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Abstract
Prediction of sediment volume and sediment load is always one of the important issues for decision-makers of watershed basins.
The present study investigated the daily suspended sediment load in a watershed basin using the improved support vector
machine method. Since inmost of the previous studies, the coefficients of the support vector machine method had been calculated
based on trial and error, in the present study, the combination of the support vector machine and the genetic algorithm is used. In
the first step, the unknown parameters of the support vector machine are calculated and then, the sediment load simulation is
performed. Two case studies in the present work involve two earth dams in Semnan Province called Veynakeh and Royan.
Furthermore, multivariate adaptive regression spline (MARS) and MT tree model (M5T) methods are used for comparison. The
results indicated that the input combination of discharge data at the current time and one, two, and three previous days has the best
performance for all models. Also, the support vector machine-genetic algorithm (SVM-GA) model has a lower root mean square
error (RMSE) and mean absolute error (MAE) compared to theMARS andM5Tmodels for both stations. In addition, comparing
observational data with simulation data based on the R2 coefficient suggested that the SVM-GA model offers more accurate
results than the other two methods. Accordingly, the SVM-GA method used in this study has a high potential for simulating
sediment volume.
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Introduction

One of the important problems in relation to watershed basin
is sedimentation. Sediments have the potential to transport
nutrients and contaminants (Liu et al. 2018; Yilmaz et al.
2018). Also, various environmental, hydrological, and hy-
draulic issues are associated with sedimentation and are

affected by the volume of sediments (Gholami et al. 2018;
Adib and Mahmoodi 2017). Also, construction of hydraulic
structures in different parts of a watershed basin is influenced
by sediment volume and, thus, the calculation of sediment
load is crucial (Choubin et al. 2018; Moeeni and Bonakdari
2018). The process of erosion and sedimentation as an inten-
sifying process leads to the loss of fertile soil of agriculture
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and irreparable damage to water construction projects, includ-
ing accumulation of sediments behind dams and reduction of
their useful volume, destruction of structures, damages to
beaches and ports, reduction of the capacity, elevation of the
maintenance cost of irrigation canals, etc. (Lin et al. 2018;
Kumar et al. 2018). So calculating sediment volume for
decision-makers in watersheds is very important. In recent
years, researchers have used artificial intelligence methods to
calculate sediment volumes (Moeeni and Bonakdari 2018;
Zamani et al. 2018; Negm et al. 2018; Adarsh and Reddy
2018; Hatten et al. 2018). Given that many parameters affect
the volume of sediments, therefore, software computation
methods, with the massive amount of data received, have a
high potential to predict the calculation of sediment volumes.
They are also highly accurate and have high adaptability to
hydrological and hydraulic conditions (Wu et al. 2018). In
addition, statistical methods and regression models are the
next priorities for predicting sediment volume. If the quality
of these methods can be improved based on some unknown
parameters using evolutionary algorithms, we can use regres-
sion models as a powerful tool for predicting the volume of
sediments (Lang et al. 2018; Ahilan et al. 2018).

History

Neural network and wavelet models have been used to predict
the daily sediment volume (Rajaee et al. 2010). The study was
based on daily precipitation data as well as daily discharge to
predict daily suspended sediment load. The results indicated
that the correlation coefficient of the neural network and
wavelet was greater than that of the support vector model.
Also, the root mean square error (RMSE) was significantly
reduced based on the neural network and wavelet method.

Nourani et al. (2012) used the improved neural network
method based on genetic algorithm to simulate sediments.
The calculation of the number of hidden layers and the num-
ber of hidden neurons in the neural network was performed
based on the genetic algorithm. The results revealed that the
improved neural network method based on daily discharge
data reduced the RMSE error by 30% compared to the tree
model.

Kisi and Shiri (2012) used genetic programming models as
well as tree models to predict sediment load. The results
showed that the genetic programming model based on daily
discharge values with a delay of 1 day, 2 days, and 3 days had
a greater ability to predict the daily suspended sediment load
compared to the tree model.

Kisi (2012) used the least square support vector machine to
predict daily suspended sediment load. The results indicated
that the method had a higher correlation coefficient in com-
parison with the simple support vector method in calculating
the daily suspended sediment load.

