regulated by the
turbidity of the river. The SVR method came in the close
prediction of BOD for M5 (correlation 0.85), but HRSM
outperformed for M2 (correlation 0.92). In case of DO, again,
HRSM was found to correlate better with the observed data
with a correlation coefficient of 0.9 (M2) which is higher than
SVR (0.83 for M4).

Research findings discussion

RSM provides technique for mapping multi-dimensional pat-
tern of responses of an outcome variable to the changes in
controlling variables that govern physical processes of the
system. The strength of the method lies in capturing accurate
smooth approximations of responses through the selection of a
set of polynomial functions which are able to capture the non-
linearity in system behavior. The main advantage of RSM
over other AI techniques is its ability to employ high-order
polynomial functions for accurate approximation of responses
(Keshtegar et al. 2016). Therefore, it has more explanatory
potential compared to other AI-based regression analyses
(Edwards 2007). The smooth nature of polynomial-based ap-
proximations eliminate numerical noises and allows efficient
prediction of response variable (Yeniay 2014). The major im-
provement in the capability of RSM is obtained in this study
by combining the polynomial and exponential functions to
obtain a hybrid function which has increased the ability of
RSM to approximate the highly nonlinear relationship and
thus the predictive capability. This has made the HRSMmodel
superior over the SVR model in simulating the BOD and DO
from other water quality parameters.

The RSMmethod optimizes the response surface using the
best set of predictors which are highly correlated with target
variable considering that other less correlated variables can
add uncertainty in model prediction. Uncertainty is one of
the major limitations of using AI model predictions for water
quality management. The AI models are usually data-driven,

and therefore, the major uncertainty in prediction arises from
the uncertainty in inputs (Noori et al. 2013). The uncertainty
of model inputs is propagated through the model towards the
model outputs and acts as the major source of uncertainty in
prediction (Beven 2006; Griensven and Meixner 2006). In
order to reduce uncertainty, the RSM uses the best set of
predictors to find a suitable approximation for the functional
relationship between the targeted variables and the indepen-
dent variables. In the present case study, the input parameters
are gradually entered in the HRSM to identify the most appro-
priate input variables in order to reduce uncertainty in model
prediction. The HRSM found only two easily measurable wa-
ter quality parameters (temperature and turbidity) as most suit-
able for approximation of required functional relationship.
Therefore, it can be remarked that the HRSM models devel-
oped in this study with only two input variables can be used
for prediction of BOD and DO with less uncertainty.

The models developed in this study can be used for predic-
tion of BOD and DO at any location of Euphrates River
through simple measurement of river water temperature and
turbidity. It is well known that DO in water body has inverse
relation while BOD has direct relation with temperature and
turbidity. DO decreases and BOD increases as temperature or
turbidity increases. Therefore, identification of temperature
and turbidity as the most suitable input by HRSM for predic-
tion of BOD and BO is justifiable.

River water temperature is related to air temperature, and
turbidity is related to rainfall and different properties of catch-
ment such as land use and soil. In the future, models can be
developed to predict river water temperature from air temper-
ature and turbidity from catchment rainfall-runoff model
which can be integrated with the HRSM models developed
in this study for prediction of BOD and DO from rainfall and
temperature data. Such models can also be used for assess-
ment of the impacts of climate and land use changes on BOD
and DO in Euphrates River and planning management strate-
gies for mitigation of the impacts of environmental changes on
river water quality.

Conclusion

In this research, the capability of a new model, HRSM, in
prediction of environmental variable has been inspected. The
HRSM is developed in this study to predict BOD and DO in
river water. Themotivation of implementing this model was to
provide a robust approach to determine water quality variables
using historical laboratory observations. The models were de-
veloped using various physical and chemical quality variables
of water as input attributes. A period of one-decade (2004–
2013) laboratory information data was used to construct the
models. The HRSM model was validated against a very well-
known regression data-intelligence model known as SVR.
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The obtained results of HRSM showed higher performance in
comparison with SVRmodel. In addition, the proposed model
demonstrated less approximation in terms of the input attri-
butes that is extremely important for prediction of BOD and
DO in catchments having less environmental or ecological
information. Overall, the results revealed that HRSM can be
used as a robust predictive model for Euphrates River water
quality variables. Future research can be conducted for the
improvement of the performance of prediction models
through incorporation of more informative input attributes
such as microbiological, hydrological, or even climatological
variables. In addition, feasibility of natural inspired algorithms
can be explored to select the appropriate casual information
between the predictors and predictand as reported by Cho and
Hermsmeier (2002) and Muttil and Chau (2007) in order to
select appropriate input variables. Furthermore, recent water
quality data can be used in which it can provide more infor-
mative attributes to the predictive model.
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