Liu et al. (2013) used the wavelet support vector and the
wavelet neural network to predict the daily suspended
sediment load. Daily precipitation and daily discharge data
were obtained based on both models. The results indicated
that the wavelet neural network method reduces the absolute
mean error between simulation and observational data.

Singh et al. (2014) used different neural networks to predict
the daily sediment load. The results revealed that the multi-
layer neural network offered results with a higher correlation
coefficient compared to the radial neural network. The number
of hidden layers and hidden neurons in the neural network was
also calculated based on the particle swarm algorithm.

Afan et al. (2015) used the forward and backward neural
network to calculate the daily suspended sediment load. The
results showed that the existence of precipitation data with a
long delay would not have any significant effect on the
improvement of the results. The performance of the forward
neural network was also more accurate than that of the back-
ward neural network.

Skardi et al. (2015) used the neural network method as well
as the artificial bee colony algorithm to predict suspended
sediment load. The results indicated that the improved neural
network method based on the artificial bee colony algorithm
had accurate results based on the exact determination of the
number of hidden layers and the weight used in the network.

Kumar et al. (2016) employed the improved support vector
method and a least square vector support method to calculate
the daily suspended sediment load. The results showed that
the improved vector support method based on the genetic
algorithm and the results of calculating unknown parameters
were precise, as the correlation coefficients of the improved
vector support method were significantly higher than those of
the least square support vector method.

Nourani et al. (2016) predicted the daily suspended sedi-
ment load using the improved least square support vector ma-
chine based on genetic algorithm. The results indicated that
the genetic algorithm could generate high accuracy in the cal-
culation of the daily suspended sediment load by accurately
calculating the parameters of the least square support vector
machine, where the RMSE error was 20% less than that of the
genetic programming method for calculating the suspended
sediment load.

Adib and Mahmoodi used a multi-layer neural network
method and a genetic algorithm to calculate the suspended
sediment load. The results demonstrated that the calculated
weights of the network based on the genetic algorithm led to
a more precise structure of the network. This caused the
simulated daily sediment load values to have high correlation
coefficients.

Malik et al. (2017) utilized fuzzy methods, genetic pro-
gramming, and the spline model to calculate the daily
suspended sediment load. The fuzzy methods used in this
study were improved with the help of the particle swarm
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algorithm. The results revealed that the absolute mean error of
the fuzzy method by receiving daily discharge data was higher
than that of the genetic programming and tree model, as the
mean absolute error based on the improved fuzzy method was
lower compared to other methods.

Objectives and innovations

The present study calculates the daily suspended sediment
load based on the improved support vector method. Past re-
search has shown that the aforementioned method has a good
ability in simulating sediment volumes. However, the un-
known parameters in previous studies have been computed
based on trial and error (Sahraei et al. 2018; Yilmaz et al.
2018; Liang et al. 2017). The trial-and-error method is not a
precise method for calculating the parameters of regression
models as these parameters have a great effect on the final
accuracy of the results. Therefore, the present study intends
to calculate the unknown parameters of the vector support
model using the genetic algorithm and then use the improved
model to calculate the sediment volume. In other words, the
values of the unknown parameters of the regression model are
included in the genetic algorithm as the decision variable, then
the optimal values of the variables are calculated.
Accordingly, two homogeneous earth dams in Semnan
Province, Iran, whose sediment volume is important for the
management of watershed basins and construction of various
hydraulic projects, are calculated. Also, the results are com-
pared with the tree and spline models which are used as
models for calculating sediments (Talebi et al. 2017;
Roushangar and Ghasempour et al. 2017).

Methods

Support vector machine

The support vector machine is used to analyze the time series
regression of variables in order to predict and simulate the
exact variables. The linear form of the support vector model
is based on the following relationship (Kisi et al. 2017):

f xð Þ ¼ WTr:xþ b ð1Þ

where f(x) is the objective variable estimated by SVM, W
represents the input weight coefficient, b is the bias, and Tr
denotes the transient symbol. SVM tries to decrease the dif-
ference between observational and simulation data. Therefore,
based on an optimization process, the SVM reduces the ob-
jective function which is minimization of error. This error
function ignores errors that are less than the threshold ε.

Minimize
1

2
wk k2 þ C ∑

m

i¼1
ξ−i þ ξþi
� � ð2Þ

subject toð Þ wi:xi þ bð Þ−yi < εþ ξþi
yi− wi:xi þ bð Þ≤εþ ξ−i

ð3Þ

where C is the penalty coefficient, ξ−i and ξ
þ
i are the penalties

for training data whose prediction error is outside the permis-
sible range, m denotes the number of training data, w shows
the weight, x represents the input variable, and y is the obser-
vational variable. The values of w and b are calculated from
Eqs. 2 and 3. Then, the values of the above parameters are
substituted in Eq. 1 to calculate f(x). The SVM model can be
used to predict and analyze nonlinear time series. Thus, Eq. 1
is rewritten according to the following relation:

f xð Þ ¼ wTr:K x; xið Þ þ b ð4Þ
where K(x, xi) is the kernel function. The kernel functions are
different. Previous studies have shown that the radial basis
kernel functions are successful compared to other kernel func-
tions where the simulated and observational results have high
compatibility (Bharti et al. 2017; Sahraei et al. 2018):

K x; xið Þ ¼ exp −
x−xij j2
2γ2

 !
ð5Þ

γ denotes the kernel parameter. Also, the SVM method has
unknown parameters ε and C. All three parameters were cal-
culated in the previous research based on the trial-and-error
process, which did not result in high accuracy (Kisi et al.
2017, Sahraei et al. 2018; Yilmaz et al. 2018; Liang et al.
2017).

Genetic algorithms

Genetic algorithms are one of the most successful evolution-
ary algorithms in solving various optimization problems such
as image processing, mathematical functions, engineering op-
timization problems, and other practical problems (Gil et al.
2018; Mousavi-Avval et al. 2017). First, a primary population
of different solutions is generated randomly and, in an iterative
process, subsequent populations are generated to improve the
objective function. At each stage, people from the current
population are selected to generate children or the next gener-
ation. Accordingly, individuals with a better performance are
more likely to be selected. Selected individuals generate the
next population based on the mutation and combination oper-
ator. The following relations are used for the combination
operator:

Popnewi ¼ αpopoldi þ 1−αð Þpopoldj ð6Þ

Popnewj ¼ αPopoldj þ 1−αð ÞPopoldi ð7Þ
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where Popnewi represents the ith child, popoldi is the ith parent,
Popoldj shows the jth parent, Popnewj denotes the jth child, and
α is a random number. The mutation is applied according to
the following relation:

Popnewj;i ¼ Varlowj;i þ β Varhii; j−Var
low
j;i

� �
ð8Þ

where Popnewj;i is the ith new gene in the jth chromosome, Va
rhii; j shows the lower limit of the ith gene in the jth chromo-
some, and β is a random number between 0 and 1. In combi-
nation, the generation of both new individuals occurs by
changing the gene between the two individuals. The mutation
operator is used to alter the chromosomes and to transform the
genes to create diversity.

Support vector method and genetic algorithm

Given that various parameters are associated with unknown
values, calculated in the previous research based on the trial-
and-error process (Kisi et al. 2017; Kisi et al. 2017, Sahraei
et al. 2018; Yilmaz et al. 2018; Liang et al. 2017), the genetic
algorithm is used in the present study to calculate parameters
with unknown vector support values:

Random parameters of the swarm genetic algorithm of the
initial population, the probability of mutation and combination
are determined. Then, an initial value is defined for the values
of the unknown parameters of the SVM method.

The input and output parameters are specified and based on
the highest correlation between the input parameters and the
suspended sediment load, where the best combination of the
input data is determined to simulate the amount of sediment.

Then, the input data is learned based on the SVM method.
Also, the value of the objective function which in this study is
RMSE is calculated.

The convergence criterion is controlled. If the convergence
criterion is satisfied, the SVM method, based on the best
values of its calculated parameters, performs the test step to
calculate the suspended sediment load. Then, the results are
extracted; otherwise, the algorithm proceeds to the next step.

The values of the SVM-related parameters including γ, ε,
and C as input populations are introduced into a matrix based
on the genetic algorithm. Indeed, these parameters are known
as decision variables whose optimum value is calculated
based on the particle swarm algorithm.

Then, the mutation and combination operators are applied
to the population and then go back to step 3. Figure 1 demon-
strates the stages of this structure.

Tree model (M5 tree model (M5T))

One of the regression models used by researchers as a popular
model is theM5Tmodel. It has a simple procedure to simulate

hydraulic and hydrological variables and relatively accurate
results (Heddam and Kisi 2018; Talebi et al. 2017).

The decision tree is for displaying a series of rules making a
category or quantity. Decision trees are designed through se-
quential data separation into a separate set of groups, which
intends to increase the distance between groups in the process
of separation. In the tree construction process, an inference
algorithm or division criterion is used to generate a decision
tree. The dividing criterion for the model involves estimating
the standard deviation of the class values reaching the node as
a quantity of error and calculating the expected reduction in
this error as the test result of each attribute in that node.
Reduced standard deviation is calculated from the following
equation:

SDR ¼ sd Tð Þ−∑ jTij
jT j sd Tið Þ ð9Þ

where T represents a series of samples reaching the node, Ti
denotes the samples of the ith output of the series, and sd
shows the standard deviation. Due to the data branching pro-
cess located at the child node, it has a lower standard deviation
than that of the mother node and therefore it is more pure.
After maximizing all possible splits, the adjective model is
selected which maximizes the expected reduction. This divi-
sion yields the pseudo-tree structure, contributing to greater
fitting. To overcome the over-fit problem, the formed tree
must be pruned. This is done by replacing the tree with a leaf.
So the second step in designing a tree model is to prune a
grown tree and replacing the subsidiary trees with linear re-
gression functions.

Multivariate adaptive regression spline

The multivariate adaptive regression spline (MARS) method is
known as one of the most applied and successful methods for
simulating hydraulic and hydrological variables with a simple
process (Deo et al. 2017; Kisi et al. 2017; Golkarian et al. 2018).

Nonparametric models are proposed if the structure of a
model is not known before modeling. Among them, the mul-
tivariate adaptive regression spline can be mentioned. Also, if
the used model uses the relevant data entirely, the model is
general, while if the model divides the data, then the model is
called local. This method divides the data into subsets, and in
proportion to the complexity of data, in each region, it tries to
fit functions called basic functions. The first stage of the mod-
el is known as a move forward. At this point, the model first
starts with a constant term only and then repeatedly adds basic
functions for modeling the data to a constant term. Indeed, a
model generated with the highest fitness to the data involved
in the modeling process. However, for the data that did not
participate in the modeling process, it does not offer good
fitness. The second stage is known as the backwardmovement
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stage. This step is for pruning the model and eliminating the
basis functions with the least effect on the modeling process.
To specify the submodels with the least effect on the model-
ing, we use generalized cross-validation. This kind of valida-
tion is a kind of interaction between fit and complexity of the
model in such a way that the model fitness with the data rises
in the forward movement step by adding basis functions, and
in response, the complexity of the model grows. Adaptive
regression is performed according to the following equation:

Ŷ̂ ¼ f̂̂ xð Þ ¼ a0 þ ∑
M

m¼1
amBm Xð Þ ð10Þ

where a0 is the constant value,M denotes the number of non-
zero terms, am shows the coefficient of the mth basis function,
and Bm(X) represents the mth basis function for the model,
which is calculated according to the following equation.

Bm xð Þ ¼ ∏
i¼1

km

Si;m X v i;mð Þ−ti;m
� �� �q

þ ð11Þ

km is the degree of interaction between the variables; Si, m = ±
1 and Xv(i,m) represent the variable v, where 1 ≤ v(i,m) ≤ k; and
k is the total number of input variables. Also, ti, m shows the
node position on each prediction variable of the dependent
variable. The crossover validation is generalized based on
the following relation:

GCV ¼
1

n
∑
n

i¼1
yi− f xið Þ2
h i

1− C Mð Þ
n

� �2� 	 ð12Þ

where GCV is the generalized cross-validation, yi represents the
actual values of the class, f(xi) denotes the estimated value for the
actual values of the class, n represents the total number of ob-
servations, and C(M) is the cost criterion-penalty of the model.

Case study

Two earth dams are considered for estimating the daily
suspended sediment load in Semnan Province in Iran. The
features of the dams studied include homogeneity, noncore,
and the type of earth dam. The goal of the dam is to control
flood and store groundwater feeds. Thus, a large amount of
sediment has been trapped in these two dams. Royan is locat-
ed at the longitude 53° 39′ 00 and latitude 35° 43′ 17.28″ and is
known as the first dam. Further, the second dam is called
Veynakeh with longitude 53° 00′ 11.25″ and latitude
35° 37′ 7.9″. Figure 2 illustrates the position of the dams.

The items selected in the study are more than 50 earth
dams. The basis for choosing includes the following criteria:

1. Minimum operation lifetime of 10 years
2. No significant deposition has occurred during the years of

operation

This issue is investigated based on adequate evidence in the
reservoir, overflow situation, and local information from local
people and experts.

Table 1 and Fig. 3 presents the statistical characteristics of
the two stations’ relevant data between 2000 and 2010. The
input data of this study are precipitation and discharge rates.

Fig. 1 SVM and GA for computation of sediment load
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The recorded statistical values indicate the hydraulic complex-
ity of the flow and sediment. For example, the values of the
coefficient of variation of data related to precipitation, dis-
charge, and numerical deposition are significant. The skew-
ness coefficient is also significant for the discharge and sedi-
ment data representing the complex conditions of modeling at
both stations. The following indicators are also used to eval-
uate different methods:

& Root mean square error (RMSE)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

t¼1

X obt−X stð Þ2
N

s
ð13Þ

& Mean absolute error (MAE)

MAE ¼ ∑
N

i¼1

jX obt−X stj
N

ð14Þ

& Nash Sutcliff

NSE ¼ 1−
∑
N

i¼1
X obt−X stð Þ2

∑
N

I¼1
X obt−X obt

� �2 ð15Þ

In addition, the following equation is used to calculate the
correlation coefficient between the suspended sediment load
and various input parameters:

ρx;y ¼
cov X ; Yð Þ

σxσy
¼

E X−μxð Þ Y−μy

� �h i
σxσy

ð16Þ

where Xobt denotes the observational data, Xst represents the
simulated data, N is the number of data, X obt shows the mean
number of observational data, ρx, y is the correlation coeffi-
cient, cov(X, Y) is the covariance between the quantitative
variables X and Y, μx and μy indicate the mean of X and Y
respectively, and E is the expected value.

Results and discussion

Investigation of sediment load correlation
and various input parameters

To simulate the daily suspended sediment load, first, the cor-
relation values of different parameters with the amount of
daily sediment load have been investigated. Figure 4 illus-
trates different parameters with different time delays and their
correlation with the daily suspended sediment load.
Parameters Qt, Qt − 1, Qt − 2, and Qt − 3 represent the current
time discharge as well as discharge of one, two, and three

Fig. 2 Location of case study
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previous days, respectively. On the other hand, the parameters
Rt, Rt − 1, Rt − 2, and Rt − 3 show the current time precipitation
along with the precipitation of one, two, and three previous
days, respectively. It is clearly evident that the parameter Qt

for both stations has the highest correlation with the daily
suspended sediment load. The longer the delay in the magni-
tude of daily flow, the lower the effect on the suspended load.
Also, a comparison of correlation coefficients for precipitation
values indicates that they are less effective and less correlated
compared to the discharge rate. In particular, the 3-day and 2-

day delay times to the plain reduced the correlation coefficient
between precipitation and the suspended sediment load.
Therefore, based on Fig. 4, the following input combinations
are recommended for both stations:

Qt;Rt;Qt−1;Rt−1;Qt−2;Qt−3→ SVM−GA1;M5T1;MARS1ð Þ
Qt;Rt;Qt−1→ SVM−GA2;M5T2;MARS2ð Þ
Qt;Qt−1;Qt−2;Qt−3→ SVM−GA3;M5T3;MARS3ð Þ
Qt;Rt;Qt−1;Qt−2→ SVM−GA4;M5T4;MARS4ð Þ

Royan station

Table 2a reports the performance of the M5T model at the test
and final stages for simulating the daily suspended sediment
load. The results indicate that the lowest RMSE is associated
with the M5T3 model, which has flow inputs in terms of the
current time discharge rate, 1-day-delay discharge rate, 2-day-
delay discharge rate, and 3-day-delay discharge rate. It has
also a better performance than other M5T models, as the
RMSE index in terms of M5T3 is 59%, 38%, and 26% lower
than that of the M5T1, M5T2, and M5T4, respectively.
Further, the M5T3 has the lowest value for the MAE coeffi-
cient and the highest value for the NSE coefficient. The
weakest performance among the M5T models belongs to the
M5T1, where the present-day precipitation and 1-day delay
precipitation data had no positive effect on sediment load sim-
ulation. Accordingly, the values of error indices based on
M5T1 are higher than those of the other tree models.
Table 2b presents the performance of differentMARSmodels.
The MARS3 model has a better performance than the other
models of MARS, based on lower values for the RMSE and
MAE indices. For example, the MAE index for the MARS3
model is 56%, 40%, and 10% lower than that for the MARS1,

Table 1 The statistical
parameters of the data set of the
stations

Station Data set Data type Xmean Xmax Xmin Sx Cv csx

Royan Training Sediment load (Ton) 5.25 7.12 0.30 9.01 1.71 2.24

Precipitation (mm) 18.14 27.29 9.11 23.4 1.32 3.41

Discharge (m3/s) 1.565 3.254 0.90 6.27 4.00 4.45

Test Sediment load (Ton) 5.454 6.87 0.34 8.65 1.58 5.12

Precipitation (mm) 16.12 23.12 7.25 22.11 1.37 3.87

Discharge (m3/s) 1.871 3.872 0.70 5..451 2.12 5.12

Veynakeh Training Sediment load (Ton) 8.14 12.25 1.12 8.91 1.09 3.11

Precipitation (mm) 19.12 28.14 12.11 24.12 1.26 2.78

Discharge (m3/s) 12.25 9.78 3.44 14.87 1.21 3.67

Veynakeh Test Sediment load (Ton) 8.21 12.14 1.11 9.11 1.10 4.55

Precipitation (mm) 20.12 27.67 12.44 21.24 1.05 5.67

Discharge (m3/s) 12.45 14.56 2.98 14.35 1.16 3.12
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Fig. 3 The computation of correlation for a Royan and b Veynakeh
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MARS2, and MARS4 models. Although the MARS1 model
has more inputs compared to the MARS3 model, the number
of inputs does not guarantee to improve the results, since the
inclusion of precipitation data has reduced the quality of the
model due to lower correlation with the suspended sediment
load. The comparison of the results of the MARS models and
of the tree model suggests that the M5T model has a better
performance. For example, the best performance of the
models based on MARS and M5T has been associated with
MARS3 and M5T3 where the RMSE and MAE values for
M5T3 have been 19% and 15% lower than those of MARS.
Other M5Ts have also a better performance compared to
MARS. Table 2c reveals the performance of different models
for SVM-GA. The best performance of the models is

represented by the lowest values for the RMSE and MAE
indices and the highest for NSE. For example, the RMSE
index for SVM-GA3 is 51%, 7.7%, and 1.2%, respectively
lower compared to the index for SVAM-GA1, SVM-GA2,
and SVM-GA1. As with the two previous models, discharge
rates have been the best in terms of current time and time
delays. Adding precipitation data at the present time causes
the SVM-GA1 model to have a worse performance than other
models. The comparison of the results of the SVM-GA model
with MARS and M5T suggests that the SVM-GA has a supe-
rior performance over the two models. For example, SVM-
GA3 with MARS3 and M5T3 as the best models for MARS
and M5T shows that the RMSE index for SVM-GA3 is lower
than that for MARS3 and M5T3 by 27% and 41%. In
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Fig. 4 The computation of R2 for Rooyan station, a SVM-GA3, b SVM-GA4, c SVM-GA2, d SVM-GA1, e M5T3, f M5T4, g M5T2, h M5T1, i
MARS3, j MARS4, k MARS2, and l MARS1
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addition, the SVM-GA3 model has a lower MAE index and
higher NSE index compared to MARS and M5T models.
Also, the optimum coefficient values for the SVM-GA model
are shown in Table 2c. In addition, for setting the parameters
of the genetic algorithm, parameter changes were used against
the changes in the objective function. When the value of a
parameter causes the objective function to be minimized, the
value of that parameter is selected as the best value; when the
chromosome population was 50, the combination rate was 0.6
and the mutation rate was 0.7. Figure 4 displays the perfor-
mance of different methods in terms of the R2 coefficient. The
results indicate that among the SVM-GA models, the SVR-
GA3model has a greater value for the R2 coefficient, while the

SVR-GA1 model has a lower value for this coefficient. In
addition, the comparison of the results suggests that the
M5T and MARS models have a better performance compared
to the SVM-GA model. The best performance for all models
belongs to the third type input, while the worst performance
was observed for the first type input. In any case, the SVM-
GA3 model had the best performance among the models.

Veynakeh station

Table 3a outlines the performance of the M5T models for
the Veynakeh station. The highest NSE coefficient, which
represents the performance of a model and its adaptation
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to observational data, is related to the M5T3 model, with
the NSE coefficient equal to 0.9. The comparison of the
results reveals that the MAE index value for the M5T3
model is 64%, 54%, and 37% lower than that of the
M5T1, M5T2, and M5T4 models. However, the combina-

tion of current time discharge as well as discharges of
one, two, and three previous days has the best perfor-
mance for the M5T model. The second priority to use
the M5T model is associated with the fourth input, current
time discharge as well as discharges of one and two pre-
vious days with the present time precipitation. It causes
the M5T4 model to have a more appropriate performance
following the M5T3 model. However, although the M5T1
model has more inputs, it has not shown much better
performance with delayed precipitation. Table 3b summa-
rizes the performance of the MARS models. The results
indicate that the RMSE index for the MARS3 model is
46%, 32%, and 42% lower than that for the MARS1,
MARS2, and MARS4 models. In addition, the MAE and
NSE indicators also reveal the superior performance of
the MARS3 model. Also, when comparing RMSE and
MAE indices for the MARS3 and M5T3 models, the re-
sults indicate that the RMSE and MAE for the M5T3
model are 34% and 17% lower than those for the
MARS3 model. Also, the comparison of the results sug-
gests that all M5T models have a better performance than
MARS. The combination of the first data inputs for the
MARS model, such as the M5T model, has had a slightly
weaker performance compared to the other models.
Table 3c represents the various performances of the
SVM-GA. The results indicate that the RMSE error value
for SVM-GA3 is 50%, 21%, and 1.4% lower than those
of SVM-GA1, SVM-GA2, and SVM-GA4, respectively.
The NSE and MAE indicators also confirm that the SVM-
GA3 model has a better performance than other SVM-GA
models. The comparison of RMSE values for the three
SVM-GA3, MARS3, and M5T3 models suggests that
the RMSE for the SVM-GA3 model is 49% and 22%
lower than that for the MARS3 and M5T3 models. The
NSE and MAE indicators also confirm that all SVM-GA
models have a better performance compared to the MARS
and M5T models. Meanwhile, the values of the optimal
vector coefficients of the support vector machine are spec-
ified in Table 2c. In the case of previous research, where
the results of the support vector method were not always
superior to those of other methods used, the present study
was able to produce good results through the improved
method based on genetic algorithm and accurate calcula-
tion of the coefficients of the method. Also, the results of
the two stations showed that the combination of inputs of
discharge based on the current time as well as one and
two previous days offered the best performance, while
increasing the number of inputs such as first type inputs
does not provide any guarantee for the performance of the
models. Figure 5 reveals the performance of different
models based on the R2 coefficient. The highest value of
this coefficient belongs to the SVM-GA3 model, which is

Table 2 Evaluation of different methods for Rooyan Station: a M5T, b
MARS, and c SVM-GA

Combination RMSE (ton) MAE (ton) NSE

a

M5T1 0.85 2.985 3.123

M5T2 0.87 2.001 2.212

M5T3 0.91 1.111 1.265

M5T4 0.89 1.615 1.718

b

MARS1 0.84 2.988 3.224

MARS2 0.86 2.212 2.414

MARS3 0.90 1.312 1.567

MARS4 0.87 1.465 1.819

c

SVM-GA1
γ = 2.15, ε = 0.028, C = 12.8

0.92 1.812 1.878

SVM-GA2
γ = 2.19, ε = 0.027, C = 12.6

0.94 0.894 0.989

SVM-GA3
γ = 2.14, ε = 0.023, C = 12.5

0.96 0.791 0.912

SVM-GA4
γ = 2.17, ε = 0.021, C = 12.2

0.93 0.912 0.924

Table 3 Evaluation of different methods for Veynakeh station: aM5T, b
MARS, and c SVM-GA

Combination RMSE (ton) MAE (ton) NSE

a

M5T1 3.110 2.784 0.86

M5T2 2.411 2.212 0.87

M5T3 1.163 1.001 0.90

M5T4 1.618 1.612 0.89

b

MARS1 3.312 2.915 0.84

MARS2 2.651 2.321 0.86

MARS3 1.785 1.211 0.89

MARS4 1.911 1.711 0.87

c

SVM-GA1
γ = 2.12, ε = 0.021, C = 12.2

1.811 1.511 0.92

SVM-GA2
γ = 1.14, ε = 0.025, C = 12.8

1.151 1.001 0.94

SVM-GA3
γ = 3.15, ε = 0.029, C = 12.5

0.899 0.545 0.96

SVM-GA4
γ = 2.17, ε = 0.028, C = 12.5

0.912 0.724 0.93
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equivalent to 0.9671, and is larger than that of other
SVM-GA models. Also, comparing the performance of
the M5T and MARS models with that of SVM-GA, both
are weaker than the SVM-GA given the R2 coefficient. In
addition, M5T models have higher R2 coefficients than
MARS models. In any case, the indices used in the pres-
ent research including MAE and RMSE, which represent
the extent of difference between observed and simulated
data, decreased by the modified SVM method compared
to the tree model and MARS model based on all input
data. In addition, the NSE index offered more precise
results for both stations based on the improved SVM

model, where the index value for all models was close
to 1, suggesting better performance of the improved
SVM model. Investigation of the R2 coefficient for the
modified SVM model indicated that the model is more
accurate than other methods, with the value of the men-
tioned coefficient being close to one, suggesting desirable
performance of the modified SVM model. Indeed, identi-
fying the accurate value of the parameters of the SVM
method based on genetic algorithm allows for enhancing
the method’s accuracy through the optimization process.
This, in turn, helps the SVM model present a better per-
formance compared to other previous studies.
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Fig. 5 The computation of R2 for Veynakeh station, a SVM-GA3, b SVM-GA4, c SVM-GA2, d SVM-GA1, e M5T3, f M5T4, g M5T2, h M5T1, i
MARS3, j MARS2, k MARS4, and l MARS1
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Conclusion

The importance and effectiveness of sediment volume in a
basin prompted the present study to investigate the models
for predicting daily suspended sediment load. Since regression
methods have unknown parameters, therefore, the exact cal-
culation of parameters with an unknown value is very impor-
tant. The support vector method is one of the regression
methods which calculates unknown parameters in previous
studies based on trial and error. However, in the present paper,
these variables were included in the genetic algorithm. Then,
based on the definition of the RMSE objective function, the
best value for the parameters of the support vector models was

calculated. A case study was conducted in Semnan Province
with two earth dams called Royan and Veynakeh in order to
calculate the daily suspended sediment load. Next, the results
were compared with the findings of the MARS and M5T
methods. The results indicated that inputs including the cur-
rent time discharge as well as discharges of one, two, and three
previous days had a better performance for all models.
Further, adding precipitation inputs based on the current time
and the day before led to reduced quality of the models in the
simulation of suspended sediment load. Also, the correlation
coefficients and RMSE and MAE errors for the SVM-GA3
model suggested that the model has the best performance
among all SVM-GA, MARS, and M5T models. The
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comparison of the results revealed that the M5T model claims
the second position in terms of good performance followed by
the SVM-GAmodels. Also, theMARSmodels offered a good
performance following the SVM-GA and M5T models.
Future studies can be used to develop the SVM method with
other advanced evolutionary algorithms such as bat and shark
algorithms to develop the SVM method.

Author contribution A new method for the support vector machine was
used to simulate the sediment load. All the authors contributed to the
manuscript development by writing, discussing changes for clarity, and
technical usefulness and correction.
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